Hyperglycemia Enhances IGF-I–Stimulated Src Activation via Increasing Nox4-Derived Reactive Oxygen Species in a PKCζ-Dependent Manner in Vascular Smooth Muscle Cells

  1. David R. Clemmons
  1. Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
  1. Corresponding author: David R. Clemmons, david_clemmons{at}med.unc.edu.

Abstract

IGF-I–stimulated sarcoma viral oncogene (Src) activation during hyperglycemia is required for propagating downstream signaling. The aim of the current study was to determine the mechanism by which hyperglycemia enhances IGF-I–stimulated Src activation and the role of NADPH oxidase 4 (Nox4) and protein kinase C ζ (PKCζ) in mediating this response in vascular smooth muscle cells (VSMCs). Nox4 expression was analyzed in VSMCs exposed to hyperglycemia. The role of Nox4-derived reactive oxygen species (ROS) in IGF-I–stimulated Src activation was investigated via knockdown of Nox4. Different isoforms of PKC were screened to investigate their role in hyperglycemia-induced Nox4. The oxidation of Src was shown to be a prerequisite for its activation in response to IGF-I during hyperglycemia. Hyperglycemia induced Nox4, but not Nox1, and p22 phagocyte oxidase (p22phox) expression and IGF-I stimulated Nox4/p22phox complex formation, leading to increased ROS generation. Knockdown of Nox4 prevented ROS generation and impaired the oxidation and activation of Src in response to IGF-I, whereas knockdown of Nox1 had no effect. PKCζ was shown to mediate the hyperglycemia-induced increase in Nox4 expression. The key observations in cultured VSMCs were confirmed in the diabetic mice. Nox4-derived ROS is responsible for the enhancing effect of hyperglycemia on IGF-I–stimulated Src activation, which in turn amplifies IGF-I–linked downstream signaling and biological actions.

Footnotes

  • Received July 18, 2011.
  • Accepted October 23, 2011.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

| Table of Contents

This Article

  1. Diabetes vol. 61 no. 1 104-113
  1. Supplementary Data
  2. All Versions of this Article:
    1. db11-0990v1
    2. 61/1/104 most recent