Cytokine- or Chemically Derived Nitric Oxide Alters the Expression of Proteins Detected by Two-Dimensional Gel Electrophoresis in Neonatal Rat Islets of Langerhans

Nerys E. John, Henrik Ullits Andersen, Stephen J. Fey, Peter Mose Larsen, Peter Roepstorff, Martin R. Larsen, Flemming Pociot, Allan E. Karlsen, Jørn Nerup, Irene C. Green, and Thomas Mandrup-Poulsen

Interleukin-1β (IL-1β) treatment of neonatal rat islets for 24 h induces changes in the expression of 105 of 2,200 proteins, as determined previously by two-dimensional (2D) gel electrophoresis. Nitric oxide (NO) has been implicated as one of the mediators of IL-1β effects in insulin-containing cell lines and rat islets. The aims of this study were 1) to determine the involvement of NO in IL-1β–induced alterations in protein expression and 2) to investigate the effects of chemically generated NO on protein expression by 2D gel electrophoresis of neonatal rat islet samples. IL-1β–induced NO production was prevented by incubation of islets in arginine-free medium supplemented with the arginine analog Nω-nitro-L-arginine. [35S]methionine-labeled islet proteins were separated using 2D gel electrophoresis and analyzed using the Biolmage computer program. Analysis revealed that the expression levels of 23 protein spots of the 105 protein spots, altered by prior treatment with IL-1β (60 µM) alone, were significantly affected (P < 0.01 [n = 4] and P < 0.05 [n = 19]) when NO production was prevented. The effects of chemically generated NO were investigated by exposing islets to the NO donor GSNO (100 µmol/l) for 24 h before labeling with [35S]methionine and 2D gel electrophoresis. Computer-based analysis identified alterations in the expression of 19 of a total of 1,600 detectable proteins in GSNO-treated islets (P < 0.01). We conclude 1) that the expression of up to 42 proteins is altered by cytokine-induced or chemically generated NO in the precise experimental conditions chosen and 2) that the majority of proteins altered by prior treatment with IL-1β may be the result of NO-independent IL-1β–mediated regulation of gene expression. This study demonstrates that the combination of 2D gel electrophoresis and mass spectrometry is a powerful tool in the identification of β-cell proteins involved in the response to toxic mediators. Diabetes 49:1819–1829, 2000

The proinflammatory cytokine interleukin-1β (IL-1β) adversely affects the insulin-secretory response; the biosynthesis of proteins, DNA, and NAD; and even the viability of rat pancreatic islets of Langerhans (1–7) (reviewed by Mandrup-Poulsen [8]). Several of the actions of IL-1β that lead to functional inhibition of insulin-containing cells have been suggested to require nitric oxide (NO) (2,3,9–11) (reviewed by Elizirik et al. [12]). NO is produced from arginine by the enzyme NO synthase (NOS). The calcium-independent inducible NOS (iNOS) or NOS2 is induced by IL-1β (2,13–16) and other cytokines (17) in insulin-containing cell lines and rat islets. The use of arginine analogs such as Nω-nitro-L-arginine (NMMA) or Nω-nitro-L-arginine (l-NNAME) has shown that NO from iNOS participates in the following actions of IL-1β: inhibition of insulin secretion (2,3,18), decreased activity of aconitase and glucose oxidation (9,10), induction of DNA damage (19,20), and necrotic (21) and apoptotic cell death (5,6,22,23) in insulin-containing cell lines and rat islets.

NO-specific effects have been investigated in many cell types using chemically synthesized donors. Exposure of insulin-containing cell lines or islets of Langerhans to NO-releasing compounds, such as S-nitrosothioguanidine (GSNO), 3-morpholinosydnonimine (SIN-1), or Roussin's black salt, results in inhibition of glucose-induced insulin secretion, which is dose- and time-dependent (11,24–26). We have also found that NO donors decrease glucose oxidation (25) and redox function in insulin-containing cell lines and rat islets (6). NO donors have been reported to inhibit total protein synthesis in hepatocytes (27), vascular smooth muscle cells (28), and the biosynthesis of proteins, DNA, and NAD; and even the viability of rat pancreatic islets of Langerhans (1–7) (reviewed by Mandrup-Poulsen [8]). Several of the actions of IL-1β that lead to functional inhibition of insulin-containing cells have been suggested to require nitric oxide (NO) (2,3,9–11) (reviewed by Elizirik et al. [12]). NO is produced from arginine by the enzyme NO synthase (NOS). The calcium-independent inducible NOS (iNOS) or NOS2 is induced by IL-1β (2,13–16) and other cytokines (17) in insulin-containing cell lines and rat islets. The use of arginine analogs such as Nω-nitro-L-arginine (NMMA) or Nω-nitro-L-arginine (l-NNAME) has shown that NO from iNOS participates in the following actions of IL-1β: inhibition of insulin secretion (2,3,18), decreased activity of aconitase and glucose oxidation (9,10), induction of DNA damage (19,20), and necrotic (21) and apoptotic cell death (5,6,22,23) in insulin-containing cell lines and rat islets.

NO-specific effects have been investigated in many cell types using chemically synthesized donors. Exposure of insulin-containing cell lines or islets of Langerhans to NO-releasing compounds, such as S-nitrosothioguanidine (GSNO), 3-morpholinosydnonimine (SIN-1), or Roussin's black salt, results in inhibition of glucose-induced insulin secretion, which is dose- and time-dependent (11,24–26). We have also found that NO donors decrease glucose oxidation (25) and redox function in insulin-containing cell lines and rat islets (6). NO donors have been reported to inhibit total protein synthesis in hepatocytes (27), vascular smooth muscle cells (28), and the biosynthesis of proteins, DNA, and NAD; and even the viability of rat pancreatic islets of Langerhans (1–7) (reviewed by Mandrup-Poulsen [8]). Several of the actions of IL-1β that lead to functional inhibition of insulin-containing cells have been suggested to require nitric oxide (NO) (2,3,9–11) (reviewed by Elizirik et al. [12]). NO is produced from arginine by the enzyme NO synthase (NOS). The calcium-independent inducible NOS (iNOS) or NOS2 is induced by IL-1β (2,13–16) and other cytokines (17) in insulin-containing cell lines and rat islets. The use of arginine analogs such as Nω-nitro-L-arginine (NMMA) or Nω-nitro-L-arginine (l-NNAME) has shown that NO from iNOS participates in the following actions of IL-1β: inhibition of insulin secretion (2,3,18), decreased activity of aconitase and glucose oxidation (9,10), induction of DNA damage (19,20), and necrotic (21) and apoptotic cell death (5,6,22,23) in insulin-containing cell lines and rat islets.

NO-specific effects have been investigated in many cell types using chemically synthesized donors. Exposure of insulin-containing cell lines or islets of Langerhans to NO-releasing compounds, such as S-nitrosothioguanidine (GSNO), 3-morpholinosydnonimine (SIN-1), or Roussin's black salt, results in inhibition of glucose-induced insulin secretion, which is dose- and time-dependent (11,24–26). We have also found that NO donors decrease glucose oxidation (25) and redox function in insulin-containing cell lines and rat islets (6). NO donors have been reported to inhibit total protein synthesis in hepatocytes (27), vascular smooth muscle cells (28),
and the insulin-containing cell line HIT-T15 (6). Furthermore, these donors caused necrotic cell death in rat islets as little as 4 h when used at high doses (29). Low-dose NO donors induce apoptotic cell death in HIT-T15 cells and rat islets after as little as 24 h of exposure (5,6).

Treatment of islets with a low dose of IL-1β (0.5 U/ml) for 24 h increases (pro)insulin and total protein biosynthesis (30). However, higher doses of IL-1β (5 and 21 U/ml) decrease both (pro)insulin and total protein biosynthesis in insulin-containing cells (6,7,30,31). This inhibitory effect of IL-1β on protein synthesis is reproduced by exposure of cells to NO donors (6) and is eliminated using the arginine analog NMA (6,32). In rat islets, IL-1β has been shown to increase the expression of proteins such as iNOS (14,16), heat shock protein (HSP) 70 (33–36), manganese superoxide dismutase (MnSOD) (36), and heme oxygenase (34,36,37). Upregulation of expression of some of these proteins by IL-1β may be β-cell specific (36,38,39) and has recently been confirmed to occur in fluorescence-activated cell sorter (FACS)-purified rat β-cells (40). The action of IL-1β on islets relies, to some extent, on de novo protein synthesis, because the inhibitor cycloheximide prevents IL-1β suppression of insulin secretion and glucose oxidation (10,33,41,42). Two-dimensional (2D) gel electrophoresis of neonatal rat islet proteins, labeled with [35S]methionine incorporation in the islet samples was determined, and 2D gel electrophoresis was performed as described previously (44).

Computerized analysis of the gels was performed using the BioImage program (version 4.6M; Genome Solutions) on a Sungarp workstatkian. Fluorographs were initially scanned and spots were identified and quantified by the BioImage program. Each gel was then compared with the master gel of the 2D gel data. The presence of duplicate spots in isoelectric focusing (IEF) and nonequilibrium pH gradient electrophoresis (NEPHGE) gels was avoided by omitting overlapping spots present in either the basic portion of the IEF gels or in the acidic portion of the NEPHGE gels. The average percentage coefficient of variance value was calculated for each series of gels. Variance (mean ± SD) of protein expression was increased from 29 ± 10 and 25 ± 10% in five control (database) gels to 31 ± 20 and 33 ± 33% in three IL-1β- and 28 and 43 ± 26% in three IL-1β-arginine analog-labeled gels for the same period of time as IL-1β to reproduce its inhibitory effects and to potentially change rat islet protein expression.

RESEARCH DESIGN AND METHODS

Neonatal rat islet isolation and culture. Islets were isolated from the pancreases of 4- to 8-day-old male and female Wistar Furth rats (Charles River, Sulzfeld, Germany) by collagenase digestion (Collagenase A; Boehringer Mannheim) followed by hand-picking. Islets were precultured in 60-mm tissue culture dishes (Nunc, Denmark) for 4–7 days at 37°C in atmospheric humidified air in 5 ml complete RPMI-1640 medium (Gibco, Paisley, U.K.) containing 11 mmol/l glucose, 10% fetal calf serum (FCS), 100 U/ml penicillin, and 100 µg/ml streptomycin.

Neonatal rat islet treatment before protein labeling. After preculture, islets were incubated for 24 h in RPMI-1640 medium prepared with L-arginine (0.1 mmol/l) and supplemented with 0.5% normal human serum. A total of 150 islets were cultured in a 300-µl medium of arginine-containing RPMI ± IL-1β (150 µmol/l or 60 U/ml) (Novo Nordisk, Bagsvaerd, Denmark), arginine-free RPMI ± IL-1β, or arginine-free RPMI ± L-NAME (1 mmol/l) (Sigma, St. Louis, MO) or IL-1β. In a separate series of experiments, a total of 150 islets in 300 µl RPMI-1640 were exposed to three different NO donors, GEA 5583 (20–500 µmol/l), GSNO (44 ± 29 and 41 ± 31%, n = 3) gels. These variances were comparable with those reported previously for control and IL-1β gels (44).

Identification of protein spots by mass spectrometry. The proteins were enzymatically digested in the gel as described (50,51) with minor modifications (52). The excised gel plugs were washed in 50 mmol/l NH₄HCO₃/acetonitrile (60/40) and dried by vacuum centrifugation. Modified porcine trypsin (12 ng/ml, Promega, sequencing grade) in digestion buffer (50 mmol/l NH₄HCO₃) was added to the dry gel pieces and incubated on ice for 1 h before rehydration. After removing the supernatant, 20–40 µl digestion buffer was added and the digestion was continued at 37°C for 4–18 h. The peptides were extracted as described (51) and dried in a vacuum centrifuge. The residue was dissolved in 5% formic acid and analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Delayed extraction MALDI mass spectra of the peptide mixtures resulting from in-gel digestion were acquired using a PerSeptive Biosystems Voyager Elite reflector time-of-flight mass spectrometer (PerSeptive Biosystems, Framingham, MA) and analyzed by computer using the software provided. The data were compared using a cyano-4-hydroxy cinnamic acid as a matrix. When appropriate, nitrocellulose was mixed with the matrix (53). Protein identification was performed by searching the peptide mass maps in a comprehensive nonredundant protein sequence database (European Bioinformatics Institute, Hinxton, U.K.) using the database search software PeptideSearch (54) further developed at EMBL (Heidelberg, Germany). The protein identifications were examined for measurement of medium nitrite accumulation. An equal volume of Griess reagent (one part 0.1% naphthylethylene diamine dihydrochloride and one part 1% sulphanilic acid in 5% H₃PO₄) and one part arginine (150 µmol/l) and rhodamine (Darmstadt, Germany) were added to the samples in a microtiter plate and allowed to stand in the dark at room temperature for 10 min. Absorbance was measured on an enzyme-linked immunosorbent assay (ELISA) plate reader (Nippon Intermed, Tokyo) at 540 nm.

NO was also detected by changes in levels of cyclic GMP (cGMP) as described previously (11). Briefly, cyclic nucleotides were extracted from islets by adding 200 µl of 50 mmol/l sodium acetate buffer (pH 4.7) and boiling for 3 min. Islet samples were centrifuged (1,000g), and the supernatants and pellets were stored at –20°C before assay. Protein in islet pellets was solubilized in 0.1 mmol/l NaOH and Assayed using the Bradford method (47). cGMP in the supernatant was radioimmunooassayed (11,48), and results were expressed as picomoles of cGMP per microgram of islet protein.

Measurement of accumulated and stimulated insulin release. Of the islet treatment medium, 50 µl was removed after 24 h incubation for measurement of accumulated insulin. Samples were assayed for insulin using an ELISA method (49). Islets were washed in low glucose-containing Krebs-Ringer buffered HEPES (KBH) (1.67 mmol/l) for 1 h and incubated for 1 h at 37°C in 500 µl of this buffer. The islets were transferred to high-glucose KBH buffer (16.7 mmol/l) for 2 h at 37°C. Samples were removed for determination of basal and stimulated insulin release (ELISA) after each incubation period.

Labeling of islet proteins with [35S]methionine and 2D gel electrophoresis. After the 24-h treatment period, islets were washed twice in HEPES-buffered saline solution (HBSS) and labeled for 4 h in 200 µl methionine-free Dulbecco's modified Eagle's medium (DMEM) (10.4 µmol/l glucose and 0.4 µmol/l arginine) with 10% normal human serum dialyzed for amino acids and 200 µCi [35S]methionine (previously freeze-dried for at least 4 h to remove mercaptoethanol). After labeling, islets were washed three times in HBSS and were pelleted and frozen at –80°C. [35S]methionine incorporation in the islet samples was determined, and 2D gel electrophoresis was performed as described previously (44).
using the second pass search feature of the software and critical evaluation of the peptide mass map as described by Jensen et al. (55).

Statistical analysis. Statistical analysis was performed using a two-sided unpaired Student’s t test for insulin, nitrite, and cGMP measurements and a one-sided unpaired Student’s t test for 2D gel analysis. Single-factor analysis of variance (ANOVA) was also performed. *P* values <0.05 were deemed to be significant in measurements of nitrite and insulin secretion. *P* values <0.01 and <0.05 have been used as specified in measurements of protein synthesis when analyzed by 2D gel electrophoresis.

RESULTS

The involvement of NO in IL-1β–induced changes in islet protein expression. Incubation of islets with IL-1β for 24 h in arginine-containing medium supplemented with 0.5% human serum resulted in a 4.6-fold increase in medium nitrite ($P < 0.05$ vs. control) and a >50% decrease in cumulative insulin release ($P < 0.01$ vs. control) (Table 1). Exposure of islets to IL-1β in arginine-free medium with or without L-NAME reversed both the rise in nitrite production ($P < 0.01$ vs. IL-1β) and the inhibition of insulin release ($P < 0.005$ vs. IL-1β) (Table 1). Islets were subjected to 4-h labeling with $[^{35}$S]methionine. Computerized analysis using the BioImage program revealed that, of the 105 protein spots showing altered expression with IL-1β treatment (44), the expression level of 23 was significantly different from the level seen by IL-1β alone (4 at $P < 0.01$ and 19 at $P < 0.05$).

<table>
<thead>
<tr>
<th>Arginine-containing medium</th>
<th>Insulin (pmol · islet$^{-1}$ · [24 h]$^{-1}$)</th>
<th>Nitrite (nmol · islet$^{-1}$ · [24 h]$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.33 ± 0.33</td>
<td>2.35 ± 0.39</td>
</tr>
<tr>
<td>IL-1β</td>
<td>1.52 ± 0.24*</td>
<td>10.91 ± 4.52†</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arginine-free medium</th>
<th>Insulin (pmol · islet$^{-1}$ · [24 h]$^{-1}$)</th>
<th>Nitrite (nmol · islet$^{-1}$ · [24 h]$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.61 ± 0.26</td>
<td>3.21 ± 1.34</td>
</tr>
<tr>
<td>L-NAME</td>
<td>2.67 ± 0.21‡</td>
<td>2.91 ± 1.18§</td>
</tr>
<tr>
<td>IL-1β + L-NAME</td>
<td>3.05 ± 0.32</td>
<td>3.1 ± 1.18</td>
</tr>
<tr>
<td>IL-1β</td>
<td>2.7 ± 0.21†</td>
<td>3.45 ± 1.11§</td>
</tr>
</tbody>
</table>

Data are means ± SE from six experiments. *$P < 0.001$ and †$P < 0.05$ vs. control in arginine-containing medium; ‡$P < 0.01$, §$P < 0.05$, and ||$P < 0.005$ vs. IL-1β in arginine-containing medium.

FIG. 1. 2D gel fluorographs of neonatal rat islets cultured with IL-1β (150 pg/ml) without arginine but with L-NAME (1.15 mmol/l) (A and C) or IL-1β with arginine (B and D) for 24 h followed by a 4-h labeling with $[^{35}$S]methionine. Gels shown are representative of three to four experiments. A and B represent IEF gels (pH 3.5–7.0), and C and D represent NEPHGE gels (pH 6.5–10.5). The numbers correspond to proteins identified in the database and in Table 2. For the sake of clarity, only proteins with $P < 0.01$ are shown. Arrows pointing upward and downward represent up- and downregulation, respectively.
[Fig. 1 A–D]) after inhibition of endogenous NO production. Of the four proteins changed at \(P < 0.01 \), three were acidic (from IEF gels [Fig. 1A and B]) and one was basic (NEPHGE gels [Figs. 1C and D]). In 16 of the 23 protein spots, L-NAME, as expected, either reduced the IL-1–induced upregulation or decreased IL-1–induced downregulation. In the case of the seven remaining protein spots, L-NAME accentuated IL-1–induced downregulation (IEF 507,831,895,908; NEPHGE 211) or increased IL-1–induced upregulation (NEPHGE 17,674) (Table 2); the latter may represent nonspecific effects of L-NAME (see below). Of the 23 protein spots, 14 were positively identified by mass spectrometric analysis (Table 2). In the absence of NO, the heat shock, ischemia-responsive protein 94 kDa (irp94) (Fig. 2A and B), and the unknown protein (Fig. 2C and D) were downregulated, whereas protein disulfide isomerase (PDI) (Fig. 2E and F) and GAPDH (Figs. 2G and H) were upregulated (Table 2). To determine any nonspecific effect of L-NAME treatment on protein expression, the expression of these four proteins was investigated on gels obtained from islets exposed to L-NAME in arginine-free medium. Only one of four proteins, GAPDH, was affected, and it showed significant upregulation when islets were exposed to the arginine analog L-NAME alone in the absence of both IL-1β and arginine (ratio 6.0, \(P < 0.0001 \) vs. untreated islets [database]). To ensure that NO production was not induced during the labeling period, measurements of nitrite and islet cGMP levels were taken after the 4-h labeling. Results showed that nitrite was not detectable in the media when islets previously exposed to IL-1β/H9252 in arginine-free medium that was supplemented with L-NAME for 24 h were labeled in arginine-containing medium for 4 h. Levels of cGMP in these islets were unchanged compared with those in control islets (1.98 ± 0.37 vs. 1.73 ± 0.36 fmol cGMP/µg protein, control vs. IL-1β plus L-NAME, respectively).

NO donors and islet protein expression

The NO donor GSNO was used to examine the effect of NO on the synthesis of islet proteins. Neonatal rat islets were cultured with GSNO for 24 h, and culture medium was assayed for nitrite and insulin. For comparison, islets were also exposed to IL-1β for 24 h; this exposure resulted in a rise in nitrite production (1.0 ± 0.03 vs. 10 ± 1.8 nmol/l nitrite, control vs. IL-1β, respectively, \(P < 0.001 \) vs. control). (Data were expressed in micromoles per liter so that the results were comparable with NO donor

Table 2

<table>
<thead>
<tr>
<th>Match no.</th>
<th>IL-1/C</th>
<th>IL-1 + NAME/C</th>
<th>IL-1 + NAME/IL-1</th>
<th>Mₙ kDa</th>
<th>pI</th>
<th>Identification</th>
<th>Gene Bank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEF 10% Gels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11.57</td>
<td>6.02</td>
<td>0.52</td>
<td>120.5</td>
<td>7.27</td>
<td>Lamin B</td>
<td>D50080</td>
</tr>
<tr>
<td>28</td>
<td>2.65</td>
<td>1.64</td>
<td>0.62</td>
<td>65.8</td>
<td>5.06</td>
<td>Heterogeneous nuclear ribonucleoprotein K/ROK</td>
<td>S41495</td>
</tr>
<tr>
<td>187*</td>
<td>6.19</td>
<td>0.93</td>
<td>0.15</td>
<td>152.1</td>
<td>4.95</td>
<td>Ischemia-responsive protein 94 kD</td>
<td>AAC27937</td>
</tr>
<tr>
<td>217*</td>
<td>4.73</td>
<td>1.23</td>
<td>0.26</td>
<td>91.3</td>
<td>6.12</td>
<td>Mortalin (GRP75)</td>
<td>P48721</td>
</tr>
<tr>
<td>279</td>
<td>6.78</td>
<td>1.90</td>
<td>0.28</td>
<td>121.4</td>
<td>4.20</td>
<td>Mortalin (GRP75)</td>
<td>P48721</td>
</tr>
<tr>
<td>330</td>
<td>2.74</td>
<td>0.97</td>
<td>0.36</td>
<td>68.8</td>
<td>5.35</td>
<td>HSP71c (Heat shock cognate 71 kD protein)</td>
<td>P08109</td>
</tr>
<tr>
<td>340</td>
<td>0.32</td>
<td>1.02</td>
<td>3.18</td>
<td>71.3</td>
<td>5.20</td>
<td>Protein disulfide isomerase (PDI) ER60 precursor (GRP58)</td>
<td>P11598</td>
</tr>
<tr>
<td>354</td>
<td>6.23</td>
<td>1.51</td>
<td>0.29</td>
<td>70.4</td>
<td>4.30</td>
<td>Mitochondrial matrix protein p1 precursor (HSP60)</td>
<td>P19227</td>
</tr>
<tr>
<td>425</td>
<td>2.09</td>
<td>0.92</td>
<td>0.44</td>
<td>67.2</td>
<td>5.18</td>
<td>Protein disulfide isomerase (PDI) ER60 precursor (GRP58)</td>
<td>P11598</td>
</tr>
<tr>
<td>484*</td>
<td>0.27</td>
<td>0.72</td>
<td>2.66</td>
<td>59.2</td>
<td>5.88</td>
<td>Tropomysosin NM4</td>
<td>L24777</td>
</tr>
<tr>
<td>507</td>
<td>0.72</td>
<td>0.37</td>
<td>0.51</td>
<td>59.9</td>
<td>5.33</td>
<td>Phospho-glycerate mutase (PGAM), brain form</td>
<td>P25113</td>
</tr>
<tr>
<td>1,196</td>
<td>9.55</td>
<td>3.92</td>
<td>0.41</td>
<td>143.1</td>
<td>5.41</td>
<td>GAPDH</td>
<td>P04797</td>
</tr>
<tr>
<td>1,342</td>
<td>3.74</td>
<td>1.83</td>
<td>0.49</td>
<td>53.4</td>
<td>4.64</td>
<td>ATP synthase regulatory subunit (A)</td>
<td>Q00438</td>
</tr>
<tr>
<td>NEPHGE 10% Gels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177*†</td>
<td>5.09</td>
<td>8.50</td>
<td>1.67</td>
<td>40.0</td>
<td>8.29</td>
<td>NADH-cytochrome B5 reductase Fructose 1,6-biphosphatase aldolase A*</td>
<td>P20070</td>
</tr>
<tr>
<td>156</td>
<td>3.22</td>
<td>1.09</td>
<td>0.34</td>
<td>55.6</td>
<td>8.71</td>
<td>Fructose 1,6-biphosphatase aldolase A*</td>
<td>P05065</td>
</tr>
<tr>
<td>176</td>
<td>0.21</td>
<td>0.71</td>
<td>3.37</td>
<td>52.6</td>
<td>7.96</td>
<td>ATP synthase regulatory subunit (A)</td>
<td>P15999</td>
</tr>
<tr>
<td>211</td>
<td>0.28</td>
<td>0.07</td>
<td>0.26</td>
<td>47.9</td>
<td>7.28</td>
<td>ATP synthase regulatory subunit (A)</td>
<td>P15999</td>
</tr>
<tr>
<td>296</td>
<td>0.07</td>
<td>0.14</td>
<td>2.0</td>
<td>36.2</td>
<td>8.29</td>
<td>ATP synthase regulatory subunit (A)</td>
<td>P15999</td>
</tr>
<tr>
<td>668</td>
<td>DN</td>
<td>DN</td>
<td>0.15</td>
<td>42.8</td>
<td>8.46</td>
<td>ATP synthase regulatory subunit (A)</td>
<td>P15999</td>
</tr>
<tr>
<td>674</td>
<td>DN</td>
<td>DN</td>
<td>2.4</td>
<td>132.5</td>
<td>8.42</td>
<td>ATP synthase regulatory subunit (A)</td>
<td>P15999</td>
</tr>
</tbody>
</table>

Ratios >1 represent an upregulation of protein expression. *\(P < 0.01 \); †spot intensities influenced also by L-NAME alone. DN, de novo.
results.) Exposure of islets to increasing concentrations of GSNO caused a significant and expected dose-dependent increase in nitrite \((P < 0.001)\) by single-factor ANOVA (Fig. 3).

IL-1β significantly inhibited insulin release into the treatment medium over a 24-h period \((2.8 \pm 0.3 \text{ and } 0.8 \pm 0.1 \text{ pmol insulin} \cdot \text{islet}^{-1} \cdot \text{[24 h]}^{-1}, \text{control and IL-1β, respectively, } P < 0.001 \text{ vs. controls). Exposure of islets to increasing concentrations of GSNO gave a significant dose-dependent inhibition of cumulative insulin release as determined by single-factor ANOVA \((P < 0.05)\). GSNO \((100 \text{ and } 500 \text{ µmol/l})\) significantly inhibited insulin release into the treatment medium over a 24-h period.

FIG. 2. Enlarged regions of NEPHGE and IEF gels of neonatal rat islets exposed to IL-1β in the presence \((B, D, F, \text{ and } H)\) or absence of arginine with arginine analog addition \((A, C, E, \text{ and } G)\); the full gels are shown in Fig. 1. Proteins 187 \((A)\) and 217 \((C)\) (on IEF gels) are downregulated with inhibition of NO production compared with the presence of NO after IL-1β treatment in arginine-containing medium \((B \text{ and } D)\). Protein spot 484 (NEPHGE) is upregulated with this treatment \((E)\) compared with IL-1β exposure in the presence of arginine \((F)\). Protein spot 17 (NEPHGE) is upregulated after exposure to IL-1β in the presence of an arginine analog \((G)\) compared with treatment in the presence of arginine \((H)\).

FIG. 3. Groups of islets were cultured with GSNO for 24 h. Medium was assayed for insulin (histogram) and nitrite (line). Data are presented as means ± SE \((n = 5–12 \text{ experiments); only one experiment was included for } 250 \text{ and } 1,000 \text{ µmol/l GSNO. Student’s two-sided } t \text{ test was used for statistical analysis. Single-factor ANOVA confirmed a significant dose-dependent increase in medium nitrite } \((P < 0.0001)\) with all three donors and a dose-dependent inhibition of insulin release \((P < 0.05)\) with GSNO treatment over the 24-h treatment period. \(*P < 0.05 \text{ vs. control without NO donor.}\)
release into the culture medium (Student’s t test, P < 0.05 vs. control) (Fig. 3). However, exposure of islets to GSNO at concentrations ≥ 150 µmol/l resulted in visible islet disintegration as observed under a dissecting microscope. Consequently, 100 µmol/l GSNO was used for the 2D gel experiments.

Computer-based analysis of IEF and NEPHGE gels from GSNO-treated islet samples showed that there were significant alterations in the expression levels of 15 acidic protein spots (IEF) and 4 basic protein spots (NEPHGE) when GSNO gels were compared with control gels (Table 3). Seven IEF protein spots were found to be upregulated and eight were downregulated with respect to control (Fig. 4A and B). Of the NEPHGE spots, three were upregulated and one was downregulated with respect to control (Fig. 4C and D). Specific protein spots are also identified in Fig. 5A–F. Of the total of 19 proteins that were altered with GSNO treatment, 5 had previously been found to be altered by IL-1β treatment (44) (Table 3). Three of these five proteins were altered in a different direction to GSNO treatment, whereas the other two were upregulated by both GSNO and IL-1β treatment. Two of these protein spots (NEPHGE gel spots 176 and 201), which were upregulated by GSNO treatment, were positively identified by mass spectrometric analysis as the α-chain of ATP-synthase and calnexin precursor, respectively.

DISCUSSION

In this study, we report the effects of IL-1β– and chemically generated NO on the expression of neonatal rat islet proteins monitored by [35S]methionine incorporation and 2D gel electrophoresis. The data are therefore compatible with those

TABLE 3

GNSO-induced alterations in islet protein expression

<table>
<thead>
<tr>
<th>Match no.</th>
<th>GSNO/IL-1/control ratio</th>
<th>M, kDa</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEF 10% Gels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>0.53</td>
<td>137.7</td>
<td>6.07</td>
</tr>
<tr>
<td>201</td>
<td>1.58</td>
<td>143.6</td>
<td>4.10</td>
</tr>
<tr>
<td>210</td>
<td>0.54</td>
<td>114.5</td>
<td>6.40</td>
</tr>
<tr>
<td>257</td>
<td>2.21</td>
<td>117.3</td>
<td>5.14</td>
</tr>
<tr>
<td>304</td>
<td>0.46</td>
<td>67.9</td>
<td>5.98</td>
</tr>
<tr>
<td>342</td>
<td>2.57</td>
<td>83.3</td>
<td>4.81</td>
</tr>
<tr>
<td>379</td>
<td>0.62</td>
<td>65.9</td>
<td>6.43</td>
</tr>
<tr>
<td>462</td>
<td>0.28</td>
<td>53.1</td>
<td>6.64</td>
</tr>
<tr>
<td>469</td>
<td>0.55</td>
<td>60.2</td>
<td>6.41</td>
</tr>
<tr>
<td>512</td>
<td>2.22</td>
<td>61.9</td>
<td>5.12</td>
</tr>
<tr>
<td>531</td>
<td>2.17</td>
<td>61.1</td>
<td>4.76</td>
</tr>
<tr>
<td>822</td>
<td>6.2</td>
<td>33.3</td>
<td>5.37</td>
</tr>
<tr>
<td>930</td>
<td>0.23</td>
<td>25.7</td>
<td>5.56</td>
</tr>
<tr>
<td>1,052</td>
<td>2.23</td>
<td>47.3</td>
<td>4.21</td>
</tr>
<tr>
<td>1,207</td>
<td>0.35</td>
<td>65.1</td>
<td>6.18</td>
</tr>
<tr>
<td>NEPHGE 10% Gels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.52</td>
<td>65.5</td>
<td>7.28</td>
</tr>
<tr>
<td>83</td>
<td>1.59</td>
<td>65.7</td>
<td>8.38</td>
</tr>
<tr>
<td>176</td>
<td>1.34</td>
<td>52.3</td>
<td>7.96</td>
</tr>
<tr>
<td>224</td>
<td>0.29</td>
<td>43.2</td>
<td>8.71</td>
</tr>
</tbody>
</table>

Data are the results of analyses of three experiments. *The average percent integrated optical density (IOD) of GNSO gels/average percent IOD of control gels; †the average percent IOD of IL-1β gels/average percent IOD of database gels (44). A ratio higher than 1.0 indicates an upregulation of the spot compared with the control.

FIG. 4. Two-dimensional gel fluorographs of neonatal rat islets cultured with 100 µmol/l GSNO for 24 h followed by a 4-h labeling with [35S]methionine. Gels shown are representative of three experiments. Gels from GSNO-exposed islet samples are shown in A (IEF, pH 6.5–10.5) and C (NEPHGE, pH 3.5–7). Gels from control islet samples are represented in B (IEF) and D (NEPHGE). Numbers correspond to proteins in Table 3 with upregulated spots represented by arrows pointing upward and downregulated spots represented by arrows pointing downward. Boxed areas represent regions that have been enlarged in Fig. 5.
held in the protein database (44). We compared the responsiveness of adult and neonatal rat islets to IL-1 in an earlier article (56) and found no difference, but we cannot exclude the possibility that the protein pattern of the two may be different. Preliminary studies show remarkable similarities between the protein expression of RIN cells and human islets (data not shown).

The computer-based analysis was carried out on 2D gel-separated islet proteins labeled for 4 h after earlier islet exposure to IL-1 for 24 h in the presence of either arginine or its analog, NAME. The expression levels of 23 of the 105 protein spots, known to be altered by IL-1 plus arginine, were significantly changed by IL-1 plus NAME ($P < 0.01$ [$n = 4$] and $P < 0.05$ [$n = 19$]). Of these 23 protein spots, 16 were increased, 7 were decreased, and 14 have been positively identified by mass spectrometric analysis and named for the first time here. Some increases in protein expression could be due to nonspecific effects of l-NAME or to the existence of NO-dependent negative feedback on these proteins as previously suggested for iNOS (57) or the interleukin-1 converting enzyme (58).

Despite some experimental limitations, the combination of high-resolution 2D gel technology and mass spectrometry seems to be the method of choice. Messenger RNA differential display techniques have been applied to various target tissues, including islet tissue, in attempts to identify differences in specific mRNA expression and genes of relevance for type 1 diabetes (59,60). However, studies using mRNA differential display report primarily on de novo expressed transcripts and, to a lesser extent, on differential expression (61). Importantly, changes in mRNA levels may not always result in parallel alteration in protein levels. Finally, in contrast to mRNA (cDNA) expression studies, protein expression studies allow assessment of posttranslational modifications, which are often necessary for protein function and may also be of relevance in pathogenicity.

The proteins that are identified here for the first time, which were subject to the most pronounced alteration by cytokine treatment, merit attention. IL-1β–increased expression of lamin B and/or ribonucleoprotein K (ROK) (both identified from database match number 28) was NAME reversible in
islets. Lamin B is primarily a structural nuclear-matrix protein that underlies the nuclear envelope; it has been studied in conjunction with induced apoptosis or necrosis (62), including that induced by 2D gel electrophoresis (63) in nonislet cells. ROK recruits molecular partners involved in transcriptional regulation and RNA processing (64).

Previous studies have shown that expression of islet HSP70, as determined by Western blotting, is increased upon IL-1β treatment (34–36,65) and is prevented by coincubation with the arginine analog NMMA (65). These observations are in agreement with our findings that the IL-1β-induced increases in the different heat shock proteins ipr94, a presumed rat homolog of the mouse, human apg-2, a member of the HSP110 family (66) (match number 187), and the novel heat shock cognate 71 kDa protein (HSP71c, match number 425) were downregulated when NO production was inhibited (Fig. 2C and D and Table 2). HSP induction by IL-1β treatment is commonly considered to be cytoprotective; however, in an experimental HSP70 overexpression system, cells were rendered more susceptible to cytotoxic T-cell-mediated apoptosis (67). It is of interest that a third protein in the large heat shock family, mortalin (GRP75, match number 330 and 340) (68), seems to be posttranslationally modified in response to cytokines and the NO inhibitor because the expression levels were changed in opposite directions in the two spots. GRP75 is a glucose-regulated stress-inducible mitochondrial chaperone protein, possibly involved in antigen-processing and cell mortality (68).

PDI (match number 484), which was upregulated by inhibition of NO formation, is present in the lumen of the endoplasmic reticulum (ER) of cells that are actively synthesizing disulfide-bonded cell surface and secretory proteins; there may be implications for insulin biosynthesis and secretion (69,70). Although little is known about islet expression of PDI, a pancreatic isoform of this protein has been identified (71). Recent studies have shown that NO can react with PDI to inhibit platelet aggregation (72) and that PDI is involved in the entry of NO into cells (73).

IL-1β–induced changes in tropomyosin (match number 885) in islets were relatively minor. Tropomyosin is thought to exist in equilibrium between two states of F-actin and is one of several 2D gel–identified proteins upregulated by cytokine treatment of a renal carcinoma cell line (74) or studied in transgenic 2D gel–identified proteins upregulated by cytokine treatment of a renal carcinoma cell line (74) or studied in transgenic overexpressing mice (75) exhibiting cardiomyopathy.

The expression of GAPDH (match number 17) was upregulated by inhibition of IL-1β-induced NO production (P < 0.01 vs. IL-1 plus arginine; P < 0.001 vs. untreated islets). The NAME-induced increase in GAPDH could be an effect of NAME not being related to NOS inhibition, a suggestion supported by a recent study in which a 24-h incubation of rat pancreatic islets with IL-1 did not affect the expression of GAPDH (61) and by the fact that GSNO-mediated NO production did not increase GAPDH expression in the present study (Table 3). Endothelial cell GAPDH mRNA levels were, however, increased as a result of cytokine-generated NO exposure, perhaps as a compensatory mechanism to maintain physiological GAPDH production or to protect cells against NO cytotoxic effects (76). It is also possible that NO may be involved in oxygen sensing by competition with O2 for cytochrome oxidase (77). Higher concentrations of NO would lead to hypoxia and the compensatory increase in glycolytic enzymes (including GAPDH).

Poly-pyrimidine tract-binding protein (match number 156) is a 60-kDa ribonucleoprotein that binds pre-mRNAs and is speculated to have a role in their splicing (78). It has also been studied in initiation of translation of human rhinovirus-2 RNA (79). Its elevation by IL-1β treatment and reversal of this elevation by inhibition of NO production are both very pronounced.

F-1,6-bisphosphate aldolase A (a glycolytic enzyme) and NADH-cytochrome B5 reductase (match numbers 668 and 296, respectively) exhibit modest changes after islet treatment with IL-1β. In contrast, IL-1β greatly decreased ATP synthase regulatory subunit A (match number 176), an effect that was NO mediated. A role for ATP synthase in glycolysis protection against apoptosis in neurons has been proposed (80). Previous extensive research on ATP synthase, which uses a transmembrane proton gradient to drive synthesis of cellular ATP, has been reviewed (81).

The effects of the NO donor GSNO on neonatal rat islet protein expression were similarly investigated using 2D gel electrophoresis and computer-based analysis of gels. The treatment conditions used in this study were chosen in order to reproduce as closely as possible the conditions used by Andersen et al. (43,44) in 2D experiments on islets exposed to IL-1β. Kinetics of NO release from IL-1β induction of iNOS and NO donors in this study are unlikely to be directly comparable. We have previously measured NO production from GSNO using the isolated NO probe (IS NO; World Precision Instruments, Stevenage, U.K.) and found NO from 100 μmol/l GSNO to be detectable within 20 min and still detectable after 3–4 h (82).

The expression of 19 proteins from a total of 1,600 detectable proteins was significantly affected by GSNO (P < 0.01). Of these 19 proteins, 5 were also affected by IL-1β treatment (44), and 2 of the 5 have been positively identified by mass spectrometry as ATP synthase α-chain and calnexin precursor, match numbers 176 and 201, respectively. The upregulation of ATP synthase seen in this study may be a compensatory mechanism by the cell to restore ATP production after NO exposure, because NO decreases ATP levels, at least in some cell types (82). Calnexin-precursor upregulation by NO suggests a requirement for molecular chaperoning (83). Calnexin is present in the ER, is phosphorylated by ER-associated protein kinases and detects mutated or misfolded proteins that are retranslocated, degraded, or secreted. However, in damaged cells, it has also been suggested to regulate expression of target molecules necessary for the binding of natural killer cells (84).

Previous studies have shown that exposure of insulin-containing cell lines, rat islets or human β-cells to chemically generated NO has functional effects that are in line with those of IL-1β, including inhibition of insulin secretion (11,24–26), decreased redox function and cellular protein synthesis (6), induction of Fas expression (85), apoptosis (5,6), and necrosis (79). As the concentration of GSNO used here is substantially lower than that used in previous studies (6,24,25), it is possible that the changes in islet protein synthesis may relate to effects of GSNO on insulin secretion but not to effects on cell death. In addition, long-term exposure of islets to GSNO may have prevented detection of a number of early protein changes.

NO may have cytoprotective actions on cells depending on the concentration of NO applied and the cell type used. Exposure of cells to NO can be protective against tumor necrosis factor-α–induced cytotoxicity in endothelial cells
(86), ultraviolet A–induced apoptosis in human keratinocytes and endothelial cells (87), or apoptosis in hepatocytes (88). Suggestions of possible mechanisms involved in this protective effect of NO on cells have included cGMP-dependent upregulation of protective proteins such as heme oxygenase (86), induction of HSP70 expression (89), inhibition of caspases (88), or upregulation of bcl-2 expression with concomitant inhibition of Bax protein expression (87). Identification of NO-altered proteins may assist understanding of harmful and protective NO cellular actions.

In summary, we have used computer-based analysis of 2D gels to identify proteins having expressions specifically affected by inhibition of IL-1β–induced NO or exposure to chemically generated NO. The outcome of these studies represents a further stage in our understanding of the role of NO in cytokine-mediated effects on β-cells and provides information for possible mechanisms of protection against harmful effects of NO.

ACKNOWLEDGMENTS

This work was supported by grants from the Biological and Biotechnological Sciences Research Council (N.E.J, I.C.G.), the British Diabetic Association (I.C.G.), the Danish Diabetesc Association (H.U.A., J.N., T.M.-P.), the Danish Medical Research Council (H.U.A., A.E.K, F.P., J.N., N.E.J., T.M.-P.), the Danish Biotechnology Research Program (P.R., M.R.L.), the Danish Biotechnological Research and Development Programme (S.F., P.M.L.), and Novo Nordisk (H.U.A., A.E.K., F.P.J.N., N.E.J., T.M.-P.). We thank Lotte Christensen, Hanne Foght, and Anna Hlin Schram for their expert technical assistance.

APPENDIX

We have recently identified the endoplasmic reticulum protein ERP29 precursor (ERP31) (acc. no. P52555) as part of spot 908 in addition to the phospho-glycerate mutase (PGAM). ERP31 is known to be induced by stress and may be involved in the processing of secretory proteins within the ER.

REFERENCES

Hunt SL, Jackson RJ: Polypyrimidine-tract binding protein (FTB) is necessary,
but not sufficient, for efficient internal initiation of translation of human rhi-
80. Chambers-Redman RME, Fraser ADM, Carlile GW, Pong A, Tatton WG: Glu-
cose protection from MPP⁺-induced apoptosis depends on mitochondrial
membrane potential and ATP synthase. Biochem Biophys Res Commun
82. Green IC, Cunningham JM, Delaney CA, Titheradge MA, Mabley JG, Green
MHIL: Effects of cytokines and nitric oxide donors on insulin secretion, cyclic
nucleotides, glucose metabolism and DNA damage: relation to nitric oxide syn-
thase activity and nitrite production. In Frontiers of Insulin Secretion and
Pancreatic β Cell Research. Flatt P, Lenzen S, Eds. Worthing, U.K., Smith-Gor-
don, 1994, p. 559–566.
83. Chevet E, Jakob CA, Thomas DY, Bergeron J JM: Calnexin family members as
84. Malyguine AM, Scott JE, Dawson JR: The role of calnexin in NK-target cell
Trucco M: Nitric oxide primes pancreatic β-cells for Fas-mediated destruction
86. Polte T, Oberle S, Schröder H: The nitric oxide donor SIN-1 protects endothelial
87. Suschek CV, Kirschel V, Bruch-Gerharz D, Berendji D, Krunmann J, Körncke
K-D, Kold-Bachofen V: Nitric oxide fully protects against UVA-induced apo-
88. Li JR, Bombeck CA, Yang SF, Kim YM, Billiar TR: Nitric oxide suppresses apo-
ptosis via interrupting caspase activation and mitochondrial dysfunction in cul-
rat hepatocytes from tumor necrosis factor-α-induced apoptosis by inducing