Insulin Resistance and Type 2 Diabetes

  1. Roy Taylor
  1. Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, U.K.
  1. Corresponding author: Roy Taylor, roy.taylor{at}

For well over half a century, the link between insulin resistance and type 2 diabetes has been recognized. Insulin resistance is important. Not only is it the most powerful predictor of future development of type 2 diabetes, it is also a therapeutic target once hyperglycemia is present. In this issue of Diabetes, Morino et al. (1) report a series of studies that provide evidence of a genetic mechanism linking expression of lipoprotein lipase (LPL) to peroxisome proliferator–activated receptor (PPAR)-δ expression and mitochondrial function. This is likely to contribute to the muscle insulin resistance that predisposes to type 2 diabetes.

Observation of abnormal mitochondrial function in vitro in type 2 diabetes (2) was soon followed by in vivo demonstration of this abnormality in insulin-resistant, first-degree relatives of people with type 2 diabetes (3). Further reports of a modest defect in muscle mitochondrial function in type 2 diabetes were published shortly thereafter (4,5). These studies raised the question of whether type 2 diabetes could be a primary disorder of the mitochondria. However, the study of first-degree relatives tended to be misinterpreted as having shown a major defect in mitochondrial function in type 2 diabetes, although it had studied nondiabetic groups from the opposite ends of the insulin resistance–sensitivity spectrum. Indeed, other studies showed no defect in mitochondrial function in type 2 diabetes (6,7), which led to further confusion. Mitochondrial function was then shown to be acutely modifiable by changing fatty acid availability (8) and that it …

| Table of Contents