Glucose Regulates Foxo1 Through Insulin Receptor Signaling in the Pancreatic Islet β-cell

  1. Sara C. Martinez,
  2. Corentin Cras-Méneur,
  3. Ernesto Bernal-Mizrachi and
  4. M. Alan Permutt
  1. Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
  1. Address correspondence and reprint requests to M. Alan Permutt, MD, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8127, St. Louis, MO 63110. E-mail: apermutt{at}


Glucose controls islet β-cell mass and function at least in part through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway downstream of insulin signaling. The Foxo proteins, transcription factors known in other tissues to be negatively regulated by Akt activation, affect proliferation and metabolism. In this study, we tested the hypothesis that glucose regulates Foxo1 activity in the β-cell via an autocrine/paracrine effect of released insulin on its receptor. Mouse insulinoma cells (MIN6) were starved overnight for glucose (5 mmol/l) then refed with glucose (25 mmol/l), resulting in rapid Foxo1 phosphorylation (30 min, P < 0.05 vs. untreated). This glucose response was demonstrated to be time (0.5–2 h) and dose (5–30 mmol/l) dependent. The use of inhibitors demonstrated that glucose-induced Foxo1 phosphorylation was dependent upon depolarization, calcium influx, and PI3K signaling. Additionally, increases in glucose concentration over a physiological range (2.5–20 mmol/l) resulted in nuclear to cytoplasmic translocation of Foxo1. Phosphorylation and translocation of Foxo1 following glucose refeeding were eliminated in an insulin receptor knockdown cell line, indicating that the glucose effects are mediated primarily through the insulin receptor. Activity of Foxo1 was observed to increase with decreased glucose concentrations, assessed by an IGF binding protein-1 promoter luciferase assay. Starvation of MIN6 cells identified a putative Foxo1 target, Chop, and a Chop-promoter luciferase assay in the presence of cotransfected Foxo1 supported this hypothesis. The importance of these observations was that nutritional alterations in the β-cell are associated with changes in Foxo1 transcriptional activity and that these changes are predominantly mediated through glucose-stimulated insulin secretion acting through its own receptor.


  • Additional information for this article can be found in an online appendix at

    DOI: 10.2337/db05-0678

    The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Accepted February 20, 2006.
    • Received May 26, 2005.
| Table of Contents