Enhanced Hypothalamic Glucose Sensing in Obesity: Alteration of Redox Signaling

Anne-Laure Colombani,1 Lionel Carneiro,1 Alexandre Benani,1 Anne Galinier,1 Tristan Jaillard,1 Thibaut Duparc,1 Géraldine Offer,1 Anne Lorsignol,1 Christophe Magnan,2 Louis Casteilla,1 Luc Pénicaud,1 and Corinne Leloup1

OBJECTIVE—Recent data demonstrated that glucose sensing in different tissues is initiated by an intracellular redox signaling pathway in physiological conditions. However, the relevance of such a mechanism in metabolic disease is not known. The aim of the present study was to determine whether brain glucose hypersensitivity present in obese Zucker rats is related to an alteration in redox signaling.

RESEARCH DESIGN AND METHODS—Brain glucose sensing alteration was investigated in vivo through the evaluation of electrical activity in arcuate nucleus, changes in reactive oxygen species levels, and hypothalamic glucose-induced insulin secretion. In basal conditions, modifications of redox state and mitochondrial functions were assessed through oxidized glutathione, glutathione peroxidase, manganese superoxide dismutase, aconitase activities, and mitochondrial respiration.

RESULTS—Hypothalamic hypersensitivity to glucose was characterized by enhanced electrical activity of the arcuate nucleus, changes in reactive oxygen species levels, and hypothalamic glucose-induced insulin secretion. It was associated with 1) increased reactive oxygen species levels in response to this low glucose load, 2) constitutive oxidized environment coupled with lower antioxidant enzyme activity at both the cellular and mitochondrial level, and 3) overexpression of several mitochondrial subunits of the respiratory chain coupled with a global dysfunction in mitochondrial activity. Moreover, pharmacological restoration of the glutathione hypothalamic redox state by reduced glutathione infusion in the third ventricle fully reversed the cerebral hypersensitivity to glucose.

CONCLUSIONS—The data demonstrated that obese Zucker rats’ impaired hypothalamic regulation in terms of glucose sensing is linked to an abnormal redox signaling, which originates from mitochondrial dysfunction. Diabetes 58:2189–2197, 2009

It is well established that the brain has a critical role in regulating the energy needs of the body (1). Both carbohydrate and lipid stores are monitored by the brain using metabolic, hormonal, and neural signals from the periphery (2,3). These signals enter the brain and trigger neuroendocrine and autonomic responses that maintain energy homeostasis (4,5). Among the metabolic signals, glucose has long been identified and the physiological relevance of hypothalamic glucoreponsive neurons has been directly demonstrated (6). The molecular mechanisms underlying the glucose responsiveness of neurons in the hypothalamus exhibit β-cell analogy involving GLUT2, glucokinase, and KATP channels (7–10). Recently, a novel signaling pathway involving mitochondrial reactive oxygen species (mROS) was identified (11–13). Both pancreatic and hypothalamic studies pointed to mROS as a necessary signal to initiate the response to “glucose sensing” (e.g., insulin secretion). These studies suggest that a finely controlled mROS production depending on mitochondrial activity might be considered as a master physiological messenger in metabolite-sensitive cells.

Obesity is a major health problem in Western societies coupled with a high risk of developing insulin resistance. Rodent experimental models of obesity display impaired metabolic and hormonal brain sensing (14). Recent work demonstrated that the alteration of the hypothalamic glucose-sensing mechanism was sufficient to induce dramatic effects on energy balance correlated to mitochondrial abnormalities (6,15). Zucker rats exhibit a strong presence of obesity and an insulin resistance with dramatic autonomic disturbances, that is, modification of the sympathovagal balance (16,17). This model is also characterized by cerebral hypersensitivity to glucose, which initiates an abnormal vagus-induced insulin secretion (18,19). In this study, we set out to determine the role of redox signaling in hypothalamic hypersensitivity to glucose in this model of obesity. In addition, hypothalamic electrical activity has been characterized and shown to be correlated to aberrant mROS levels, redox state, and mitochondrial activity. Finally, restoration of the redox state fully reversed the cerebral hypersensitivity to glucose.

RESEARCH DESIGN AND METHODS

Genetically obese (fa/fa) and lean (Fa+/Fa) male Zucker rats (7 weeks old; Charles River) were housed in a controlled environment (12-h light/dark cycle, lights on at 7:00 A.M., 22°C) and fed ad libitum (Harlan, Gannat, France). Surgeries and experiments were performed under pentobarbital anesthesia (50 mg/kg, Centravet, Dinan, France) except where noted. All procedures involving rats were in accordance with the European Communities Council
Intracarotid injection of glucose toward the brain. A catheter was inserted into the carotid artery and pushed on 5 mm in the cranial direction. A bolus of 3 or 9 mg/kg glucose in 100 μl of adapted saline solution was injected toward the brain in 30 s. Saline and glucose in saline solutions were equiosmolar (300 mOsm).

Neuronal activity recordings. Multunit recordings within arcuate were made using a monopolar platinum electrode (Plymep, Paris, France) as previously described (20). Rats were placed in a stereotaxic apparatus (David Kopf), and arcuate nucleus was targeted according to coordinates obtained from Paxinos stereotaxic atlas: −3.1 mm posterior to bregma, −8.7 mm under the brain surface, and 0.4 mm from the midline. Action potentials were displayed and saved on a computer after initial amplification through a low-noise amplifier (BIO amplifier, AD Instrument, Rabalot, France). Data were digitized with a PowerLab/4sp digitizer. Signals were amplified 105 and filtered at low and high frequency cutoffs of 100 and 1,000 Hz and monitored with the Chart 4 computer program. Baseline unit activity was recorded for 10 min before infusion of a compound. Multunit recordings were made in response to a 100 μl intracarotid ipsilateral injection of either saline or glucose.

Osmotic pump implantation. Cannula (Plastics one, Plymep) was targeted to the third ventricle (2.6 mm posterior to the bregma and 10.0 mm below the brain surface, and 0.4 mm from the midline). Action potentials were displayed and saved on a computer after initial amplification through a low-noise amplifier (BIO amplifier, AD Instrument, Rabalot, France). Data were digitized with a PowerLab/4sp digitizer. Signals were amplified 105 and filtered at low and high frequency cutoffs of 100 and 1,000 Hz and monitored with the Chart 4 computer program. Baseline unit activity was recorded for 10 min before infusion of a compound. Multunit recordings were made in response to a 100 μl intracarotid ipsilateral injection of either saline or glucose.
TABLE 1
Characteristics of Zucker rats

<table>
<thead>
<tr>
<th></th>
<th>Body (g)</th>
<th>Insulinemia (µU/ml)</th>
<th>Glycemia (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>221.50 ± 5.64</td>
<td>26.05 ± 3.26</td>
<td>5.75 ± 0.15</td>
</tr>
<tr>
<td>Obese</td>
<td>258.17 ± 7.23**</td>
<td>142.70 ± 2.68</td>
<td>5.96 ± 0.07</td>
</tr>
</tbody>
</table>

Basal values of body weight, insulinemia, and glycemia are expressed as means ± SE (7-week-old rats). Significant differences according to the unpaired Student’s t test (n = 7) compared with lean littermates. **P < 0.001.

RESULTS

Seven-week-old obese Zucker rats were hyperinsulinemic (142.70 ± 2.68 vs. 26.05 ± 3.26 µU/ml) but normoglycemic (5.96 ± 0.07 vs. 5.75 ± 0.15 mmol/l) (Table 1).

Obese rats exhibit brain hypersensitivity to glucose. We confirmed the cerebral hypersensitivity exhibited by obese rats in response to glucose. Thus, 9 mg/kg glucose injection into the carotid artery toward the brain caused a rapid and transient increase in plasma insulin concentration. Amplitude and delay of this 3 mg/kg glucose-stimulated insulin secretion were similar to those observed with a glucose dose of 9 mg/kg in lean rats (P = 0.5737) (Fig. 2A). These results demonstrate that obese animals exhibit brain glucose hypersensitivity. This intracarotid glucose injection did not raise systemic glucose levels at any time during the test (Fig. 2B). Therefore, the insulin response is only because of cerebral glucose sensing and cannot result from peripheral effects.

Stimulation of multicellular hypothalamic electrical activity at the low glucose dose in obese rats. We previously showed that the activation of extracellular hypothalamic activity in arcuate nucleus in response to glucose was required to initiate insulin secretion in normal rats (12). Here, we explored the effect of 3 mg/kg glucose on extracellular arcuate nucleus electrical activity in both phenotypes. Basal glycemia at the time of recording was 5.91 ± 0.33, 6.05 ± 0.22, 5.89 ± 0.26, and 5.90 ± 0.59 mmol/l for lean and obese NaCl-injected rats and lean and obese 3 mg/kg glucose–injected rats, respectively. In lean rats, 3 mg/kg glucose induced a slight increase in arcuate electrical activity compared with saline injection (33%, P < 0.01). It also induced a significant increase in electrical events in obese animals when compared with saline injection (71%, P < 0.001) (Fig. 3) that differ significantly from the ones observed in lean rats injected with glucose (P < 0.01). Moreover, in contrast to obese rats, 3 mg/kg glucose–induced electrical activity was not associated with insulin secretion in lean rats.

FIG. 2. Hypothalamic hypersensitivity to glucose in the obese Zucker rat. A: Insulin secretion in response to glucose. Plasma insulin in obese and lean rats in response to saline (dotted line) or 3 mg/kg (G3, dash line) or 9 mg/kg (G9, black line) glucose injection toward the brain. Results are expressed as means ± SE (Δ from basal insulinemia at t = 0). Asterisk indicates significant differences according to independent statistical analysis using Mann-Whitney U test at t = 1 min, n = 6–9 per genotype (**P < 0.05 and ***P < 0.001). B: No change in glycemia during the glucose-sensing test. Glycemia in response to saline (dotted line) or 3 mg/kg (G3, dash line) or 9 mg/kg (G9, black line) glucose injection toward the brain. Results are expressed as means ± SE (Δ from basal glycemia at t = 0). No significant differences were detected using two-way ANOVA analysis at t = 1 min (n = 6–9 per genotype).

diabetes.diabetesjournals.org
Obese rats exhibit hypothalamic ROS production in response to the low glucose load. We measured ROS levels after saline or glucose injection. For this purpose, rats were injected through the carotid artery toward the brain with either the low dose of glucose or saline and killed 1 min after the injection (when insulin secretion occurs). ROS levels were assessed in both hypothalamus and thalamus. Interestingly, the basal constitutive ROS level, that is, assessed after saline intracarotid injection, was similar in both genotypes (Fig. 4). Glucose stimulation did not induce a significant change in hypothalamic ROS levels in lean rats. However, ROS levels were significantly increased (37%, $P < 0.05$) in obese rats injected with 3 mg/kg glucose when compared either with obese animals injected with saline or with lean rats injected with the same glucose load ($P < 0.05$, Fig. 4). Thus, low glucose stimulation mediates an increase in ROS levels only in obese rats. No such increase in ROS levels was found in thalamus, suggesting a regional specificity for this response (Fig. S1A, available in an online appendix at http://diabetes.diabetesjournals.org/cgi/content/full/db09-0110/DC1).

Abnormal ROS signaling is correlated to an alteration in the hypothalamic redox state. ROS level results from the balance between ROS production and detoxification. We measured enzymatic and nonenzymatic antioxidants in basal conditions (i.e., without glucose stimulation). The glutathione redox state, defined as GSSG-to-GSx ratio, as it is the major antioxidant that scavenges ROS, was oxidized twofold ($P < 0.001$) more in the hypothalamus of obese rats (Fig. 5A). Glutathione peroxidase activity was found to be significantly lower in the hypothalamus of obese rats ($266.0 \pm 28.7 \text{ vs. } 166.0 \pm 21.5; P < 0.01$ in lean vs. obese rats) (Fig. 5B). Glutathione peroxidase activity did not vary in the thalamus (Fig. S1B). The mitochondrial MnSOD activity was also decreased in obese rats ($0.0102 \pm 0.0009 \text{ vs. } 0.0065 \pm 0.0008 \text{ enzymatic unit per milligrams proteins}; P < 0.01$ in lean vs. obese rats) whereas extramitochondrial CuZnSOD was not statistically different between the two genotypes (Fig. 5C and D). This strongly suggests a mitochondrial defect in antioxidant enzyme activity in the hypothalamus of obese rats. This is reinforced by the activity of aconitase, an enzyme of the Krebs’s cycle sensitive to mROS and thus revealing the intramitochondrial redox state (31). This activity was significantly decreased ($-39\%; P < 0.001$) in the hypothalamus of obese Zucker rats (Fig. 5E). Altogether, these results demonstrate that the hypothalamic redox state is lower in obese rats than in lean rats, regardless of the intracellular compartment studied.

Hypothalamic mitochondria exhibit increased activity in response to substrates. We explored the cytochrome c oxidase activity (cyclooxygenase [COX], complex IV), which reflects the oxidative potential of the mitochondrial respiratory chain. COX activity was significantly increased ($51\%; P < 0.01$) in the hypothalamus of obese Zucker rats (Fig. 6A). To get further insight into the hypothalamic mitochondrial function, oxygen consumption by the electron transport chain was explored on isolated mitochondria (Fig. 6B). We performed titrations with glutamate (1, 5, and 20 mmol/l) to determine substrate-driven respiration. We highlighted a greater increase in the O_2 flux in response to glutamate in obese rats compared with lean ones. This increase was significant for each dose of glutamate (O_2 flux in lean vs. obese rats: 1 mmol/l, 2192 DIABETES, VOL. 58, OCTOBER 2009 diabetes.diabetesjournals.org
(substrates/ADP-driven) respiration was assessed with

\[
\text{State 4} = \frac{\text{O}_{2} \text{~flux}}{\text{carbohydrate}} - \text{respiration is only driven by substrates. State 4 (substrates/ADP-driven) respiration was assessed with saturating ADP concentration. The O}_{2} \text{ flux } 13.25 \pm 2.43 \text{ pmol/}(s \times mg) \text{ versus } 28.67 \pm 5.69 \text{ pmol/}(s \times mg) \text{ in lean and obese rats, respectively, was increased in obese rats (P < 0.05). C. ATP-ADP exchange inhibitor, was then added to obtain the ADP-independent resting state 4, whereas respiration is only driven by substrates. State 4 was significantly enhanced in obese rats. Finally, the RCR (RCR = state 3/state 4) in lean rats (1.50 ± 0.52) was not significantly different from obese rats (1.50 ± 0.19). The total respiratory capacity induced by CCCP was significantly increased in obese rats (36.43 ± 1.00 pmol/ [s × mg]) compared with lean ones (28.80 ± 2.44 pmol/ [s × mg]), P < 0.05 (Fig. 6C). Next, we examined uncoupling respiration. Stimulation of uncoupling proteins with 300 μmol/l palmitate (Palm) did not reveal differences between lean (25.39 ± 2.17 pmol/[s × mg]) and obese (27.83 ± 3.86 pmol/[s × mg]) rats (Fig. 6D). This result reveals no difference in uncoupling respiration. In conclusion, these results indicate an increase in hypothalamic mitochondria activity at the complex I and IV, as revealed with glutamate assay and COX activity measurement. The increase in total respiratory capacity further supports these data. No difference was found regarding these parameters in the thalamus (Fig. S1C–E).

Expression of the five complexes of the respiratory chain was examined. Both nuclear (30 kDa subunit of complex II, core protein 2 subunit of complex III, and the α subunit of complex V) and mitochondrial (ND6 subunit of complex I and subunit 1 of complex IV) complexes encoded were quantified at the protein level by Western blotting (Fig. 6E). The expression of complexes I, II, III, and IV (COX) was increased in hypothalamic mitochondria from obese rats (177, 153, 128, and 159%). Complex V expression (105%) was unchanged (Fig. 6F). These results indicate an increased quantity of most complexes of the electron transport chain in the mitochondria of obese rats.

These differences were not caused by a change in mitochondrial number because citrate synthase activity was identical in both genotypes (Fig. 6G).

Restoration of hypothalamic redox state normalizes the response to glucose load in obese rats. We decided to normalize the glutathione redox state in obese rats to test whether this could explain impaired ROS production stimulated by the low glucose load (3 mg/kg). Therefore, reduced glutathione (GSH) was intracerebroventricularly infused over 3 days using an osmotic minipump. Wellbeing of the animals (weight gain and food intake) was preserved during the infusion (Fig. S2A and B). HPLC analysis revealed that the GSH chronic intracerebroventricular infusion was efficient to restore GSH redox state...
within the hypothalami of obese rats (Fig. 7A). In contrast, it did not reverse mitochondrial function as measured on glutamate titration by oxygraphy (Fig. 7B). ROS levels and pancreatic insulin secretion were measured after the intracarotid 3 mg/kg glucose injection in glutathione-infused obese rats. Obese glutathione-infused rats did not have any more exacerbated ROS levels in response to the low glucose load and exhibited ROS levels similar to those of normal rats (Fig. 7C). Regarding the insulin response, it showed a full restoration of their sensitivity to glucose because their insulin peak was completely abolished in response to 3 mg/kg glucose. This result indicates a master role of mROS levels in response to glucose, at least for the nervous control of insulin secretion (Fig. 7D).

DISCUSSION
It has recently been demonstrated that glucose sensing was triggered by an intracellular redox signaling pathway in physiological conditions in the pancreas as well as in...
the hypothalamus (11,12). However, the relevance of such a mechanism in metabolic disease is not known. We hypothesized that an alteration in redox signaling in the brain could participate in metabolic diseases. To test this hypothesis, we explored redox signaling in the Zucker rat. These rats are obese, insulin-resistant, and dyslipidemic but normoglycemic. One original feature of this model is its hypothalamic hypersensitivity to glucose (18). We specifically aimed to understand whether this hypersensitivity to glucose present in obese Zucker rats could be related to an alteration in redox signaling. For the first time, we revealed that this hypersensitivity was associated, within the hypothalamus, with 1) an increased ROS level in response to the low glucose load, 2) a constitutive oxidized environment at both the cellular and mitochondrial level, and 3) an overexpression of several mitochondrial subunits of the respiratory chain, coupled with a global dysfunction in the mitochondrial activity. Moreover, pharmacological restoration of the hypothalamic redox state fully reversed the altered cerebral hypersensitivity to glucose. Altogether, these data suggest that this impaired metabolic regulation in the obese Zucker rat is linked to an abnormal redox signaling that originates from mitochondrial dysfunction.

In normal animals, hypothalamic glucose sensing promotes an increase in hypothalamic electrical activity and rapid and transient vagal-mediated insulin secretion (12,19). Moreover, we previously demonstrated that a key step in these events requires redox signaling because they were abolished when mROS were quenched (12). The hypersensitivity to glucose of obese Zucker rats has been demonstrated as an abnormal insulin response occurring after a low glucose load (3 vs. 9 mg/kg) that is inefficient in lean littermates (18). We confirmed this data regarding the peripheral insulin release and reinforced the notion of cerebral hypersensitivity to glucose in obese rats as assessed by the hypothalamic glucose-stimulated electrical activity. Indeed, we brought to light an increased level in the whole multicellular electrical activity in the arcuate nucleus of obese rats in response to 3 mg/kg glucose. Contrary to lean rats, this enhanced glucose-stimulated electrical activity was associated with the insulin response as if they were reading it naturally.

Table: Glutathione Levels in Hypothalamus

<table>
<thead>
<tr>
<th>Genotype</th>
<th>% GSSG / GSx</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zücker</td>
<td>3.63 ± 0.44</td>
<td>*</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Lean</td>
<td>7.16 ± 0.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese</td>
<td>3.43 ± 0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese GSH-infused</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagrams

A Normalization of the hypothalamic redox state. GSH and GSSG levels measured by HPLC in hypothalamic homogenates. The redox state of glutathione was calculated as (GSSG/GSx) × 100. Results are expressed as means ± SE of the glutathione redox state. Asterisk indicates a significant difference according to the unpaired Student’s t test (n = 4–6 per genotype) (**P < 0.01) compared with the obese group.

B No change in hypothalamic mitochondrial hypersensitivity to glutamate in obese glutathione restored rats. Glutamate titration (1, 5, and 20 mmol/l) in obese GSH-restored rats (gray bar) did not differ from the vehicle-treated obese rats (black bar). No significant differences present according to the repeated-measures ANOVA analysis (n = 4–6) (P_repeated = 0.1576).

C Normalization of hypothalamic ROS production. ROS production measured in obese rats after vehicle intracerebroventricular infusion and saline carotid injection (Ob NaCl, black bar [n = 2]), vehicle intracerebroventricular infusion and 3 mg/kg glucose carotid injection (Ob G3, dotted black bar [n = 2]), or GSH intracerebroventricular infusion and 3 mg/kg glucose carotid injection (Ob GSH G3, dotted gray bar [n = 7]). ROS levels were assessed on hypothalamic homogenates with the dichlorofluorescein diacetate probe 1 min after carotid injection. Data are expressed as means ± SE of the percentage of ROS fluorescence of the obese rats receiving the vehicle intracerebroventricular and saline carotid injection. Asterisk indicates significant differences according to the Newman-Keuls test (n = 4–6 per genotype) compared with the obese G3 group (**P < 0.05 and ***P < 0.01).

D Normalization of insulin secretion. Plasma insulin assessed in obese rats in response to 3 mg/kg glucose injection toward the brain (black) and in obese GSH-infused rats in response to 3 mg/kg glucose (gray). Results are expressed as means ± SE corresponding to Δ from basal insulinemia at t = 0. Asterisk indicates significant differences according to independent statistical analysis using Mann-Whitney U test at t = 1 min (n = 5–6 per genotype) (**P < 0.001).
in obese rats. This suggests that the electrical activity of the arcuate nucleus in response to 3 mg/kg glucose was high enough to promote insulin secretion in obese rats. Electrical activity was recorded under pentobarbital anesthesia that has depressive effects on nervous activity (32), thus suggesting a much greater effect on vigil rats. The multicellular recordings do not allow a distinction between direct versus presynaptic effects. However, numerous arcuate glucose-sensitive neurons have the ability to directly detect a change in glucose concentration (33). This cerebral hypersensitivity to glucose may explain the elevated parasympathetic tone that consequently contributes to the development of hyperinsulinemia in the obese Zucker rat (17,34).

In obese rats, there was a significant increase in ROS levels within the hypothalamus under low glucose stimulation at the time when plasma insulin increases. ROS concentration results from the balance between production and scavenging. The latter depends on the intracellular redox state (35,36). Glutathione reductase (oxidized-to-total form ratio) constitutes an accurate indicator of the cellular redox state because glutathione is in large amount in cells (1–5 mmol/l) and considered as the major ROS detoxifying system (37). It has a pivotal and synergetic role with many other antioxidants by reducing pro-oxidant forms (36). In the hypothalamus of obese rats, glutathione was oxidized twofold more in basal conditions. Decreased GPx activity in the hypothalamus from obese rats further confirmed that basal redox state was deeply modified in this area. To gain insight into the oxidative environment in the mitochondria, we evaluated MnSOD and aconitase activity. MnSOD and aconitase, an enzyme involved in the Krebs cycle and sensitive to ROS, are exclusively located in the mitochondria (31). Their activities were decreased in the hypothalamus of the obese Zucker rat. In contrast, Cu/ZnSOD located in the cytosol did not vary. Altogether, these data reveal a constitutive oxidative environment in the hypothalamus of obese Zucker rats regardless of the intracellular compartment (cytosol or mitochondria). These results are in line with numerous studies showing a drop in the antioxidant defenses such as reduced glutathione, α-tocopherol, and catalase in several tissues of obese Zucker rats (38,39).

Finally, the more oxidized cellular environment within the hypothalamus of obese rats could partly explain why an increased ROS level in response to the low glucose load is not buffered as in lean rats.

ROS are produced by electron leakage during mitochondrial metabolism, and the rate of their formation is enhanced as the mitochondrial metabolism increases (40–42). We explored the mitochondrial function in the hypothalamus of Zucker rats. First, the oxidative ability of the respiratory chain as determined by the cytochrome c oxidase activity, the total respiratory function as assessed with saturating substrate, and the chemical uncoupling were all significantly increased in the hypothalamus of obese rats. Second, the apparent affinity of the mitochondrial respiration for substrate was higher in obese rats as assessed by glutamate titration. Third, altered expression of mitochondrial complexes (I to IV) was increased in obese rats. These results are consistent with previous studies showing an increased oxidative capacity in the muscle of such rats, associated with an increasing number of functional units in the mitochondrial respiratory chain (43,44). No change in mitochondrial number was observed in the hypothalamus of obese rats as revealed by citrate synthase activity assay. Furthermore, it may be stressed that all these alterations are specific to the hypothalamus because no change was observed in the thalamus. Taken together with the absence of complex V modifications, the alterations seen between complexes I to IV may result in an enhancement in respiratory chain constraints (45). As an improved mitochondrial metabolism promotes ROS production under stimulation, this could represent the molecular basis of the abnormal increased ROS levels within the hypothalamus of obese rats in response to a low glucose load, in concert with the higher oxidized environment. One can speculate that the excessive mitochondrial ROS production might be a primary and causal link with the overoxidation of the redox state.

Recent observations from our laboratory and others (12,15,46) argue that ROS are part of hypothalamic activity control for the regulation of energy homeostasis. To date, ROS have been proposed as messengers in brain glucose and lipid sensing (12,46). For example, fasting abolished increased ROS in brain lipid sensing by increasing hypothalamic mitochondrial uncoupling (46); ghrelin signals are ROS-dependently integrated in NPY/AgRP neurons (15). Moreover, this latest study suggests that ROS signaling takes place in the neuronal population, although other cell types remain to be explored.

Here we show for the first time that dysfunction in hypothalamic redox signaling could be the molecular basis for impaired brain glucose sensing and might explain some features of the metabolic defects in obese rats such as hyperinsulinism. This has been strengthened by the experiment using a pharmacological approach (GSH treatment) that normalized the glutathione redox state. Indeed, such normalization reversed the increased ROS level as well as peripheral insulin secretion in response to a low glucose load (3 mg/kg). These findings highlight the necessity for a fine and balanced level of ROS dependent on the mitochondrial metabolism and the redox environment, which is required to trigger the appropriate redox signaling in response to glucose.

In summary, we demonstrated that the cerebral hypersensitivity to glucose in obese rats results from both impaired redox signaling and increased mitochondrial respiratory chain activity that lead to excessive ROS levels. One can postulate that these increased ROS levels activate redox signaling involving ROS-sensitive voltage-dependent channels (47,48). Changes in channel conformation will then modulate electrical activity that in turn triggers vagal-mediated insulin secretion. To determine whether hypothalamic mitochondrial dysfunction is of primary importance in the etiology of the hyperinsulinism in obesity, long-term treatment aiming to normalize redox state would provide interesting clues.

ACKNOWLEDGMENTS

This work was supported by grants from the Agence Nationale pour la Recherche (Nutrisens 05-PNRA-004) and from the Programme National de Recherche sur le Diabète (PNRD-0602).

No potential conflicts of interest relevant to this article were reported.

We fully acknowledge Jésus Garcia for his help in statistical analysis and the expertise of the Zootechnic Platform of the IFR31 Institute, I2MR, especially Christine Fourreau.
REFERENCES

1. Levin BE. Metabolic sensing neurons and the control of energy homeosta-
sis. Physiol Behav 2006;89:486–489.

2. Sandovall D, Cota D, Seeley RJ. The integrative role of CNS fuel-sensing
mechanisms in energy balance and glucose regulation. Annu Rev Physiol

3. Goldstone AP. The hypothalamus, hormones, and hunger: alterations in

5. Penicaud L, Fioramonti X, Lorsignol A, Benani A. Brain glucose
sensing: a subtle mechanism. Curr Opin Clin Nutr Metab Care 2006;9:458–
462.

sensing by POMC neurons regulates glucose homeostasis and is impaired in

7. Yang XJ, Kow LM, Funabashi T, Mobbs CV. Hypothalamic glucose sensor:
similarities to and differences from pancreatic β-cell mechanisms. Diabe-

8. Kang L, Routh VH, Kuzhihakandathil EV, Gaspers LD, Levin BE. Physiological
and molecular characteristics of rat hypothalamic ventromedial nucleus

Penicaud L. Glucose transporter 2 (GLUT2): expression in specific brain

10. Leloup C, Orosco M, Serradas P, Nicolaidis S, Penicaud L. Specific
inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides
suppresses nervous control of insulin secretion. Brain Res Mol Brain Res

Andersen ME, Corkey BE, Collins S. Reactive oxygen species are obliga-
2090.

12. Leloup C, Orosco M, Serradas P, Nicolaidis S, Penicaud L. Specific
inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides
suppresses nervous control of insulin secretion. Brain Res Mol Brain Res

13. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, Carriere A,
Periquet E, Fernandez Y, Ktorza A, Castella L, Penicaud L. Mitochondrial
reactive oxygen species are required for hypothalamic glucose sensing.

14. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, Carriere A,
Periquet E, Fernandez Y, Ktorza A, Castella L, Penicaud L. Mitochondrial
reactive oxygen species are required for hypothalamic glucose sensing.

L. Role for mitochondrial reactive oxygen species in the development of

Penicaud L. Acute intracarotid glucose injection towards the brain induces
specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in

17. Trettter L, Adam-Vizi V. α-ketoglutarate dehydrogenase: a target and

18. Kitaibara S, Yamashita M, Ikemoto Y. Effects of pentobarbital on purinergic
P2X receptors of rat dorsal root ganglion neurons. Can J Physiol Phar-

K+ channel-independent mechanism is involved in glucose-excited neu-

Andersen ME, Corkey BE, Collins S. Reactive oxygen species are obliga-
2090.

Andersen ME, Corkey BE, Collins S. Reactive oxygen species are obliga-
2090.