Thiazolidinediones Inhibit the Expression of β₃-Adrenergic Receptors at a Transcriptional Level

Evangelos Bakopanos and J. Enrique Silva

The effect of the thiazolidinediones (TZDs) darglitazone and troglitazone on β₃-adrenergic receptor (AR) expression was studied in cultured cell lines representing several tissues. After 24 h of exposing HIB-1B brown adipocytes to 30 µmol/l darglitazone or 20 µmol/l troglitazone, β₃-AR mRNA levels were reduced by 75%. This effect was significant within 1 h of exposure to a maximal dose of these drugs, with the full effect obtained within 10 h. The darglitazone ID₅₀ was ~10 µmol/l, similar to the Kᵦₐ of TZDs binding to peroxisome proliferator-activated receptor-γ (PPAR-γ). These drugs also decreased β₃-AR mRNA in 3T3-F442A white adipocytes, but not in SK-N-MC cells, which lack PPAR-γ. A luciferase reporter gene containing 1.4 kb of 5' flanking sequence of the mouse β₃-AR was transiently transfected, with or without PPAR-γ2, in SK-N-MC cells. The vigorous expression of luciferase driven by the β₃-AR gene sequence was inhibited by TZDs in a PPAR-γ2-dependent manner. The half-lives of β₃-AR precursor RNA and mRNA were short, ~40 and ~100 min, respectively, and remained unaffected by TZD treatment. Exposure of HIB-1B cells to 30 µmol/l darglitazone was associated with reduced β₃-AR mRNA levels, as well as decreased response of uncoupling protein 1 to norepinephrine + propranolol (a β₁, β₂-AR antagonist) or the specific β₃-AR agonist CL 316, 243. Both the β₃-AR mRNA level and response to these stimuli fully recovered by 24 h of removing the drug, indicating that the β₃-AR protein and its coupling to adenyl cyclase rapidly followed the changes in mRNA. Thus, TZDs can rapidly reduce β₃-AR expression at the transcriptional level, acting through PPAR-γ2. The rapid turnover and responses of β₃-AR to perturbations, along with numerous other factors reported to regulate its expression, suggest a tight control of β₃-AR and function. Lastly, leptin being the only other known gene suppressed by TZDs, the present studies support a concerted lipogenic effect of these drugs.

Diabetes 49:2108–2115, 2000

In mammals, there are two distinct types of adipose tissues: white adipose tissue (WAT) and brown adipose tissue (BAT). Both play important, but opposite, roles in energy balance. Whereas WAT stores energy in the form of triglycerides, BAT dissipates energy as heat in response to cold or excessive caloric intake. Their function is coordinated by the sympathetic nervous system and modulated by several hormones and metabolic signals. Norepinephrine (NE), released by sympathetic nerve terminals, stimulates lipolysis in BAT and WAT, as well as thermogenesis in BAT. These actions of NE are mediated by β-adrenergic receptors (ARs), which belong to the family of G protein–coupled transmembrane receptors that use cAMP as main second messenger.

The β₃-AR is predominantly expressed in WAT and BAT (1–4), in contrast to the other β-AR (β₁ and β₂-AR), which are present in several other tissues. The restricted presence of β₃-AR in adipose tissues, its ability to mobilize free fatty acids, and its capacity to stimulate BAT thermogenesis have together made it a very attractive target for the development of antiobesity drugs (5). Such β₃-AR agonists have been developed based on the rodent β₃-AR, and indeed when given chronically to these animals, they enhance lipolysis and thermogenesis, reduce fat accumulation in response to overfeeding (6), and improve insulin sensitivity (7). In humans, however, these particular compounds appear to be less effective and not as specific for the β₃-AR as they are in rodents (8). An additional problem is the low level of expression of these receptors in human adipose tissues (9–11), which may ultimately limit the clinical use of stronger and more specific agonists. It is, therefore, important to identify and characterize the factors that modulate the expression of these receptors.

Thiazolidinediones (TZDs) are novel antidiabetic drugs that increase the responsiveness to insulin in both human and animal models of type 2 diabetes (12). They exert most, if not all, of their metabolic effects through the specific binding and activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) (13), a member of the nuclear receptor superfamily of ligand-activated transcription factors. Of the two alternate splicing forms of the receptor, PPAR-γ2 is specifically expressed at high levels in adipose tissues, where it controls the expression of many adipocyte-specific genes (14–16). Given the involvement of PPAR-γ in adipocyte differentiation and function, it is not surprising that TZDs promote adipocyte differentiation or adipogenesis (17). But they also increase BAT differentiation (18–20) and stimulate uncoupling protein (UCP) 2 and 3 expression (21,22), suggesting that the lipogenic effects may be coupled to the activation of mechanisms involved in energy dissipation.

From the Lady Davis Institute for Medical Research, Division of Endocrinology and Metabolism, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.

Address correspondence and reprint requests to J. Enrique Silva, MD, Jewish General Hospital, Division of Endocrinology, 3755 Chemin de la Côte-Ste-Catherine, Montreal, QC, H3T 1E2, Canada. E-mail: mdsi@musica.mcgill.ca.

Received for publication 3 February 2000 and accepted in revised form 22 August 2000.

AR, adrenergic receptor; BAT, brown adipose tissue; cdfs, charcoal dextran–stripped; CL, CL 316, 243; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; MAP, nitogen-activated protein; MMLV, Moloney murine leukemia virus; NE, norepinephrine; PCR, polymerase chain reaction; PPAR, peroxisome proliferator-activated receptor; RT, reverse transcription; TZD, thiazolidinedione; UCP, uncoupling protein; WAT, white adipose tissue.
Because \(\beta_3\)ARs may become a limiting factor for lipolysis and thermogenesis, and because they may also mediate an improvement in insulin sensitivity (7), it was of interest to investigate the effect of TZDs on \(\beta_3\)AR expression. We report here that TZDs rapidly and reversibly inhibit the expression of \(\beta_3\)AR mRNA at the transcriptional level.

RESEARCH DESIGN AND METHODS

Cell culture. The mouse brown adipose HIB-1B cells were a gift from Dr. B. Spiegelman; the mouse white adipose 3T3-F442A cells were provided by Dr. M. Lavau (INSERM, Paris); and human neuroblastoma SK-N-MC cells were purchased from American Tissue Culture Collection. Both adipose cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) in the presence of 10% CO\(_2\) and SK-N-MC were cultured in minimal essential medium in 5% CO\(_2\). All cells were plated at high density in medium containing 10% fetal bovine serum (FBS) (Wyssent, St. Bruno, Quebec) to get confluence rapidly. After reaching confluence, HIB-1B cells were placed in medium supplemented with 10% charcoal dextran–stripped (CDS) FBS for 3 days, which sufficed to obtain a good and stable level of expression of \(\beta_3\)AR. The 3T3-F442A cells were kept in DMEM 10% normal FBS supplemented with 100 nmol/l insulin for 7 days, after which >90% had acquired a mature adipocyte phenotype. At this time, they were switched to medium containing 10% CDS-FBS. Unless otherwise indicated, cells were cultured in 6-well plates. Once cells reached the desired level of differentiation, they were exposed to TZD or its solvent, DMSO (final 0.6 µg), in fresh medium containing 10% CDS-FBS. In some experiments, HIB-1B cells were plated and grown to confluence, as mentioned above, and then incubated for 3 days at 30 µmol/l darglitazone, which is associated with differentiation and expression of UCP-1 responsive to NE (20).

RNA analysis. Total RNA was isolated by two cycles of extraction with acid guanidinium-phenol-chloroform (23). After the first extraction, samples were treated with 0.2 U of RNase-free DNase I (RQ1 DNase; Promega) per microgram of nucleic acid in 40 mmol/l Tris-HCl, 10 mmol/l NaCl, 6 mmol/l MgCl\(_2\), 10 mmol/l CaCl\(_2\), pH 7.9 in the presence of ribonuclease inhibitor (Rnasin; Promega) for 1 h. This mixture was then re-extracted, and RNA was recovered by isopropanol precipitation. Total RNA concentration was quantified spectrophotometrically, and quantity and quality were verified by videodensitometry (Scion Image) after electrophoresis in 1% agarose stained with ethidium bromide. \(\beta_3\)AR and UCP-1 mRNAs were quantified by reverse transcription (RT) followed by competitive polymerase chain reaction (PCR) using the primers and competitors described below.

The DNA competitor used to quantify mouse \(\beta_3\)AR mRNA was constructed using the PCR MICMIC kit as recommended by the manufacturer (Clontech, Palo Alto, CA). Briefly, the \(\beta_3\)AR PCR competitor was generated from a provided template (v-erb B gene), which was amplified with composite primers containing a 5' 18-mer segment corresponding to the chosen segment of the \(\beta_3\)AR cDNA (see below) fused to a 20-mer sequence to span the desired size of the v-erb B gene. A 336-bp PCR product containing the \(\beta_3\)AR sense and antisense sequences generated by the PCR competitor were generated and purified as recommended by the manufacturer. Primers were as follows: mouse \(\beta_3\)AR sense: TCTCGTCTAGTGAGGGCGG; sense composite primer: ATGG CTCCGGGCTCACCAGCTGAAATCTCCG; and antisense composite primer: GTGTCGTTACGGGGGCGGACAGTATCCTAGTGC. The 454-bp UCP-1 competitor was also generated following the same protocol, as well as the following primers: UCP-1 sense: AAGCCGAGGCTTCCTCATGATTGT; UCP-1 antisense: GGTGTTGATCC AGCAGTGGTCCG; and antisense composite primer: AAGCCGAGGCTTCCTCATGATTGT.

RESULTS

Effect of TZDs on \(\beta_3\)AR expression in HIB-1B cells. The addition of 30 µmol/l darglitazone or 20 µmol/l troglitazone to these cells caused a 70–80% decrease in \(\beta_3\)AR mRNA levels in 24 h (Fig. 1). In a similar experiment in 3T3-F442A cells, darglitazone induced a 58 ± 5% reduction in \(\beta_3\)AR mRNA levels (data not shown). The time course of the inhibition was examined in HIB-1B cells using a maximal concentration of 100 µmol/l of darglitazone. As shown in Fig. 2, the decrease in \(\beta_3\)AR mRNA was significant within 1 h and maximal 10–15 h after the addition of the TZD. Exposure of cells to graded doses of darglitazone for 24 h revealed a concentration-dependent inhibition, with the minimal concentration having a significant effect at 3 nmol/l, a maximal effect at 300 nmol/l, and an half-maximal inhibitory dose (ID\(_{50}\)) of ~10 nmol/l (Fig. 3). Notably, this latter value is similar to \(K_d\) for the most potent TZDs binding to PPAR-\(\gamma\), which is ~40 nmol/l (13), and to the affinity of darglitazone for PPAR-\(\gamma\) (A. Swick, personal communication).
TZDs AND \(\beta_3 \)-ARs IN ADIPOSE TISSUES

FIG. 1. Effect of TZDs on \(\beta_3 \)-AR mRNA levels in HIB-1B cells. HIB-1B cells were treated for 24 h with 30 \(\mu \)mol/l darglitazone, 20 \(\mu \)mol/l troglitazone, or vehicle (DMSO, control). Total RNA prepared for each sample was treated (+) or not (–) with MLV RT to verify the absence of genomic DNA contributing to the PCR products. These were resolved and analyzed as described in RESEARCH DESIGN AND METHODS. The upper panel represents the negative image of the gel in which PCR products were resolved. The lower panel represents the mean ± SE of the video-densitometric and quantitative analysis of the bands, expressed as a percent of the mean value obtained in control cells.

and PPAR-\(\gamma \)2 (19,31). It was, therefore, of interest to examine the effects of these drugs on \(\beta_3 \)-AR mRNA in nonadipose cells. One such cell line is the human neuroblastoma SK-N-MC line. As previously reported (32), these cells clearly express \(\beta_3 \)-AR mRNA. This level of expression, ~17 times higher than that in HIB-1B cells, was not reduced by either darglitazone or troglitazone (Fig. 4A). Interestingly, these cells express only PPAR-\(\gamma \)1, and not PPAR-\(\gamma \)2, mRNA (Fig. 4B). To investigate whether the negative effect of TZDs on \(\beta_3 \)-AR expression could be mediated by PPAR-\(\gamma \)2 receptors, we performed transient transfection studies in SK-N-MC cells. In preliminary experiments with the mouse \(\beta_3 \)-AR gene (E.B., J.E.S., unpublished observations), we found that a luciferase construct containing −1,400 to −131 (relative to the translation start site) of 5′ flanking sequence exhibited vigorous promoter activity when transfected into SK-N-MC cells. As shown in Fig. 5A, troglitazone did not reduce the expression of 1.4 \(\beta_3 \)-AR-Luc unless this was cotransfected with 0.5 \(\mu \)g of PPAR-\(\gamma \)2-containing vector. Similar results (not shown) were obtained with darglitazone. The relatively modest inhibition proved to be due to limiting amounts of PPAR-\(\gamma \)2 expressed, since in a subsequent experiment with increasing transfected doses of PPAR-\(\gamma \)2 cDNA, the inhibition was clearly dose-dependent (\(r = -0.91, P < 0.001 \); Fig. 5B).

To further document the transcriptional inhibition by TZDs and estimate the extent of possible actions on the stability of the \(\beta_3 \)-AR mRNA, we examined the effect of these drugs on both mature and precursor \(\beta_3 \)-AR mRNA. In HIB-1B cells exposed to actinomycin D in the absence or presence of darglitazone, \(\beta_3 \)-AR mRNA decreased rapidly, following first-order kinetics, with a half-life of 98 ± 21 min in control cells and 105 ± 35 min in darglitazone-treated cells (NS; Fig. 6A). This comparatively short half-life in HIB-1B cells is not different from that previously reported in 3T3-F442A cells by others (33,34).

Examined under the appropriate conditions, changes in specific precursor mRNA (hnRNA) may reveal changes in the transcription of the corresponding gene or in precursor processing (29). Under our study conditions in HIB-1B cells (Fig. 6B), \(\beta_3 \)-AR hnRNA levels remain constant, indicating a steady state, whereas the addition of darglitazone caused a decline in \(\beta_3 \)-AR hnRNA with a half-life of 36 ± 11 min. To exclude an effect of darglitazone on the processing or degradation of precursor \(\beta_3 \)-AR hnRNA, cells were then examined under the presence of \(\alpha \)-amanitin (27,28). As shown in Fig. 6C, \(\beta_3 \)-AR hnRNA disappeared with a similar half-life in control and darglitazone-treated cells (42 ± 15 min and 46 ± 13 min, respectively), indicating no effect of the drug in the stability of the \(\beta_3 \)-AR precursors. Moreover, since these values are not significantly different from those obtained with darglitazone alone (Fig. 6B), these results indicate that the inhibition of transcription by the TZD was complete.

Functional consequences of TZD-induced decrease in \(\beta_3 \)-AR mRNA. TZDs have been reported to induce or accelerate the acquisition of BAT phenotype by HIB-1B cells and isolated brown preadipocytes from rodents (18,19). We investigated whether the TZD-induced differentiation was associated with reduced expression of the \(\beta_3 \)-AR, and if so, whether this had functional consequences. As we previously

FIG. 2. Time-course of the reduction in \(\beta_3 \)-AR mRNA induced by darglitazone in HIB-1B cells. HIB-1B cells were exposed to 100 \(\mu \)mol/l darglitazone and RNA was extracted from triplicate wells at the indicated times. Results are expressed as the mean percent ± SE of the \(\beta_3 \)-AR mRNA level detected at time zero. Missing error bars are smaller than the dots indicating data points. Control cells exposed for the same time to DMSO showed no change in mRNA (not shown).

FIG. 3. Dose-dependent effect of darglitazone on \(\beta_3 \)-AR mRNA levels in HIB-1B cells. HIB-1B cells were treated in triplicates for 24 h with the indicated concentrations of darglitazone. Results are expressed as the mean percent ± SE of the \(\beta_3 \)-AR mRNA level of untreated cells. Missing error bars are smaller than the dots indicating data points. Control cells exposed for 24 h to DMSO showed no change in mRNA (not shown).
reported (20), exposure of HIB-1B cells to 30 µmol/l darglitazone causes the UCP-1 gene to become responsive to adrenergic stimulation within 24 h, whereas within 3 days the cells become round and acquire refracting droplets by phase contrast, which are morphological indicators of differentiation (data not shown). When exposed for 3 days to darglitazone in such an experiment, cells displayed an ~70% lower β3-AR mRNA expression compared with control cells treated identically but not exposed to darglitazone \((P < 0.001; \text{Fig. 7})\). This effect was rapidly reversed, however, since β3-AR mRNA was restored to the levels of the control cells within 24 h of removal of darglitazone. Note how stable the β3-AR level of expression is in control cells.

As mentioned, TZDs induce the differentiation of HIB-1B cells but do not directly stimulate UCP-1 expression. Typically, cells exposed to these drugs will have little or no basal expression of UCP-1, but this gene becomes responsive to adrenergic and cAMP stimulation (20). Interestingly, in these studies, we observed that HIB-1B cells differentiated with TZDs responded better to adrenergic stimulation, not immediately, but 24 h after ending differentiation with darglitazone. This prompted us to investigate the possibility that this observation reflected the repression of β3-AR by darglitazone and its subsequent recovery upon removing the drug. Accordingly, we examined the responses of UCP-1 mRNA levels to adrenergic stimulation immediately and 24 h after exposing HIB-1B cells to darglitazone. Adrenergic stimulation consisted of a 4-h exposure to 10 µmol/l NE ± 0.5 µmol/l propranolol, or 1 µmol/l of the β2-AR specific agonist CL. That concentration of propranolol is sufficient to block β2-AR and β2-AR, but not β3-AR, at 10 µmol/l NE (35), and it was included to estimate the contribution of non-β3-AR pathways and post-receptor mechanisms on the effect of NE. As shown in Fig. 8, the UCP-1 mRNA expression in response to NE increased by a factor of 4, whereas that by CL was 12 times greater 24 h after the removal of darglitazone. When propranolol was added, the absolute reduction in UCP-1 stimulation

![FIG. 4. Lack of effect of TZDs on β3-AR mRNA in human neuroblastoma SK-N-MC cells. SK-N-MC cells were treated for 24 h with 30 µmol/l darglitazone or 20 µmol/l troglitazone. A: β3-AR mRNA was analyzed and presented as in Fig. 1. Ribosomal RNA is shown in the lower portion of A to document the integrity and uniformity of the RNA. B: SK-N-MC cell RNA from duplicate wells was analyzed for PPAR-γ1, γ2, and PPAR-γ2 mRNAs using primers as described in RESEARCH DESIGN AND METHODS. +C, positive controls: cloned PPAR-γ2 cDNA in the case of PPAR-γ1, γ2, and reverse-transcribed mRNA from human WAT in the case of PPAR-γ2. MW, molecular weight.](image-url)

![FIG. 5. Expression of β3-AR mRNA promoter activity and inhibition by TZDs in SK-N-MC cells. SK-N-MC cells were transiently transfected with a luciferase reporter vector containing 1.4 kb of 5’ flanking sequence of the mouse β3-AR gene, as described in RESEARCH DESIGN AND METHODS, with or without cotransfection of mPPAR-γ2 or its empty expression vector, pSV-Sport 1. Luciferase activity was corrected for β-galactosidase to account for variations in transfection efficiency. Each point represents the mean ± SE of triplicate wells. Missing error bars are smaller than the dots indicating data points. A: Effect of troglitazone on the luciferase activity expressed as percent of basal luciferase levels. Cells were cotransfected with 0.5 µg pSV-Sport 1-mPPAR-γ2 or the empty vector. B: Cells cotransfected with the indicated amounts of pSV-Sport 1-mPPAR-γ2 and treated with 30 µmol/l darglitazone.](image-url)
TZDs AND β_3-ARs IN ADIPOSE TISSUES

TZDs AND β_3-ARs IN ADIPOSE TISSUES

by NE was very similar immediately and 24 h after removing darglitazone, ~4 atmol/µg RNA, but this represented 62 and 32% decreases in the NE-induced UCP-1 expression, respectively. Note that the stimulation by NE + propranolol was greater at all times than that by CL, which may reflect a contribution of the β_3-AR pathway. Altogether, the data are consistent with time-dependent recruitment of β_3-AR after the removal of TZDs, paralleling the increase in β_3-AR mRNA.

DISCUSSION

We have shown here that the TZDs darglitazone and troglitazone reduce the levels of β_3-AR mRNA in adipose cell lines with a potency similar to that with which they bind to PPAR-γ. This effect of TZDs indeed necessitates the presence of PPAR-γ and is caused by inhibition of transcription. This inhibitory effect of TZDs is, initially at least, nearly complete, and the rapid fall of the β_3-AR mRNA is made possible by the intrinsically rapid turnover of this mRNA, but TZDs do not affect the half-life of either mature β_3-AR mRNA or its precursors. Furthermore, the changes in mRNA level are paralleled by changes in β_3-AR–mediated responses. Since the β_3-AR is involved in fat mobilization and oxidation, these observations add yet another mechanism contributing to a lipogenic effect of TZDs.

The rapid reduction in β_3-AR mRNA induced by TZDs, evident within the hour of their addition, could have been mediated by an acceleration of the mRNA degradation. El Hadri et al. (33) reported that thyroid hormone prolongs the half-life of β_3-AR mRNA in 3T3-F442A cells, providing a precedent for regulation at this level. We report here that the half-life of this mRNA in HIB-1B cells is as fast as that in 3T3-F442A cells, but we find that TZDs do not accelerate the rate of disappearance of this β_3-AR mRNA, nor do they affect the disappearance of the β_3-AR mRNA precursors. Furthermore, in the presence of α-amanitin, these precursors disappear at the same rate as after TZDs, providing a strong argument for a rapid and initially complete repression of β_3-AR mRNA transcription by these drugs. Additional support for repression of transcription came from transient transfection experiments in which TZDs inhibited reporter gene expression driven by the 5’ flanking sequence of the mouse β_3-AR gene, as further discussed below. The possibility that the repression of the β_3-AR gene be mediated indirectly, by a gene product whose expression is stimulated by TZDs via PPAR-γ, seems very unlikely because within minutes of addition of TZD to the cells, we detected a reduction in β_3-AR mRNA precursors and because the time course is identical to that of α-amanitin. Thus, we are confident that the effect of TZD reported here represents PPAR-γ–mediated repression of gene expression.

FIG. 6. Effect of TZDs on the stability of mature or precursor β_3-AR mRNA in HIB-1B cells. In all cases, RNA levels were expressed as percent of basal and plotted as natural log. Cells were allowed to differentiate as described in RESEARCH DESIGN AND METHODS and were then treated as described below. RNA was extracted at the indicated times and analyzed as described in RESEARCH DESIGN AND METHODS. Each point represents the mean ± SE of triplicates. Missing error bars are smaller than the dots indicating data points. A: At time zero, cells were treated with 5 µg/ml actinomycin (Act) D ± 30 µmol/l darglitazone (DARG). Regression line and calculated half-lives are indicated. Regression lines were significant at $P < 0.001$, but slopes were not significantly different. B and C: At time zero, cells were treated with 30 µmol/l darglitazone or DMSO (B) plus 2 µg/ml α-amanitin (C).

FIG. 7. Effect of darglitazone during HIB-1B cells differentiation on β_3-AR mRNA. HIB-1B cells were differentiated as described in RESEARCH DESIGN AND METHODS in the presence or absence of 30 µmol/l darglitazone (DARG). Triplicate wells were analyzed for β_3-AR mRNA at the end of this period or 24 h after removing darglitazone or its vehicle. The upper panel shows the RT-PCR products and the lower panel shows the mean ± SE of their videodensitometric analysis.
In spite of the evidence favoring a complete initial repression of transcription, \(\beta_3 \)-AR mRNA does not decrease following a single exponential with half-life of \(\approx 100 \) min, but after a rapid initial decline disappearance rate decreases, and by 24 h of exposure to TZDs, mRNA levels are 20–25% of the baseline. Several explanations are possible. Degradation of the drug by the cells does not seem likely, since doses several times higher than the maximal did not change this outcome. Another possibility is the existence of a comparatively small pool of \(\beta_3 \)-AR mRNA, \(\approx 20\% \) of the total, that is more stable. An alternate \(\beta_3 \)-AR mRNA splice variant has been identified in mouse BAT and WAT (24) and also in 3T3-F442A cells (34). Our assay does not distinguish these variants, and even though Granneman and Lahnors (34) did not find that they are differentially regulated by cAMP, the possibility that one of them has a longer life span in HIB-1B cells remains to be tested. Another possibility is that the PPAR-\(\gamma \)-2 effect is attenuated with time after its activation. This may occur by phosphorylation of a consensus mitogen-activated protein (MAP) kinase target site present in the PPAR-\(\gamma \) when phosphorylated, causes a loss or attenuation of activity (36) and when disabled by spontaneous mutations, is associated with a constitutively active PPAR-\(\gamma \) and massive obesity (37). One could, therefore, hypothesize that continued exposure to TZDs results in attenuation of the receptor via its phosphorylation by MAP kinase.

Even though some effects of TZDs could be independent of PPAR-\(\gamma \) activation (38), several lines of evidence favor specifically a PPAR-\(\gamma \)-2 as mediator of the repression of \(\beta_3 \)-AR expression. First, we observed that the ID\(_{50}\) for the darglitazone effect is similar to the reported \(K_c \) for binding of the most potent TZDs to PPAR-\(\gamma \) (13,39) and that binding of TZDs to other PPAR receptors occurs with much lower affinity. Second, the effect was only evident on adipose cell lines containing PPAR-\(\gamma \)-2, and not in SK-N-MC cells lacking these receptors. Third, the expression of our 1.4 \(\beta_3 \)-Luc reporter gene transiently transfected in these cells was not reduced by TZDs unless we cotransfected PPAR-\(\gamma \)-2, and the inhibition increased in a dose-dependent manner with the amount of PPAR-\(\gamma \)-2 cDNA introduced in the cells.

The observation that the PPAR-\(\gamma \)-1 present in SK-N-MC cells did not suffice to mediate the response is in apparent conflict with the concept that TZDs are active on both PPAR-\(\gamma \) isoforms. The difference between the two PPAR-\(\gamma \) isoforms consists of an additional 30 amino acids in the NH\(_2\) terminal of PPAR-\(\gamma \)-2, and it is possible that this difference enables this receptor to interact with cofactors (corepressors in this case) with which PPAR-\(\gamma \)-1 cannot interact. There is precedent for such a mechanism, since in some systems PPAR-\(\gamma \)-2 has more ligand-independent transactivation capacity and is associated with more responsiveness to insulin (40). Differences in function and interaction with cofactors due to distinct NH\(_2\)-terminals has also been reported for other nuclear receptors, thyroid hormone receptors \(\beta_1 \) and \(\beta_2 \) (41,42). It is thus plausible that the apparent specificity of PPAR-\(\gamma \)-2 to mediate \(\beta_3 \)-AR repression is related to an isoform-specific ligand-dependent interaction with a factor necessary for the repression of this gene.

The response of UCP-1 mRNA to NE and CL increased with time after the removal of darglitazone, shortly after the increase in \(\beta_3 \)-AR mRNA, and we provided evidence that such an increase in responsiveness reflected a \(\beta_3 \)-AR–mediated event. First, CL is a highly specific \(\beta_3 \)-AR ligand (43), and second, when we stimulated UCP-1 mRNA with NE, the increase in response was evident even after using propranolol in a concentration that would block \(\beta_3 \)-AR and \(\beta_2 \)-AR but not \(\beta_3 \)-AR. However, it should be noted that the response to NE + propranolol was greater than that to CL. Whereas part of this difference could be due to CL concentrations that were not maximal, it is also possible that there is a contribution of the \(\alpha_3 \)-AR, which is activated by NE but not by CL. The fact that the time-dependent increase in response to NE + propranolol was less than that to CL (~5-fold vs. ~12-fold) argues in favor of the \(\alpha_3 \)-AR component, which has been demonstrated by others to enhance responses to cAMP (44). All things considered, then, our data strongly suggest that the changes in \(\beta_3 \)-AR mRNA induced by TZDs are shortly followed by corresponding changes in the contribution of this pathway to adrenergic stimulation.

The rapid turnover of \(\beta_3 \)-AR mRNA and the seemingly prompt response of the receptor protein point to a rapid regulation of \(\beta_3 \)-AR levels and function and constitute further evidence in favor of an important role for these receptors. This concept is further supported by the variety of factors that regulate the expression of \(\beta_3 \)-AR. Thus, its expression is inhibited by glucocorticoids (45) and insulin (46), whereas thyroid...
hormone vigorously stimulates its expression in WAT while it as vigorously reduces the mRNA levels in BAT (35). It is interesting that TZDs, which sensitizes cells to the action of insulin, also repress expression of the β3-AR gene.

PPAR-γ is known to mediate the stimulation of adipogenic genes. On the other hand, TZDs stimulate the expression of UCP-2 (21,47) and UCP-3 (22] and E.B., J.E.S., unpublished observations), which could be interpreted as a coupling of energy-dissipating mechanisms—presumably mediated by UCPs—and lipogenic and adipogenic stimulation. This view would go along with previous observations by us and others (18,20,48) that TZDs induce the differentiation of BAT as well as WAT. However, as we have shown here, the differentiation induced by TZDs is associated with a reduction in one of the receptors involved in the adrenergic stimulation of the key molecule for energy dissipation in BAT, UCP-1, and TZDs do not directly stimulate UCP-1 expression (20); in addition, to the best of our knowledge, the only other gene reportedly repressed by TZDs is the leptin gene (39,49,50). Taken together, these observations suggest that the coupling alluded to, if it exists at all, is limited to increasing only the potential for energy dissipation, but that the realization of this potential depends on other factors that should overcome the downregulation of the β3-AR. Overall, the predominant effect of TZDs appears to be adipogenic, which goes along with the clinical observation that patients on these drugs gain weight and that TZDs reduce leptin expression (39,49–51).

In summary, we have shown that TZDs are potent inhibitors of β3-AR expression in adipose cell lines, an effect that is mediated by PPAR-γ2, probably at the level of the β3-AR gene to repress transcription. In the context of other observations, our results support the concept that TZDs globally promote fat accumulation. Even though such effects are coupled to an increase in the energy dissipating potential, the realization of this potential may be kept under check via controlling the expression of leptin and an AR important in lipid mobilization and activation of thermogenesis.

ACKNOWLEDGMENTS

These studies were supported by MRC grants M-11550 and M-15101. The authors are grateful to the individuals, mentioned in RESEARCH DESIGN AND METHODS, who generously provided chemicals and biological reagents used in the study.

REFERENCES

43. E. Bakopoulos and J.E. Silva

