Mechanisms of Control of the Free Ca2+ Concentration in the Endoplasmic Reticulum of Mouse Pancreatic β-Cells

Interplay With Cell Metabolism and [Ca2+]c and Role of SERCA2b and SERCA3

  1. Patrick Gilon1
  1. 1Pole d’Endocrinologie, Diabète, et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
  2. 2Institut de Génomique Fonctionnelle, CNRS UMR-5203, INSERM U661, Universités de Montpellier 1 et 2, Montpellier, France
  3. 3Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
  1. Corresponding author: Patrick Gilon, patrick.gilon{at}uclouvain.be.
  1. M.A.R. and D.D. contributed equally to this work.

Abstract

OBJECTIVE Sarco-endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) and SERCA3 pump Ca2+ in the endoplasmic reticulum (ER) of pancreatic β-cells. We studied their role in the control of the free ER Ca2+ concentration ([Ca2+]ER) and the role of SERCA3 in the control of insulin secretion and ER stress.

RESEARCH DESIGN AND METHODS β-Cell [Ca2+]ER of SERCA3+/+ and SERCA3−/− mice was monitored with an adenovirus encoding the low Ca2+-affinity sensor D4 addressed to the ER (D4ER) under the control of the insulin promoter. Free cytosolic Ca2+ concentration ([Ca2+]c) and [Ca2+]ER were simultaneously recorded. Insulin secretion and mRNA levels of ER stress genes were studied.

RESULTS Glucose elicited synchronized [Ca2+]ER and [Ca2+]c oscillations. [Ca2+]ER oscillations were smaller in SERCA3−/− than in SERCA3+/+ β-cells. Stimulating cell metabolism with various [glucose] in the presence of diazoxide induced a similar dose-dependent [Ca2+]ER rise in SERCA3+/+ and SERCA3−/− β-cells. In a Ca2+-free medium, glucose moderately raised [Ca2+]ER from a highly buffered cytosolic Ca2+ pool. Increasing [Ca2+]c with high [K] elicited a [Ca2+]ER rise that was larger but more transient in SERCA3+/+ than SERCA3−/− β-cells because of the activation of a Ca2+ release from the ER in SERCA3+/+ β-cells. Glucose-induced insulin release was larger in SERCA3−/− than SERCA3+/+ islets. SERCA3 ablation did not induce ER stress.

CONCLUSIONS [Ca2+]c and [Ca2+]ER oscillate in phase in response to glucose. Upon [Ca2+]c increase, Ca2+ is taken up by SERCA2b and SERCA3. Strong Ca2+ influx triggers a Ca2+ release from the ER that depends on SERCA3. SERCA3 deficiency neither impairs Ca2+ uptake by the ER upon cell metabolism acceleration and insulin release nor induces ER stress.

Footnotes

  • Received November 8, 2010.
  • Accepted July 13, 2011.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

| Table of Contents

This Article

  1. Diabetes vol. 60 no. 10 2533-2545
  1. Supplementary Data
  2. All Versions of this Article:
    1. db10-1543v1
    2. 60/10/2533 most recent