How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids?
Abstract
Although transport of long-chain free fatty acids (FFAs) into cells is often analyzed in the same way as glucose transport, we argue that the transport of the lipid-soluble amphipathic FFA molecule must be viewed differently. The partitioning of FFAs into phospholipid bilayers and their interfacial ionization are particularly relevant to transport. We summarize new data supporting the diffusion hypothesis in simple lipid bilayers and in plasma membranes of cells. Along with previous supporting data, the new data indicate that transport of FFAs through membranes could occur rapidly by flip-flop of the un-ionized form of the FFA. It appears that, at least for the adipocyte, passive diffusion guarantees fast entry and exit of FFAs at both low and high concentrations. Although there are several candidate proteins for the membrane transport of FFAs, most of these proteins have other established functions. Thus, unlike the glucose transporters, these proteins would not be single-function proteins. Definitive proof of their function as FFA transporters awaits their reconstitution into simple model systems.
Log in using your username and password
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.