Depot-Specific Differences in Adipose Tissue Gene Expression in Lean and Obese Subjects

  1. Hubert Vidal
  1. INSERM U.325, Département d'Athérosclérose, Institut Pasteur Lille
  2. INSERM U.449 and Centre de Recherche en Nutrition Humaine de Lyon, Faculté de Médecine R. Laënnec Lyon, France
  3. University Hospital UIA Edegen, Belgium
  1. Address correspondence and reprint requests to Dr. Hubert Vidal, INSERM U 449, Faculté de Médecine R. Laënnec, Rue G. paradin, F-69373 Lyon Cedex 08, France. E-mail: vidal{at}cimac-res.univ-lyonl.fr

Abstract

Intra-abdominal and subcutaneous adipose tissue display important metabolic differences that underlie the association of visceral, but not subcutaneous, fat with obesity-related cardiovascular and metabolic problems. Because the molecular mechanisms contributing to these differences are not yet defined, we compared by reverse transcription-polymerase chain reaction the expression of 15 mRNAs that encode proteins of known importance in adipocyte function in paired omental and subcutaneous abdominal biopsies. No difference in mRNA expression between omental and subcutaneous adipose tissue was observed for hormone sensitive lipase, lipoprotein lipase, 6-phosphofructo-1-kinase, insulin receptor substrate 1, p85α regulatory subunit of phosphatidylinositol-3-kinase, and Rad. Total amount of insulin receptor expression was significantly higher in omental adipose tissue. Most of this increase was accounted for by expression of the differentially spliced insulin receptor lacking exon 11, which is considered to transmit the insulin signal less efficiently than the insulin receptor with exon 11. Perhaps consistent with a less efficient insulin signaling, a twofold reduction in GLUT4, glycogen synthase, and leptin mRNA expression was observed in omental adipose tissue. Finally peroxisome proliferator activated receptor-γ (PPAR-γ) mRNA levels were significantly lower in visceral adipose tissue in subjects with a BMI <30 kg/m2, but not in obese subjects, indicating that relative PPAR-γ expression is increased in omental fat in obesity. This suggests that altered expression of PPAR-γ might play a role in adipose tissue distribution and expansion.

  • Received August 8, 1997.
  • Revision received September 24, 1997.
  • Accepted September 24, 1997.
| Table of Contents