Euglycemic Infusion of Insulin Detemir Compared With Human Insulin Appears to Increase Direct Current Brain Potential Response and Reduces Food Intake While Inducing Similar Systemic Effects

  1. Werner Kern3,5
  1. 1Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany;
  2. 2Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany;
  3. 3Department of Internal Medicine I, University of Lübeck, Lübeck, Germany;
  4. 4Interdisciplinary Obesity Center, Kantonsspital St. Gallen, St. Gallen, Switzerland;
  5. 5MVZ Endokrinologikum Ulm, Ulm, Germany.
  1. Corresponding author: Manfred Hallschmid, hallschmid{at}kfg.uni-luebeck.de.

Abstract

OBJECTIVE In the treatment of diabetic patients, the long-acting insulin analog insulin detemir is less prone to induce weight gain than other insulin formulations. Assuming that because of its pharmacologic properties, detemir displays stronger central nervous anorexigenic efficacy than human insulin, we compared acute effects of human insulin and detemir on electroencephalography (EEG) measures and food intake.

RESEARCH DESIGN AND METHODS Frontocortical EEG direct current (DC) potentials were recorded in 15 healthy men during two hyperinsulinemic-euglycemic clamps that included an insulin bolus injection (human insulin, 17.75 mU/kg body wt; detemir, 90 mU/kg body wt) followed by a steady 90-min infusion (1.0 vs. 2.0 mU · kg−1 · min−1). A higher dosage was chosen for detemir to compensate for its delay in impact relative to human insulin and to elicit similar systemic effects. At 20 min after infusion, subjects were allowed to eat ad libitum from a test buffet.

RESULTS Mean glucose infusions to maintain euglycemia (P > 0.93) and blood glucose concentrations (P > 0.34) did not differ between conditions. Detemir infusion induced a negative DC-potential shift, averaging −372.2 μV from 21 to 90 min that was not observed during human insulin infusion (146.5 μV, P = 0.02). Detemir, in comparison with human insulin, reduced subsequent food intake by 303 kcal (1,257 vs. 1,560, P < 0.04).

CONCLUSIONS While inducing comparable peripheral effects, detemir exerts stronger acute effects on brain functions than human insulin and triggers a relative decrease in food consumption, suggesting an enhanced anorexigenic impact of detemir compared with human insulin on central nervous networks that control nutrient uptake.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Received October 8, 2009.
    • Accepted January 7, 2010.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

| Table of Contents

This Article

  1. Diabetes vol. 59 no. 4 1101-1107
  1. All Versions of this Article:
    1. db09-1493v1
    2. 59/4/1101 most recent