Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Standards of Medical Care
    • Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
  • Browse
    • By Topic
    • Issue Archive
    • Scientific Sessions Abstracts
  • Info
    • About the Journal
    • Meet the Editors
    • Reprints & Permissions
    • Journal Policies
    • For Authors
    • For Reviewers
    • For Advertisers
  • Subscriptions
    • Manage Online Access
    • Individual Subscriptions
    • Institutional Subscriptions
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Diabetes Discovery
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • Journal Policies
    • Instructions for Authors
    • Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Standards of Medical Care
    • Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
  • Browse
    • By Topic
    • Issue Archive
    • Scientific Sessions Abstracts
  • Info
    • About the Journal
    • Meet the Editors
    • Reprints & Permissions
    • Journal Policies
    • For Authors
    • For Reviewers
    • For Advertisers
  • Subscriptions
    • Manage Online Access
    • Individual Subscriptions
    • Institutional Subscriptions
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Diabetes Discovery
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • Journal Policies
    • Instructions for Authors
    • Peer Review
Original Article

Development of Selective Axonopathy in Adult Sensory Neurons Isolated From Diabetic Rats

Role of Glucose-Induced Oxidative Stress

  1. Elena Zherebitskaya1,
  2. Eli Akude1,2,
  3. Darrell R. Smith1,2 and
  4. Paul Fernyhough1,2
  1. 1Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada;
  2. 2Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.
  1. Corresponding author: Paul Fernyhough, paulfernyhough{at}yahoo.com.
Diabetes 2009 Jun; 58(6): 1356-1364. https://doi.org/10.2337/db09-0034
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Role of Glucose-Induced Oxidative Stress

Abstract

OBJECTIVE Reactive oxygen species (ROS) are pro-oxidant factors in distal neurodegeneration in diabetes. We tested the hypothesis that sensory neurons exposed to type 1 diabetes would exhibit enhanced ROS and oxidative stress and determined whether this stress was associated with abnormal axon outgrowth.

RESEARCH DESIGN AND METHODS Lumbar dorsal root ganglia sensory neurons from normal or 3- to 5-month streptozotocin (STZ)-diabetic rats were cultured with 10 or 25–50 mmol/l glucose. Cell survival and axon outgrowth were assessed. ROS were analyzed using confocal microscopy. Immunofluorescent staining detected expression of manganese superoxide dismutase (MnSOD) and adducts of 4-hydroxy-2-nonenal (4-HNE), and MitoFluor Green dye detected mitochondria.

RESULTS Dorsal root ganglion neurons from normal rats exposed to 25–50 mmol/l glucose did not exhibit oxidative stress or cell death. Cultures from diabetic rats exhibited a twofold (P < 0.001) elevation of ROS in axons after 24 h in 25 mmol/l glucose compared with 10 mmol/l glucose or mannitol. Perikarya exhibited no change in ROS levels. Axonal outgrowth was reduced by approximately twofold (P < 0.001) in diabetic cultures compared with control, as was expression of MnSOD. The antioxidant N-acetyl-cysteine (1 mmol/l) lowered axonal ROS levels, normalized aberrant axonal structure, and prevented deficits in axonal outgrowth in diabetic neurons (P < 0.05).

CONCLUSIONS Dorsal root ganglia neurons with a history of diabetes expressed low MnSOD and high ROS in axons. Oxidative stress was initiated by high glucose concentration in neurons with an STZ-induced diabetic phenotype. Induction of ROS was associated with impaired axonal outgrowth and aberrant dystrophic structures that may precede or predispose the axon to degeneration and dissolution in human diabetic neuropathy.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Received January 8, 2009.
    • Accepted February 19, 2009.
  • Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

  • © 2009 by the American Diabetes Association.
View Full Text
PreviousNext
Back to top

In this Issue

June 2009, 58(6)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development of Selective Axonopathy in Adult Sensory Neurons Isolated From Diabetic Rats
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
Citation Tools
Development of Selective Axonopathy in Adult Sensory Neurons Isolated From Diabetic Rats
Elena Zherebitskaya, Eli Akude, Darrell R. Smith, Paul Fernyhough
Diabetes Jun 2009, 58 (6) 1356-1364; DOI: 10.2337/db09-0034

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Development of Selective Axonopathy in Adult Sensory Neurons Isolated From Diabetic Rats
Elena Zherebitskaya, Eli Akude, Darrell R. Smith, Paul Fernyhough
Diabetes Jun 2009, 58 (6) 1356-1364; DOI: 10.2337/db09-0034
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

Original Article

  • An Update on the Molecular Actions of Fenofibrate and Its Clinical Effects on Diabetic Retinopathy and Other Microvascular End Points in Patients With Diabetes
  • Loss of Prohibitin Induces Mitochondrial Damages Altering β-Cell Function and Survival and Is Responsible for Gradual Diabetes Development
  • Cbl-b Is a Critical Regulator of Macrophage Activation Associated With Obesity-Induced Insulin Resistance in Mice
Show more 3

Complications

  • Urinary IgG4 and Smad1 Are Specific Biomarkers for Renal Structural and Functional Changes in Early Stages of Diabetic Nephropathy
  • Metabolic Syndrome Is Associated With Impaired Diastolic Function Independently of MRI-Derived Myocardial Extracellular Volume: The MESA Study
  • A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome
Show more 3

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • For Advertisers
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Scientific Sessions Abstracts
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2018 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.