Sterol Regulatory Element–Binding Protein-1c Mediates Increase of Postprandial Stearic Acid, a Potential Target for Improving Insulin Resistance, in Hyperlipidemia

  1. Changhao Sun
  1. Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Hei Longjiang Province, People’s Republic of China
  1. Corresponding authors: Changhao Sun, sun2002changhao{at}yahoo.com, and Ying Li, liying_helen{at}163.com.
  1. X.C. and L.L. contributed equally to this article.

Abstract

Elevated serum free fatty acids (FFAs) levels play an important role in the development of insulin resistance (IR) and diabetes. We investigated the dynamic changes and the underlying regulatory mechanism of postprandial FFA profile in hyperlipidemia (HLP) and their relation with insulin sensitivity in both humans and mice. We found that serum stearic acid (SA) is the only fatty acid that is increased dramatically in the postprandial state. The elevation of SA is due to increased insulin-stimulated de novo synthesis mediated by sterol regulatory element–binding protein-1c (SREBP-1c)/acetyl-CoA carboxylase/fatty acid synthase/elongation of long-chain fatty acid family member 6 (ELOVL6) and the elongation of palmitic acid (PA) catalyzed by ELOVL6. Downregulation of SREBP-1c or ELOVL6 by small interfering RNA can reduce SA synthesis in liver and serum SA level, followed by amelioration of IR in HLP mice. However, inhibition of SREBP-1c is more effective in improving IR than suppression of ELOVL6, which resulted in accumulation of PA. In summary, increased postprandial SA is caused by the insulin-stimulated SREBP-1c pathway and elongation of PA in HLP. Reduction of postprandial SA is a good candidate for improving IR, and SREBP-1c is potentially a better target to prevent IR and diabetes by decreasing SA.

Footnotes

  • Received February 9, 2012.
  • Accepted July 18, 2012.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

| Table of Contents

This Article

  1. Diabetes vol. 62 no. 2 561-571
  1. Supplementary Data
  2. All Versions of this Article:
    1. db12-0139v1
    2. 62/2/561 most recent