Membrane Glycoprotein PC-1 Inhibition of Insulin Receptor Function Occurs Via Direct Interaction With the Receptor α-Subunit

Betty A. Maddux and Ira D. Goldfine

Plasma cell membrane glycoprotein-1 (PC-1) inhibits insulin receptor (IR) tyrosine kinase activity and subsequent cellular signaling. PC-1 content is elevated in fibroblasts, muscle, and adipose tissue from insulin-resistant subjects, and its elevation correlates with in vivo insulin resistance. In vitro, when PC-1 is transfected and overexpressed in cultured cells, it inhibits IR tyrosine kinase activity. To determine the mechanism whereby PC-1 regulates the IR, we studied how PC-1 interacts with this protein. Overexpression of PC-1 in MCF-7 cells inhibited tyrosine kinase activity of the IR, but not of the IGF-I receptor. When the IR was immunocaptured by specific IR monoclonal antibodies, PC-1 was associated with this receptor. In contrast, after specific immunocapture, PC-1 was not associated with the IGF-I receptor. We next studied HTC cells that were overexpressing an IR α-subunit mutant. This IR mutant binds insulin but has a deletion in the tyrosine kinase regulatory domain located in amino acids 485–599. In contrast to normal IRs, PC-1 did not associate with this mutant and did not affect tyrosine kinase activity. To determine whether decreasing PC-1 expression would reverse the inhibition of tyrosine kinase activity, we treated MCF-7 cells overexpressing PC-1 with a monoclonal antibody to PC-1. This treatment decreased PC-1 levels; concomitantly, IR tyrosine kinase activity increased. In contrast, IGF-I receptor tyrosine kinase activity was not increased. These studies indicate, therefore, that PC-1 may inhibit the IR by interacting directly with a specific region in the IR α-subunit. These studies also raise the possibility that monoclonal antibodies to PC-1 could be a new treatment for insulin resistance.

Diabetes 49:13–19, 2000

Resistance to the biological actions of insulin is a major feature of most patients with type 2 diabetes (1–3). In addition, insulin resistance is also present in many nondiabetic individuals (1). Because the basic biochemical mechanisms causing insulin resistance are unknown, attempts to reduce insulin resistance have been difficult. The cellular response to insulin is mediated through the insulin receptor (IR), a specific glycoprotein in the plasma membrane of target cells. The IR consists of two identical extracellular α-subunits that contain the insulin-binding domain, and two transmembrane β-subunits that have ligand-activated tyrosine kinase activity (4,5). When insulin binds to the IR, the receptor is first activated by tyrosine autophosphorylation, and then the IR tyrosine kinase phosphorylates various effector molecules, such as IRS-1, leading to hormone action (6).

Plasma cell membrane glycoprotein-1 (PC-1) is a class II transmembrane protein that is present in most cells and has phosphodiesterase and pyrophosphatase activity (7). The physiological function of PC-1 in most tissues is unknown but may play an important role in bone and cartilage metabolism and lymphocyte function (7). PC-1 is overexpressed in fibroblasts from a very insulin-resistant type 2 diabetic patient (8) and many patients with routine type 2 diabetes (8,9) and in several established breast cancer cell lines in tissue culture (10). In these cells, IR tyrosine kinase activity is concomitantly decreased (8–10). Moreover, in several cultured cell types, when PC-1 was overexpressed by transfection, IR tyrosine kinase activity and subsequent IR signaling were decreased (8,11,12). Moreover, the effect of PC-1 on the IR was still present even after mutation of the enzymatic activity of PC-1 (12). These studies suggested, therefore, that PC-1 is a unique cellular inhibitor of IR signaling.

We have also studied muscle and fat tissues of nondiabetic lean insulin-resistant subjects to avoid the confounding variables of hyperglycemia and obesity (13–15). PC-1 was elevated in the tissues of these subjects, and the elevation of PC-1 negatively correlated with the ability of insulin to act both in vivo and in vitro (13,14). Studies of PC-1 in muscle also indicated that the level of PC-1 in that tissue correlated with PC-1 levels in cultured fibroblasts (15). These studies indicated that elevated PC-1 is associated with insulin resistance...
in the absence of either type 2 diabetes or obesity. Because PC-1 was elevated in cultured fibroblasts from nonobese subjects, these data suggested that PC-1 may be an intrinsic factor in the development of insulin resistance (15). PC-1 is also elevated in obese individuals (16) and in patients with gestational diabetes (17). Thus, PC-1 may also play a role in certain forms of acquired insulin resistance.

The mechanisms whereby PC-1 inhibits IR tyrosine kinase activity are unknown. Herein, we investigate how PC-1 regulates the IR. We now report that PC-1 associates with the IR α-subunit and inhibits the β-subunit tyrosine kinase activity, but it neither interacts nor inhibits the closely related IGF-I receptor. Moreover, incubation of cells with a monoclonal antibody to PC-1 downregulates PC-1 content and upregulates IR function, but not IGF-I receptor function.

RESEARCH DESIGN AND METHODS

Cell culture

Human fibroblasts were grown as described (8) in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (FCS), 0.25 µg/ml Fungizone, 10 µg/ml streptomycin, and 10 µl penicillin “G” (University of California Cell Culture Facility, San Francisco). Human MCF-7 breast cancer cells were grown in DMEM supplemented with 10% FCS, 2.5 µg/ml Fungizone, 10 µg/ml streptomycin, and 10 µl penicillin. Cells were transfected with either normal or mutant PC-1 using neomycin as a selectable marker as previously described (8,12). Rat HTC hepatoma cells expressing the normal human IR (HTC-IR) and HTC cells expressing an IR α-subunit mutant with a deletion of amino acids 485-599 (HTC-Δ 485-599) were prepared as described above (18) and grown in DMEM/F12 media supplemented with 10% FCS, 0.25 µg/ml Fungizone, 10 µg/ml streptomycin, and 10 µl penicillin “G.” Both HTC cell lines were transfected with PC-1 using lipofectamine (Invitrogen) as previously described. Zeomycin was used as a selectable marker.

Monoclonal antibodies

Antibodies to the human IR were as follows: mouse monoclonal antibody MA-20, to the α-subunit of the IR, was prepared as previously described (19); mouse monoclonal antibody α-IR-3, to the α-subunit of the IR (20), was obtained from American Type Culture Collection (Rockville, MD); and mouse monoclonal antibody CT, directed at the COOH-terminus of the α-subunit of the IR, was a gift from Dr. K. Siddique. Antibodies to the human IGF-I receptor were as follows: mouse monoclonal antibody α-IR-3, to the α-subunit of the IGF-I receptor (20), was purchased from Calbiochem (La Jolla, CA); and affinity-purified rabbit polyclonal antibody to the IGF-I receptor γ-subunit (C-20), was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies to human PC-1 were as follows: mouse monoclonal antibody 90B, was made as previously described (12). Mouse monoclonal antibody to the IGF-1 receptor, was obtained from American Type Culture Collection (Rockville, MD); and mouse monoclonal antibody C-20, was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies to human PC-1 were as follows: mouse monoclonal antibody 90B, was made as previously described (12); and antipeptide polyclonal rabbit antisera, to the PC-1 NH2-terminus 90B, was made as previously described (12).

Receptor autophosphorylation in intact cells

Cells were grown in 12-well plates until they reached 80% confluence. They were then washed thrice with serum-free DMEM, and then DMEM containing 0.1% bovine serum albumin (BSA) was added to each well. After incubating for 18 h, either insulin (0-100 nmoi/l) or IGF-I (0-10 nmoi/l) was added to wells for 10 min at 37°C. Next, cells were washed in phosphate-buffered saline (PBS) at 4°C and were solubilized in buffer A (50 mM HEPES, pH 7.6, 150 mM NaCl, 1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 2 mM sodium orthovanadate) for 1 h at 4°C. After normalizing for protein, lysates containing 15-20 µg of protein were applied to 96-well enzyme-linked immunosorbent assay (ELISA) plates coated with either monoclonal antibodies specific to the human IR or to the IGF-I receptor. After washing five times with Tris-buffered saline with TWEEN (20) (0 mM Tris, pH 7.4, 150 mM NaCl, 0.05% Tween-20), 0.3 µg/ml anti-PI (monoclonal antiphosphotyrosine antibody linked to biotin) (Biot, Lake Placid, NY) was added to wells diluted in buffer B (50 mM HEPES, pH 7.6, 150 mM NaCl, 0.05% Tween 20, 2 mg/mI bacitracin, 1 mM PMSF, 2 mM sodium orthovanadate, and 1% BSA). After a 2-h incubation at 22°C, plates were again washed with TBS, followed by 0.1 µg/ml streptavidin–horseradish peroxidase diluted in buffer B. The autophosphorylation signal was enhanced by using ELAST reagent (Du Pont-NEN, Boston, MA).

IR autophosphorylation in immunocopurated receptors

MCFC-7 PC-1-IR fusion mutant cells were grown to confluence, then they were serum starved for 18h. Next, cells were washed twice in serum-free DMEM, and then DMEM containing 0.1% bovine serum albumin (BSA) was added for whole-cell studies.

PC-1 association with receptors: Western blot

MCF-7 PC-1 cells were plated in 12-well plates and grown for 24 h. Cells were washed twice in serum-free DMEM, and the medium was changed to DMEM with 0.1% BSA added. Next, 40 µg/ml was added of either normal mouse IgG or a mouse monoclonal antibody produced to the intact human PC-1 molecule and interacting with the PC-1 extracellular domain (12). After 72 h, cells were washed, then after equilibrating the medium to 37°C, they were stimulated with insulin for 10 min and processed for IR autophosphorylation as described above.

PC-1 and IR ELISAs

PC-1 and IR content of the cell lines used were measured by ELISA’s specific for human proteins (15) (Table 1).

RESULTS

Studies of PC-1 overexpression on IR function in fibroblasts from a patient with insulin resistance. To understand the specificity of PC-1 overexpression on the IR and IGF-I receptor, we first studied IR and IGF-I receptor activation in fibroblasts of our original patient (MW) (8) with insulin resistance who had an elevated PC-1 content in these cells (Table 1). IR function was measured by an IR autophosphorylation ELISA (15) that closely correlates with both Western blotting of the IR (8) and exogenous substrate phosphorylation (21). When compared with an age- and sex-matched control subject, the cells of MW had decreased IR function at all insulin concentrations (Fig. 1A). However,
We next studied human MCF-7 breast cancer cells overexpressing PC-1. We have reported that the IR has a tyrosine kinase regulatory site in its α-subunit (18) that is located within amino acids 485–599. When these residues are deleted, the mutant molecule can bind insulin, but the hormone loses its ability to activate the β-subunit tyrosine kinase domain (18). HTC cells are a rat hepatoma cell line with low IR content and undetectable IGF-I receptor content. We next studied rat HTC cells overexpressing (18) the human IR (HTC-IR) that were cotransfected and that overexpressed either the wild-type IR or this mutant (HTC-IR Δ485–599) (Table 1). To capture the IR, an IR β-subunit antibody, α-CT, was used. In HTc-IR cells, as in MCF-7 cells, PC-1 overexpression inhibited IR autophosphorylation (Fig. 5). In HTC-IR Δ485–599 cells, as previously reported (18), basal IR autophosphorylation was elevated and was not stimulated by insulin (Fig. 6). PC-1 overexpression did not influence IR autophosphorylation in this IR mutant cell line.

We next studied whether PC-1 associated with the normal and mutant IRs in these HTC cells. For these cells, monoclonal antibody α-CT, directed at the IR β-subunit, was used, since the mutant IR does not react with many IR α-subunit antibodies (18). As with MCF-7 PC-1 cells, there was enhanced association of PC-1 with the IR in HTC-IR PC-1 cells (Fig. 7). However, there was no association detected in HTC-IR Δ485–599 cells.

Downregulation of PC-1 reverses inhibition of IR signaling. The prior studies demonstrated that overexpression of PC-1 inhibited IR signaling. We next studied whether a reduction in PC-1 levels would increase IR signaling. Accordingly, we studied the effect of chronic treatment...
Treatment of cells with the antibody reduced PC-1 content by 40 ± 10% (mean ± SE, n = 3) (Fig. 8A). Similar results were observed when PC-1 enzyme activity was measured (480–305 nmol 3'-phosphoadenosine 5'-phosphosulfate hydrolyzed · mg protein − 1 min − 1). In treated cells with decreased PC-1 content, IR autophosphorylation was concomitantly increased (Fig. 8B). In contrast, IGF-I receptor autophosphorylation was not changed (Fig. 8B). Smaller effects on the IR were achieved with a 48-h treatment, but no effects were obtained with a 24-h treatment (data not shown).

DISCUSSION

Previously, we reported that fibroblasts from a patient with severe insulin resistance and type 2 diabetes had elevated levels of membrane glycoprotein, PC-1 (8). In these cells overexpressing PC-1, insulin-stimulated IR tyrosine kinase activity was markedly diminished. As a consequence, several biological effects of insulin were also diminished (8).

Skeletal muscle is the major tissue for insulin-mediated glucose disposal. In muscle from obese and nonobese human subjects, we measured IR tyrosine kinase activity and PC-1 content, and we correlated these measurements with in vivo insulin sensitivity (13,22). In these muscle specimens, PC-1 content correlated with both decreased in vitro insulin activation of IR tyrosine kinase activity and in vivo insulin resistance. A similar finding was made in fat tissues (14). These data indicated that PC-1 overexpression in key insulin-sensitive tissues is related to insulin resistance. In addition, muscle PC-1 content correlated with PC-1 content in cultured fibroblasts (15), suggesting that PC-1 overexpression was an intrinsic and possibly genetic factor in the pathogenesis of insulin resistance.

TABLE 2

PC-1 associated with the IR and IGF-I receptor

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>IR antibodies</th>
<th></th>
<th>IGF-I receptor antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α-MA-20</td>
<td>α-CT</td>
<td>α-IR-1</td>
</tr>
<tr>
<td>MCF-7 NEO</td>
<td>100 ± 22</td>
<td>203 ± 18</td>
<td>129 ± 17</td>
</tr>
<tr>
<td>MCF-7 PC-1</td>
<td>1,406 ± 101</td>
<td>1,007 ± 21</td>
<td>1,013 ± 82</td>
</tr>
<tr>
<td>HTC-IR ZEO</td>
<td>78 ± 14</td>
<td>103 ± 10</td>
<td>NT</td>
</tr>
<tr>
<td>HTC-IR PC-1</td>
<td>1,303 ± 18</td>
<td>930 ± 51</td>
<td>NT</td>
</tr>
</tbody>
</table>

Data are means ± SE of three or four separate experiments. Values are arbitrary optical density units. In this study, cell lysates from different cell lines were immunocaptured with either IR or IGF-I receptor antibodies, and the amount of PC-1 associated was measured by ELISA. NT, not tested.
We previously reported that in human cells that were transfected with PC-1 cDNA and overexpressed PC-1 protein, insulin stimulation of IR tyrosine kinase activity and phosphorylation of the major cellular substrate for the IR, IRS-1, were decreased (8). In these cells, several biological functions of insulin were also attenuated (8). These in vitro studies indicated, therefore, that overexpression of PC-1 in insulin-sensitive cells decreased specifically IR tyrosine kinase activity and, consequently, decreased several biological functions of insulin. These studies also suggested that PC-1 may directly induce insulin resistance.

How PC-1 regulates IR tyrosine kinase activity is unknown. It is a class II transmembrane glycoprotein that is located both on plasma membrane and in the endoplasmic reticulum. PC-1 exists as a homodimer of 230–260 kDa, and it is inserted into the membrane such that there is a small cytoplasmic NH$_2$-terminal and a larger extracellular COOH-terminal (23). The extracellular domain of PC-1 cleaves sugarphosphate, phosphosulfate, pyrophosphate, and phosphodiesterase linkages. Thus PC-1 will hydrolyze ATP. The active enzyme site for phosphodiesterase and pyrophosphatase contains a key threonine residue necessary for these activities (23). Stefan et al. (24) have suggested that inhibition of the IR by PC-1 is nonspecific and results from the hydrolysis of ATP. Two lines of evidence indicate that this possibility is not the case. First, in intact cells, we have shown that mutation of this threonine residue with elimination of enzyme activity does not impair the ability of PC-1 to inhibit IR function in intact cells (12). Second, in the present study, we find that when the IR is immunocaptured from cells overexpressing a mutant PC-1 without pyrophosphatase activity, the PC-1 associates with the IR and inhibits IR function. Thus we believe it is very likely that the association of PC-1 with the IR directly inhibits IR activation by insulin.

In the present study, we present evidence that the association of PC-1 with the IR α-subunit is involved in inhibition of IR signaling. First, we compared the IR with the closely related IGF-I receptor. Both the IR and the IGF-I receptor have two identical extracellular α-subunits and two identical transmembrane β-subunits (4). The IGF-I receptor has 50% overall homology to the IR, but the greatest homology is in the β-subunit (4). We observed that overexpression of PC-1 inhibited the tyrosine kinase activity of the IR, but not of the IGF-I receptor. We then studied the association of PC-1 with immunocaptured IR and IGF-I receptor. PC-1 was associated only with the IR. Evidence for an association of IR with PC-1, as evidenced by cross-linking, has also been observed by Belfiore et al. (10). In addition, PC-1 still inhibited IR function in an immunocaptured and purified IR, indicating that soluble cellular factors were not essential for this process.

The IR is relatively inactive as a tyrosine kinase until activated by insulin, since the intact unoccupied α-subunit of the IR inhibits the β-subunit. If the IR is treated with trypsin, the β-subunit is activated (25). There is a proteolytic site in the IR α-subunit at residue 577 (26). We previously observed that a deletion of the IR at residues 485–599 produced an IR that was relatively inactive as a tyrosine kinase until activated by insulin, since the intact unoccupied α-subunit of the IR inhibits the β-subunit. If the IR is treated with trypsin, the β-subunit is activated (25). There is a proteolytic site in the IR α-subunit at residue 577 (26). We previously observed that a deletion of the IR at residues 485–599 produced an IR that

![FIG. 3. PC-1 associates with the IR but not the IGF-I receptor (IGF-I R): ELISA.](image1)

![FIG. 4. PC-1 associates with the IR but not the IGF-I receptor: Western blot.](image2)

![FIG. 5. IR autophosphorylation in immunocaptured receptors.](image3)
bound insulin and had an elevated tyrosine kinase activity that was relatively unresponsive to insulin (18). Moreover, this region has <20% sequence homology with the IGF-I receptor and most likely is a specific regulatory region for IR |subunit activation. Luo et al. (27) have recently elucidated the quaternary structure of the IR by scanning transmission electron microscopy. They find that this region containing residues 485–599 is on the surface of the molecule, and this observation explains why this region is recognized by many antibodies to the IR (28). Moreover, they speculate that this region functions as a hinge, transmitting the hormone signal from the occupied ligand-binding domain to the catalytic domain. We now find that a 485–599 deletion mutant does not interact with PC-1. The present data indicate, therefore, that PC-1 interacts at this site on the IR. The interaction of PC-1 at this site thus would prevent the insulin-induced conformational change of the |subunit and explain the ability of PC-1 to inhibit IR autophosphorylation.

FIG. 6. Effect of PC-1 overexpression on IR autophosphorylation in HTC-IR ZEO and HTC-IR |485–599 ZEO cells. HTC cell lines were treated as in Fig. 2 except that an antibody to the IR |subunit monoclonal antibody was used (α-CT). A: HTC-IR ZEO compared with HTC-IR PC-1. B: HTC-IR |485–599 ZEO compared with HTC-IR |485–599| PC-1. Results are means ± SD of triplicate determinations from three representative experiments. OD, optical density.

FIG. 7. IR/PC-1 associates with HTC-IR PC-1 but not HTC-IR |485–599 cells. Cells were treated as in Fig. 3 except that an antibody to the IR |subunit monoclonal antibody (α-CT) was used. Results are means ± SD of triplicate determinations from three representative experiments. OD, optical density.

FIG. 8. Downregulation of PC-1 increases IR but not IGF-I receptor autophosphorylation of MCF-7 PC-1 cells. MCF-7 PC-1 threonine mutant cells were incubated for 72 h with 40 μg/ml of either normal mouse IgG or mouse monoclonal antibody to human PC-1. A: Cells were washed and solubilized, and PC-1 content was measured by ELISA. Results are means ± SD of triplicate determinations from three representative experiments. NM, normal mouse. B: Cells were washed, stimulated with either insulin or IGF-I, and receptor autophosphorylation was measured as in Fig. 1. OD, optical density.
We and others have reported that PC-1 overexpression inhibits IR tyrosine kinase activity in several types of cultured cells including human fibroblasts, human breast carcinoma cells, hamster CHO cells, and now rat hepatoma cells (8–12). Recently, however, Sakoda et al. (29) reported studies in which mouse 3T3 L1 cells were infected with an adenovirus construct containing the human PC-1 coding sequence, and they concluded that PC-1 overexpression does not inhibit IR function in mouse and human tissues. There are several explanations for their negative results. First, after stimulating the cells with a single high concentration of insulin (1 μmol/L), they did not measure the IR by specific antibodies. Rather, they measured the IR with a nonspecific antiphosphotyrosine antibody that could detect other tyrosine phosphorylated proteins, such as the IGF-I receptor, that are not influenced by PC-1. Thus it is possible that PC-1 effects on the IR were masked by the detection of other tyrosine phosphorylated proteins, such as the IGF-I receptor. Second, they did not demonstrate that the PC-1 molecule expressed in 3T3 L1 cells was intact and functional PC-1. In fact, the PC-1 molecule they produced was smaller in molecular size than the naturally occurring PC-1 molecule, and PC-1 enzymatic activity was not measured. Third, since PC-1 and the IR have different sequences in different species, it is unknown whether human PC-1 will react with mouse IR. Fourth, in previous studies, cells with elevated PC-1 content were either naturally occurring or transfected with PC-1, whereas the cells used by Sakoda et al. were infected with adenovirus. It is possible, therefore, that adenoviral infection per se either alters the distribution of PC-1 within the cell so that it does not come in contact with the IR or, by other means, prevents PC-1 from inhibiting the receptor.

In the present study, we find not only that PC overexpression inhibits IR function, but also that reversal of the process restores IR signaling. When treated with a monoclonal antibody to PC-1, cells overexpressing PC-1 then had a reduced PC-1 content and improved IR tyrosine kinase activity. This antibody did not influence IGF-I receptor signaling. Presumably, the antibody downregulated PC-1 by accelerating its degradation. These studies raise the possibility, therefore, that insulin resistance caused by PC-1 overexpression could be treated with either PC-1 monoclonal antibodies or other agents that either reduce PC-1 content or disrupt PC-1-IR interactions.

ACKNOWLEDGMENTS

This study was supported, in part, by a grant from the American Diabetes Association.

REFERENCES

3. Taylor SI: Insulin resistance or insulin deficiency: which is the primary cause of NIDDM? Diabetes 43:735–740, 1994