High Connectivity Between Reduced Cortical Thickness and Disrupted White Matter Tracts in Long-Standing Type 1 Diabetes

  1. Elizabeth R. Seaquist2
  1. 1Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, Minnesota;
  2. 2Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota;
  3. 3Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota.
  1. Corresponding author: Elizabeth R. Seaquist, seaqu001{at}umn.edu.

Abstract

OBJECTIVE Previous studies have observed disruptions in brain white and gray matter structure in individuals with type 1 diabetes, and these structural differences have been associated with neurocognitive testing deficiencies. This study investigated the relationship between cerebral cortical thickness reductions and white matter microstructural integrity loss in a group of patients with type 1 diabetes and in healthy control subjects using diffusion tensor imaging (DTI).

RESEARCH DESIGN AND METHODS Twenty-five subjects with type 1 diabetes for at least 15 years and 25 age- and sex-matched control subjects underwent structural T1 and proton-density and DTI on a 3.0 Tesla scanner. Fractional anisotropy measurements were made on major cerebral white matter tracts, and DTI tractography was performed to identify cortical regions with high connectivity to these tracts.

RESULTS Posterior white matter tracts with reduced fractional anisotropy (optic radiations, posterior corona radiata, and the splenium region of the corpus callosum) were found to have high connectivity with a number of posterior cortical regions, including the cuneus, precuneus, fusiform, and posterior parietal cortical regions. A significant reduction in cortical thickness in the diabetic group was observed in the regions with high connectivity to the optic radiations and posterior corona radiata tracts (P < 0.05).

CONCLUSIONS The direct relationship between white and gray matter structural pathology has not been previously demonstrated in subjects with long-standing type 1 diabetes. The relationship between posterior white matter microstructural integrity disruption and lower cortical thickness demonstrated using a novel DTI connectivity technique suggests a common or interrelated pathophysiological mechanism in type 1 diabetes.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • Received April 30, 2010.
  • Accepted October 16, 2010.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

| Table of Contents