Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Standards of Medical Care
    • Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
  • Browse
    • By Topic
    • Issue Archive
    • Scientific Sessions Abstracts
  • Info
    • About the Journal
    • Meet the Editors
    • Reprints & Permissions
    • Journal Policies
    • For Authors
    • For Reviewers
    • For Advertisers
  • Subscriptions
    • Manage Online Access
    • Individual Subscriptions
    • Institutional Subscriptions
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Diabetes Discovery
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • Journal Policies
    • Instructions for Authors
    • Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Standards of Medical Care
    • Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
  • Browse
    • By Topic
    • Issue Archive
    • Scientific Sessions Abstracts
  • Info
    • About the Journal
    • Meet the Editors
    • Reprints & Permissions
    • Journal Policies
    • For Authors
    • For Reviewers
    • For Advertisers
  • Subscriptions
    • Manage Online Access
    • Individual Subscriptions
    • Institutional Subscriptions
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Diabetes Discovery
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • Journal Policies
    • Instructions for Authors
    • Peer Review
Signal Transduction

Metformin Inhibits Nuclear Receptor TR4–Mediated Hepatic Stearoyl-CoA Desaturase 1 Gene Expression With Altered Insulin Sensitivity

  1. Eungseok Kim1,2,
  2. Ning-Chun Liu1,
  3. I-Chen Yu1,
  4. Hung-Yun Lin1,
  5. Yi-Fen Lee1,
  6. Janet D. Sparks1,
  7. Lu-Min Chen1,3 and
  8. Chawnshang Chang1,3⇓
  1. 1Departments of Pathology and Urology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
  2. 2Department of Biological Sciences, Chonnam National University, Gwangju, Korea
  3. 3Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
  1. Corresponding author: Chawnshang Chang, chang{at}urmc.rochester.edu.
  1. E.K. and N.-C.L. contributed equally to this study.

Diabetes 2011 May; 60(5): 1493-1503. https://doi.org/10.2337/db10-0393
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Abstract

OBJECTIVE TR4 is a nuclear receptor without clear pathophysiological roles. We investigated the roles of hepatic TR4 in the regulation of lipogenesis and insulin sensitivity in vivo and in vitro.

RESEARCH DESIGN AND METHODS TR4 activity and phosphorylation assays were carried out using hepatocytes and various TR4 wild-type and mutant constructs. Liver tissues from TR4 knockout, C57BL/6, and db/db mice were examined to investigate TR4 target gene stearoyl-CoA desaturase (SCD) 1 regulation.

RESULTS TR4 transactivation is inhibited via phosphorylation by metformin-induced AMP-activated protein kinase (AMPK) at the amino acid serine 351, which results in the suppression of SCD1 gene expression. Additional mechanistic dissection finds TR4-transactivated SCD1 promoter activity via direct binding to the TR4-responsive element located at −243 to −255 on the promoter region. The pathophysiological consequences of the metformin→AMPK→TR4→SCD1 pathway are examined via TR4 knockout mice and primary hepatocytes with either knockdown or overexpression of TR4. The results show that the suppression of SCD1 via loss of TR4 resulted in reduced fat mass and increased insulin sensitivity with increased β-oxidation and decreased lipogenic gene expression.

CONCLUSIONS The pathway from metformin→AMPK→TR4→SCD1→insulin sensitivity suggests that TR4 may function as an important modulator to control lipid metabolism, which sheds light on the use of small molecules to modulate TR4 activity as a new alternative approach to battle the metabolic syndrome.

Footnotes

  • This article contains Supplementary Data online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db10-0393/-/DC1.

  • Received March 23, 2010.
  • Accepted March 2, 2011.
  • © 2011 by the American Diabetes Association.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

View Full Text
PreviousNext
Back to top
Diabetes: 60 (5)

In this Issue

May 2011, 60(5)
  • Table of Contents
  • About the Cover
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Metformin Inhibits Nuclear Receptor TR4–Mediated Hepatic Stearoyl-CoA Desaturase 1 Gene Expression With Altered Insulin Sensitivity
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
Citation Tools
Metformin Inhibits Nuclear Receptor TR4–Mediated Hepatic Stearoyl-CoA Desaturase 1 Gene Expression With Altered Insulin Sensitivity
Eungseok Kim, Ning-Chun Liu, I-Chen Yu, Hung-Yun Lin, Yi-Fen Lee, Janet D. Sparks, Lu-Min Chen, Chawnshang Chang
Diabetes May 2011, 60 (5) 1493-1503; DOI: 10.2337/db10-0393

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Metformin Inhibits Nuclear Receptor TR4–Mediated Hepatic Stearoyl-CoA Desaturase 1 Gene Expression With Altered Insulin Sensitivity
Eungseok Kim, Ning-Chun Liu, I-Chen Yu, Hung-Yun Lin, Yi-Fen Lee, Janet D. Sparks, Lu-Min Chen, Chawnshang Chang
Diabetes May 2011, 60 (5) 1493-1503; DOI: 10.2337/db10-0393
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Regulation of KATP Channel Trafficking in Pancreatic β-Cells by Protein Histidine Phosphorylation
  • Skeletal Muscle–Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling Node That Regulates Obesity-Induced Insulin Resistance
  • Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans
Show more Signal Transduction

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • For Advertisers
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Scientific Sessions Abstracts
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2018 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.