Impaired Cathepsin L Gene Expression in Skeletal Muscle Is Associated With Type 2 Diabetes

  1. Xudong Huang1,
  2. Allan Vaag12,
  3. Emma Carlsson1,
  4. Mona Hansson1,
  5. Bo Ahrén3 and
  6. Leif Groop1
  1. 1Department of Endocrinology, Wallenberg Laboratory, Malmo, Sweden
  2. 2Steno Diabetes Center, Gentofte, Denmark
  3. 3Department of Medicine, University of Lund, Lund, Sweden
  1. Address correspondence and reprint requests to Xudong Huang, Programme in Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada. E-mail: xudong{at}


To identify abnormally expressed genes associated with muscle insulin resistance or type 2 diabetes, we screened the mRNA populations using cDNA differential display combined with relative RT-PCR analysis from muscle biopsies of diabetes-prone C57BL/6J and diabetes-resistant NMRI mice fed with a high-fat or normal diet for 3 or 15 months. Six abnormally expressed genes were isolated from the mice after a 3-month fat feeding; one of them was cathepsin L. No significant difference in mRNA levels of these genes was observed between fat- and normal-diet conditions in either strains. However, cathepsin L mRNA levels in muscle were higher in normal diet–fed C57BL/6J mice compared with normal diet–fed NMRI mice at 3 months (0.72 ± 0.04 vs. 0.51 ± 0.04 relative units, P < 0.01, n = 8–10) and at 15 months (0.41 ± 0.05 vs. 0.27 ± 0.04 relative units, P = 0.01, n = 9–10). Further, cathepsin L mRNA levels in muscle correlated inversely with plasma glucose in both strains regardless of diets at 3 (r = −0.49, P < 0.01, n = 31) and 15 (r = −0.42, P = 0.007, n = 39) months. To study whether cathepsin L plays a role in human diabetes, we measured cathepsin L mRNA levels in muscle biopsies taken before and after an insulin clamp from 12 monozygotic twin pairs discordant for type 2 diabetes and from 12 control subjects. Basal cathepsin L mRNA levels were not significantly different between the study groups. Insulin infusion increased cathepsin L mRNA levels in control subjects from 1.03 ± 0.30 to 1.90 ± 0.32 relative units (P = 0.03). Postclamp cathepsin L mRNA levels were lower in diabetic twins but similar in nondiabetic twins compared with control subjects (0.66 ± 0.22, 1.16 ± 0.18 vs. 1.38 ± 0.21 relative units, P < 0.02, NS, respectively). Further, postclamp cathepsin L mRNA levels were correlated with insulin-mediated glucose uptake (r = 0.37, P = 0.03), particularly, with glucose oxidation (r = 0.37, P = 0.03), and fasting glucose concentrations (r = −0.45, P < 0.01) across all three study groups. In conclusion, muscle cathepsin L gene expression is increased in diabetes-prone mice and related to glucose tolerance. In humans, insulin-stimulated cathepsin L expression in skeletal muscle is impaired in diabetic but not in nondiabetic monozygotic twins, suggesting that the changes may be secondary to impaired glucose metabolism.


    • Accepted May 22, 2003.
    • Received February 6, 2002.
| Table of Contents