High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets

  1. Giovanni Anfossi
  1. Internal Medicine and Metabolic Disease Unit, San Luigi Gonzaga Hospital, Department of Clinical and Biological Sciences, San Luigi Gonzaga School of Medicine, University of Turin, Turin, Italy
  1. Corresponding author: Mariella Trovati, mariella.trovati{at}
  • Deceased.


Since hyperglycemia is involved in the “aspirin resistance” occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5–25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1–300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA–induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA–induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.

  • Received January 12, 2012.
  • Accepted May 23, 2012.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See for details.

| Table of Contents

This Article

  1. Diabetes vol. 61 no. 11 2913-2921
  1. All Versions of this Article:
    1. db12-0040v1
    2. 61/11/2913 most recent