Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Manage Online Access
  • Log out
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Manage Online Access
    • Individual Subscriptions
    • Institutional Subscriptions
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcast
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Manage Online Access
  • Log out

Search

  • Advanced search
Diabetes
Advertisement
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Manage Online Access
    • Individual Subscriptions
    • Institutional Subscriptions
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcast
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Increased β-Cell Secretory Capacity as Mechanism for Islet Adaptation to Nicotinic Acid-Induced Insulin Resistance

  1. Steven E Kahn,
  2. James C Beard,
  3. Michael W Schwartz,
  4. W Kenneth Ward,
  5. Han Lun Ding,
  6. Richard N Bergman,
  7. Gerald J Taborsky Jr and
  8. Daniel Porte Jr
  1. Department of Medicine, University of Washington School of Medicine and Veterans Administration Medical Center Seattle, Washington Department of Physiology and Biophysics, University of Southern California Los Angeles, California
  1. Address correspondence and reprint requests to Steven E. Kahn, MB, ChB, VA Medical Center (151), Division of Endocrinology and Metabolism, 1660 South Columbian Way, Seattle, WA 98108.
Diabetes 1989 May; 38(5): 562-568. https://doi.org/10.2337/diab.38.5.562
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

To determine whether prolonged nicotinic acid (NA) administration produces insulin resistance and, if so, how the normal pancreatic islet adapts to prolonged insulin resistance, we administered incremental doses of NA to 11 normal men for 2 wk, ending at 2 g/day. Insulin sensitivity was measured with Bergman's minimal model. Islet function was evaluated by measurement of acute insulin (AIR) and glucagon (AGR) responses to arginine at three glucose levels. Insulin resistance was demonstrated and quantified by a marked drop in the insulin sensitivity index (S1) from 6.72 ± 0.77 to 2.47 ± 0.36 × 10−5 min−1/pM (P < .0001) and resulted in a doubling of basal immunoreactive insulin levels (from 75 ± 7 to 157 ± 21 pM, P < .001) with no change in fasting glucose (5.5 ± 0.1 vs. 5.7 ± 0.1 mM). Proinsulin levels also increased (from 9 ± 1 to 15 ± 2 pM, P < .005), but the ratio of proinsulin to immunoreactive insulin did not change (12.7 ± 1.9 vs. 10.3 ± 1.9%). β-Cell changes were characterized by increases in the AIR to glucose (from 548 ± 157 to 829 ± 157 pM, P < .005) and in the AIR to arginine at the fasting glucose level (from 431 ± 54 to 788 ± 164 pM, P < .05). At the maximal hyperglycemia level the AIR to arginine represents β-cell secretory capacity, and this increased with administration of NA (from 2062 ± 267 to 2630 ± 363 pM, P < .05). From the AIRs to arginine an estimate of the glucose level giving half-maximal AIR to arginine can be calculated. This measure did not increase (10.0 ± 0.5 vs. 9.6 ± 0.9 mM). The AGRs to argininewere reduced at all glucose levels during NA administration. Thus, the pancreatic islet adapts to the prolonged insulin resistance induced by NA. This adaptation comprises a combination of increased insulin secretion and reduced glucagon secretion. The changes in insulin secretion can be entirely explained by an increase in the secretory capacity of the β-cell.

  • Received June 24, 1988.
  • Revision received November 17, 1988.
  • Accepted November 17, 1988.
  • Copyright © 1989 by the American Diabetes Association
PreviousNext
Back to top
Advertisement

In this Issue

May 1989, 38(5)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Increased β-Cell Secretory Capacity as Mechanism for Islet Adaptation to Nicotinic Acid-Induced Insulin Resistance
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
Citation Tools
Increased β-Cell Secretory Capacity as Mechanism for Islet Adaptation to Nicotinic Acid-Induced Insulin Resistance
Steven E Kahn, James C Beard, Michael W Schwartz, W Kenneth Ward, Han Lun Ding, Richard N Bergman, Gerald J Taborsky, Daniel Porte
Diabetes May 1989, 38 (5) 562-568; DOI: 10.2337/diab.38.5.562

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Increased β-Cell Secretory Capacity as Mechanism for Islet Adaptation to Nicotinic Acid-Induced Insulin Resistance
Steven E Kahn, James C Beard, Michael W Schwartz, W Kenneth Ward, Han Lun Ding, Richard N Bergman, Gerald J Taborsky, Daniel Porte
Diabetes May 1989, 38 (5) 562-568; DOI: 10.2337/diab.38.5.562
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Troglitazone Upregulates LDL Receptor Activity in HepG2 Cells
  • Temporal and Quantitative Correlations Between Insulin Secretion and Stably Elevated or Oscillatory Cytoplasmic Ca2+ in Mouse Pancreatic β-Cells
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • For Advertisers
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Scientific Sessions Abstracts
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org
Advertisement

© 2019 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.