Use of a Novel Impermeable Biotinylated Photolabeling Reagent to Assess Insulin- and Hypoxia-Stimulated Cell Surface GLUT4 Content in Skeletal Muscle From Type 2 Diabetic Patients

Jeffrey W. Ryder, Jing Yang, Dana Galuska, Jorge Rincón, Marie Björnholm, Anna Krook, Sten Lund, Oluf Pedersen, Harriet Wallberg-Henriksson, Julieen R. Zierath, and Geoffrey D. Holman

Cell surface GLUT4 levels in skeletal muscle from nine type 2 diabetic subjects and nine healthy control subjects have been assessed by a new technique that involves the use of a biotinylated photo-affinity label. A profound impairment in GLUT4 translocation to the skeletal muscle cell surface in response to insulin was observed in type 2 diabetic patients. Levels of insulin-stimulated cell surface GLUT4 above basal in type 2 diabetic patients were only ~10% of those observed in healthy subjects. The magnitude of the defect in GLUT4 translocation in type 2 diabetic patients was greater than that observed for glucose transport activity, which was ~50% of that in healthy subjects. Reduced GLUT4 translocation is therefore a major contributor to the impaired glucose transport activity in skeletal muscle from type 2 diabetic subjects. When a marked impairment in GLUT4 translocation occurs, the contribution of other transporters to transport activity becomes apparent. In response to hypoxia, marked reductions in skeletal muscle cell surface GLUT4 levels were also observed in type 2 diabetic patients. Therefore, a defect in a common late stage in signal transduction and/or a direct impairment in the GLUT4 translocation process accounts for reduced glucose transport in type 2 diabetic patients. Diabetes 49:647–654, 2000

Skeletal muscle is the primary site of whole-body insulin-mediated glucose uptake (1). People with type 2 diabetes are characterized by reduced insulin-mediated whole-body glucose uptake (2), which appears to be a result of reduced insulin-stimulated glucose transport in skeletal muscle (3–7). Evidence suggests that reduced insulin-mediated glucose transport in skeletal muscle from type 2 diabetic patients results from alterations in the insulin-signaling transduction pathway (8–14). We have shown that an increase in fasting serum insulin levels (~50 to ~600 pmol/l), achieved by a hyperinsulinemic clamp, increased insulin signal transduction at the level of insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase (PI3K) (13) and promoted GLUT4 translocation from an intracellular storage site to the plasma membrane in skeletal muscle from healthy individuals (15,16). Conversely, in type 2 diabetic patients, insulin signal transduction (13) and plasma membrane GLUT4 content in skeletal muscle (16) were markedly reduced.

Whether reduced insulin-stimulated glucose transport occurs as a consequence of a defect in the mechanisms involved in GLUT4 traffic in skeletal muscle from type 2 diabetic patients or as a consequence of impaired insulin signal transduction remains to be determined. Alterations in the traffic and/or translocation of GLUT4 to the plasma membrane have previously been proposed to contribute to the reduced insulin-stimulated glucose uptake in skeletal muscle from type 2 diabetic and nondiabetic insulin-resistant individuals (6,16–18). A recent analysis of the subcellular distribution of GLUT4 in the basal (noninsulin-stimulated) state provides evidence to suggest that defects in GLUT4 trafficking and translocation are a cause of insulin resistance in skeletal muscle (18). Thus, in addition to insulin-signaling defects, insulin resistance may also be due to a failure of GLUT4 vesicles to translocate, dock, or fully fuse with the plasma membrane.

A means of addressing the question of whether a trafficking impairment contributes to the insulin resistance in type 2 diabetes is to examine the translocation of GLUT4 in response to stimuli other than insulin. In skeletal muscle, glucose transport can be activated in response to both insulin and muscle contraction and/or exercise (5,19–21). There is strong evidence for a role for PI3K in insulin-stimulated but not con-
traction-stimulated glucose transport and GLUT4 translocation (19–21). Activation of 5′-AMP-activated kinase (22,23) and increases in cytoplasmic calcium levels (24,25) may be involved in the contraction response, because they both lead to insulin-independent increases in glucose transport. Exposure of isolated skeletal muscle to hypoxia also leads to an insulin-independent increase in glucose transport and GLUT4 translocation (26–28). Hypoxia and exercise are believed to increase transport by a similar mechanism (26). Therefore, perturbing the muscle contraction–hypoxia pathway is a strategy to reveal whether the insulin resistance associated with type 2 diabetes is limited to the insulin-signaling cascade or is a consequence of generalized resistance in the mechanism(s) involved in GLUT4 translocation.

Questions as to whether defects in GLUT4 translocation occur in type 2 diabetes have been a challenge to address in human skeletal muscle, because the most commonly used analytical methods to assess GLUT4 traffic require large amounts of material (up to 1 g/perturbation) for subcellular membrane fractionation procedures. These methods are used to obtain separate purified plasma membranes and low-density microsomes (15–18,29,30). Bis-mannose photolabels (31) are now available to quantify the magnitude of the insulin response on GLUT4 translocation in skeletal muscle (32). We have previously (33) used radioactively labeled probes to estimate the cell surface GLUT4 content in skeletal muscle from healthy subjects. Recently, sensitive nonradioactive biotinylated bis-mannose photolabels have been described (34).

Methods that use these reagents take advantage of the strong interaction with the biotin-binding protein, streptavidin, and provide a means to detect GLUT4 in small samples (20 mg) of human skeletal muscle. Here, we use the new bis-mannose photolabeling technique to determine whether decreased insulin-stimulated glucose transport in skeletal muscle from type 2 diabetic patients is associated with a decreased abundance of GLUT4 in the plasma membrane. Secondly, we incubated skeletal muscle under conditions of hypoxia to assess whether the insulin resistance associated with type 2 diabetes is specific to the insulin-mediated pathway or general to the processes mediating GLUT4 translocation.

RESEARCH DESIGN AND METHODS

Subjects. The Institutional Ethical Committee of the Karolinska Institute approved the study protocol. Informed consent was received from all subjects before participation. Clinical characteristics of the study participants are presented in Table 1. A total of nine type 2 diabetic men with a mean time since diagnosis of disease of 6 ± 1 years (range 2–15) were studied. Glycemic control, as evaluated by HbA1c concentration, was moderate (6.4 ± 0.5%). Normal values for HbA1c in our laboratory are <6.5%. Of the nine subjects, three were treated with either insulin, diet, or a combined treatment of acarbose and sulfonylureas, and six were treated with sulfonylureas alone. The control group consisted of nine healthy men. The subjects were instructed to abstain from any form of strenuous exercise on separate occasions separated by 4–8 weeks.

Euglycemic-hyperinsulinemic clamp studies. Whole-body insulin-mediated glucose uptake was determined by the euglycemic-hyperinsulinemic clamp technique (35). A catheter was inserted into an antecubital vein for glucose and insulin infusion and into the brachial artery for blood sampling. After collection of baseline samples, a bolus dose of insulin was infused (24 pmol·kg⁻¹·min⁻¹ for 2 min, 12 pmol·kg⁻¹·min⁻¹ for 6 min). Thereafter, insulin was administered by continuous infusion at a rate of 6 pmol·kg⁻¹·min⁻¹. The plasma glucose concentration (~5 mmol/l) was kept constant for 100 min by a variable glucose infusion that was adjusted after plasma glucose measurements every 5 min (glucose oxidase method). Blood samples for insulin and glucose steady-state determinations were collected at 30-min intervals. Fasting glucose and insulin levels at steady state were 4.70 ± 0.08 mmol/l and 682 ± 11 pmol/l for the control subjects and 4.74 ± 0.04 mmol/l and 677 ± 12 pmol/l for the type 2 diabetic subjects, respectively (NS). Whole-body glucose uptake was calculated from the glucose infusion rate (pmol·kg⁻¹·min⁻¹) required to maintain steady state.

Blood chemistry. Plasma glucose levels were measured by a glucose-oxidase method. Serum immunoreactive insulin was assayed by the Phadebas Insulin Radioimmunoassay (RIA) method (Pharmacia, Uppsala, Sweden). The lower limit of sensitivity of this method is 18 pmol/l of insulin. HbA1c values were determined by specific ion-exchange chromatography, using a kit (monos 5 SR 55/S; Pharmacia). Plasma free fatty acid levels were determined using a microfluorometric method (36). Serum triglyceride, HDL cholesterol, and LDL cholesterol levels were assessed by reflectance spectrometry by use of Kodak Ektachem Clinical Chemistry Slides (Eastman Kodak, Rochester, NY).

Maximal oxygen uptake determination. On a separate occasion, V̇O₂max was determined on a bicycle ergometer as described (37). V̇O₂max was measured continuously with a breath-by-breath data collection technique (Erich Jaeger, Hocheck, Germany) and calculated at each 20-s interval.

Muscle biopsy studies. Glucose transport was determined by an in vitro technique described for human skeletal muscle used routinely in our laboratory (4,5,13,14,16). A muscle biopsy (1 g) was obtained under local anesthesia (Mepivacaine chloride 5 mg/ml) from the vastus lateralis portion of the quadriceps femoris, as previously described (5). Muscle specimens (20 mg) were dissected from the biopsy material, mounted on Plexiglas clips (9 mm in width), and placed in individual flasks containing oxygenated Krebs-Henseleit bicarbonate buffer (KHB) supplemented with 5 mmol/l HEPES, 18 mmol/l mannitol, 2 mmol/l pyruvate, and 0.1% bovine serum albumin (RIA Grade; Sigma, St. Louis, MO). The incubation flasks were placed in a shaking water bath (60 times/min) with a constant temperature (35°C) and continuous oxygenation (95%O₂/5%CO₂).

Muscle incubation procedure. Muscles were transferred to KHB media containing 5 mmol/l glucose and pre-incubated for 60 min in the absence or presence of insulin (120 nmol/l). To examine the effects of hypoxia on glucose transport and cell surface GLUT4 content, muscles were pre-incubated for 60 min, as described above, in KHB containing 5 mmol/l glucose and 15 mmol/l mannitol, with or without insulin (120 nmol/l), under a gas phase of 95%N₂/5%CO₂ (hypoxia). After the pre-incubation, muscle samples were rinsed (10 min) in oxygenated glucose-free media (35°C) with continuous oxygenation (95%O₂/5%CO₂).

Glucose transport measurements. Muscles were transferred to media containing 5 mmol/l [14C]3-O-methylglucose (800 µCi·mmol⁻¹) and 15 mmol/l [3H]mannitol (53 µCi·mmol⁻¹) and incubated for 20 min. Glucose transport was evaluated by measuring the accumulation of [14C]3-O-methylglucose and [3H]mannitol as described by Wallberg-Henriksson et al. (38). Glucose transport activity is expressed as micromoles of glucose analog accumulated per milliliter of intracellular water per hour.

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>Control subjects</th>
<th>Type 2 diabetic subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Age (years)</td>
<td>55 ± 1</td>
<td>57 ± 2</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.9 ± 0.5</td>
<td>26.4 ± 0.6</td>
</tr>
<tr>
<td>Fasting blood glucose (mmol/l)</td>
<td>4.6 ± 0.2</td>
<td>8.5 ± 0.8*</td>
</tr>
<tr>
<td>Fasting serum insulin (pmol/l)</td>
<td>35 ± 4</td>
<td>96 ± 21</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>4.7 ± 0.1</td>
<td>6.4 ± 0.5‡</td>
</tr>
<tr>
<td>Free fatty acid (µmol/l)</td>
<td>446 ± 62</td>
<td>425 ± 35</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.2 ± 0.3</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.4 ± 0.5</td>
<td>5.4 ± 0.4</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.3 ± 0.8</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/l)</td>
<td>3.4 ± 0.5</td>
<td>3.3 ± 0.3</td>
</tr>
<tr>
<td>Insulin-mediated glucose uptake (µmol·kg⁻¹·min⁻¹)</td>
<td>41.8 ± 2.1</td>
<td>27.1 ± 4.0‡</td>
</tr>
<tr>
<td>V̇O₂max (ml·kg⁻¹·min⁻¹)</td>
<td>33.8 ± 3.2</td>
<td>33.1 ± 3.7</td>
</tr>
</tbody>
</table>

Data are means ± SE. *P < 0.001, †P < 0.01, and ‡P < 0.05 vs. control subjects.
Whole-body insulin-mediated glucose uptake was significantly impaired in the type 2 diabetic subjects (36% reduction compared with that of control subjects, P < 0.01).

Glucose transport activity. Isolated skeletal muscle from control or type 2 diabetic subjects was incubated in the absence or presence of insulin (120 nmol/l), and glucose transport was assessed (Fig. 1). Basal glucose transport was similar between type 2 diabetic and control subjects. In control subjects, insulin elicited a 4.3 ± 0.6-fold increase in 3-O-methylglucose transport activity (P < 0.001). In type 2 diabetic subjects, though, insulin elicited a 2.3 ± 0.2-fold increase in 3-O-methylglucose transport activity (P < 0.01). However, insulin-stimulated glucose transport activity was reduced by 40% (P < 0.03) in skeletal muscle from type 2 diabetic compared with that from control subjects.

To determine whether the reduced insulin-stimulated glucose transport was due to a defect in the insulin-stimulated pathways for glucose transport or general resistance of GLUT4 vesicle traffic, skeletal muscle from control or type 2 diabetic subjects was incubated under conditions of hypoxia for 60 min, and glucose transport activity was assessed. In vitro exposure to hypoxia led to a 3.6 ± 0.6-fold increase in 3-O-methylglucose transport activity (P < 0.001) in control

RESULTS

Subject characteristics. Subjects were normal to moderately overweight and were matched for age, BMI, and physical fitness (Table 1). Thus, any physiological difference between the type 2 diabetic and control subjects is not likely to be explained by either poor fitness (reduced VO_{2max}) or obesity (BMI >30 kg/m²). Fasting blood glucose levels and serum insulin levels were significantly elevated in the type 2 diabetic subjects (Table 1). However, the blood lipid profiles were similar between type 2 diabetic and control subjects. HbA1c levels were moderately elevated, suggesting the type 2 diabetic subjects were in relatively good metabolic control.
subjects, and this increase was comparable to the effect achieved by insulin-stimulation. Hypoxia resulted in a 2.0 ± 0.2-fold increase in glucose transport activity in type 2 diabetic subjects (P < 0.01), and, as noted in the control subjects, this increase was comparable to the effect achieved by insulin-stimulation. Hypoxia-mediated glucose transport activity was 44% lower (P < 0.05) in type 2 diabetic subjects compared with that of control subjects (Fig. 1B).

In control subjects, the combined effect of a maximal insulin stimulus and hypoxia were partly additive (1.5- and 1.7-fold increase compared with the effect achieved by insulin or hypoxia alone). However, these differences were not statistically greater than the response achieved by insulin or hypoxia alone. In skeletal muscle from type 2 diabetic subjects, the combined effect of a maximal insulin stimulus and hypoxia on 3-O-methylglucose transport was not significantly different from that of either stimulus alone.

Cell surface GLUT4 levels in skeletal muscle. Skeletal muscle was incubated in the absence or presence of insulin (120 nmol/l) or under conditions of hypoxia with or without insulin, as described in **RESEARCH DESIGN AND METHODS.** A typical scan of cell surface GLUT4 content in skeletal muscle from control or type 2 diabetic subjects is shown in Fig. 2A. A typical standard curve of a series of dilutions of a rat adipocyte membrane standard in which the levels of GLUT4 were quantified from cytochalasin B-binding data. The data shown are from typical analyses.

In control subjects, the combined effect of a maximal insulin stimulus and hypoxia were partly additive (1.5- and 1.7-fold increase compared with the effect achieved by insulin or hypoxia alone). However, these differences were not statistically greater than the response achieved by insulin or hypoxia alone. In skeletal muscle from type 2 diabetic subjects, the combined effect of a maximal insulin stimulus and hypoxia on 3-O-methylglucose transport was not significantly different from that of either stimulus alone.

Basal levels of cell surface GLUT4 were similar between control and type 2 diabetic subjects (Fig. 3A). In control subjects, insulin elicited a 5.7 ± 0.5-fold increase in cell surface GLUT4 content (P < 0.001 vs. basal). In type 2 diabetic subjects, though, insulin elicited a 1.4 ± 0.1-fold increase in cell surface GLUT4 content (P < 0.02). Thus, insulin-stimulated cell surface GLUT4 content was 71% lower (P < 0.001) in muscle from type 2 diabetic subjects compared with that from control subjects (Fig. 3B).

We next assessed the effect of hypoxia on cell surface GLUT4 levels in skeletal muscle (Fig. 3). In control subjects, cell surface GLUT4 content was increased 4.3 ± 0.5-fold (P < 0.001) in response to hypoxia alone and 6.8 ± 0.3-fold (P < 0.05) in response to co-incubation with a maximal insulin stimulus and hypoxia. This combined effect of a maximal insulin stimulus and hypoxia were partially, but insignificantly, additive (1.2- and 1.6-fold increase, respectively, compared with the effect of insulin or hypoxia alone). In skeletal muscle from type 2 diabetic subjects, cell surface GLUT4 content was...
increased 2.2 ± 0.5-fold (P < 0.05) in response to hypoxia. Thus, hypoxia-stimulated cell surface GLUT4 labeling was 49% lower in muscle from type 2 diabetic subjects compared with that from control subjects (P < 0.01). The combined effects of a maximal insulin stimulus and hypoxia on cell surface GLUT4 content in skeletal muscle from type 2 diabetic subjects were similar to the effects achieved by hypoxia alone, but they were slightly higher (1.7-fold) than the effects achieved with a maximal insulin stimulus (P < 0.05).

As reported in our earlier study of young healthy subjects (40), the insulin-induced increase in cell surface GLUT4 content was positively correlated with the insulin-mediated increase in 3-O-methylglucose transport (r² = 0.62, P < 0.01) (Fig. 4). Thus, the low GLUT4 content at the cell surface in type 2 diabetic subjects is largely responsible for the low insulin response in glucose transport activity. However, the correlation between cell surface GLUT4 content and glucose transport activity is not exact, and, in type 2 diabetic patients, where the cell surface GLUT4 content is low, there is relatively high residual glucose transport activity. This is also partially reflected in a comparison of the fold changes in glucose transport activity and cell surface GLUT4 content (Figs. 1B and 3B). Because the fold changes are relative to the basal values, a greater contribution of basal glucose transport activity in type 2 diabetic subjects could possibly contribute to these differences. However, when basal levels of glucose transport or cell surface GLUT4 content were subtracted and compared as a percentage of the mean insulin or hypoxia response in control subjects (Fig. 5), cell surface GLUT4 content was significantly lower than glucose transport activity in the type 2 diabetic patients (P < 0.005, two-way ANOVA).

Total skeletal muscle GLUT4 and GLUT1 levels. The total amount of GLUT4 and GLUT1 protein was compared between control and type 2 diabetic subjects. Comparison with a range of rat adipocyte low-density microsomes or human erythrocyte ghost membranes was used for the quantitation of GLUT4 and GLUT1, respectively. GLUT4 expression was similar between the control and type 2 diabetic subjects (4.13 ± 0.41 and 4.14 ± 0.32 pmol/g wet weight muscle for control and type 2 diabetic subjects, respectively). As previously reported (40), the presence of erythrocytes (which have extremely high levels of GLUT1 [500 pmol/mg membrane] (41)) in the muscle complicated the analysis of this GLUT isoform. However, in extensively washed muscle, GLUT1 content was ~1 pmol/g (~25% of the GLUT4 level). Nevertheless, because residual erythrocyte GLUT1 may still have been present in the washed muscle, the analysis of GLUT1 expression between control and type 2 diabetic subjects was not studied in detail.

DISCUSSION

In the present study, we exposed isolated skeletal muscle from type 2 diabetic patients to a maximal insulin stimulus and applied an exofacial photolabeling technique that uses the newly developed bis-mannose compound, Bio-LC-ATB-BM PA, to specifically determine the cell surface GLUT4 content. Because this label is impermeable, this technique detects only transporters that are present in the cell surface membrane. In isolated rodent soleus skeletal muscle, a six- to eightfold increase in 3-O-methylglucose transport after stimulation via the insulin (27,32,42) and/or the muscle contraction pathway (19) corresponds to a similar increase in cell surface GLUT4 content as assessed with the ATB-BM PA photolabel. Our initial study of human skeletal muscle confirms that insulin-stimulated glucose transport activity and cell surface GLUT4 content are closely associated (33). These results can be contrasted with the reported less-than-twofold insulin-stimulated increase in GLUT4 translocation observed by using subtraction techniques on human skeletal muscle, where this methodology results in crossover between GLUT4 at the cell surface and contributions from GLUT4 in intracellular membranes (15–18,29,30). These crossover problems lead to an underestimate of the insulin effect on GLUT4 translocation. Consequently, resolving the extent to which this translocation is impaired in skeletal muscle from type 2 diabetic patients is difficult (16–18,30). Our new photolabel takes advantage of the strong interaction with the biotin-binding protein, streptavidin, allowing for quantitative determinations of cell surface GLUT4 levels in small samples of muscle.
human skeletal muscle (20 mg). With this more sensitive GLUT4 biotinylation technique, we have now been able to examine the insulin- and hypoxia-stimulated GLUT4 response in skeletal muscle from control and type 2 diabetic subjects. This approach has allowed the first detailed consideration of the contribution of GLUT4 to the impaired glucose transport activity in skeletal muscle from type 2 diabetic patients.

Our results show that type 2 diabetic patients have a markedly impaired response to both insulin and hypoxia, as revealed by the reduced exposure of GLUT4 at the skeletal muscle cell surface, versus that of control subjects. This finding suggests firstly that impaired GLUT4 translocation is a major contributor to the impaired glucose transport activity in type 2 diabetes. Surprisingly, we have found that in type 2 diabetic subjects, the degree of insulin resistance in the exposure of GLUT4 at the cell surface is greater than that observed for 3-O-methyl-β-glucose transport activity (Fig. 5). This suggests that when GLUT4 translocation is deficient, as in skeletal muscle from type 2 diabetic patients, there may be a relatively greater contribution of another transporter to the glucose transport activity. Analysis of GLUT1 showed a high level of expression (~25% of the GLUT4 level) in skeletal muscle, but the extent to which erythrocyte GLUT1 contributed to this level could not be determined in detail. Furthermore, the extent to which GLUT1 contributed to the glucose transport activity or the contribution of GLUT1 to the discrepancies observed between glucose transport and photolabeling could not be ascertained. An uncharacterized GLUT-like protein may possibly contribute to non-GLUT4-mediated glucose transport activity, as proposed for GLUT4 knockout mice (43,44). However, to date, there is no firm evidence for expression of additional functional glucose transporters in skeletal muscle.

Methodological differences in measuring 3-O-methyl-β-glucose transport and GLUT4 translocation may have contributed to the difference in the fold changes between these two parameters. For example, the subtraction of the non-transporter-mediated transport from the transporter-mediated transport or, alternatively, a background subtraction for the labeling experiments may contribute to the difference in the fold changes observed in the stimulatory responses to insulin and hypoxia. However, even after subtraction of the respective basal activity for glucose transport or cell surface GLUT4 content (Fig. 5), there is a marked reduction in the response to insulin in the type 2 diabetic patients. The insulin-induced stimulation above basal levels of GLUT4 labeling and glucose transport activity in type 2 diabetic subjects are only ~10 and ~50%, respectively, of those in the control subjects.

The marked impairment of GLUT4 translocation to the cell surface of skeletal muscle from type 2 diabetic patients has implications regarding whether impaired early signaling steps can fully account for this profound insulin resistance in glucose transport. Impairments in insulin-stimulated tyrosine phosphorylation of IRS-1 and in downstream signaling via PI3K have been observed in type 2 diabetic (14,45) or obese insulin-resistant subjects (12). The levels of insulin resistance seen in these early steps of the insulin-signaling pathway are generally moderate (~50%). In addition, there appears to be spare receptor and signaling capacity in the normal system that leads to GLUT4 translocation. The concentration of insulin required to activate glucose transport maximally corresponds to only 14% of the maximal receptor kinase activity (12,45). Insulin signaling may alter the cell surface GLUT4 levels by leading to a reduction in endocytosis or an increase in exocytosis (46,47). In rat adipocytes that are chronically treated with insulin, downregulation of cell surface GLUT4 content occurs because of an increase in endocytosis, and this process is more sensitive to relatively small (~50%) changes in the levels of early signaling intermediates (48). However, the profound reduction in GLUT4 translocation found in the present study (where the insulin response above basal in skeletal muscle from type 2 diabetic subjects is only ~10% of that from control subjects) is unlikely to result from a ninefold increase in the rate of endocytosis. It seems more likely that impairment(s) in the exocytosis components of GLUT4 translocation occurs(s), and it is these steps that appear to require only low levels of stimulation of signaling (48). These considerations, therefore, suggest that insulin resistance in skeletal muscle may occur in the GLUT4-trafficking (probably exocytosis) process.

To further examine the possibility that there are impairments in the GLUT4 translocation process in skeletal muscle from type 2 diabetic patients that are independent of early insulin-signaling events, we have studied the translocation of GLUT4 in response to hypoxia. This stimulatory process does not appear to involve tyrosine phosphorylation of IRSs, activation of PI3K, or activation of Akt (19–21,26,49–51). In skeletal muscle from type 2 diabetic subjects, a marked impairment in GLUT4 labeling and glucose transport activity was noted in response to hypoxia. The implication from these results is that there is an impairment at or beyond a point of convergence of the insulin-and hypoxia-stimulatory pathways or that there is a resistant step directly at the level of GLUT4 translocation.

Because GLUT4 translocation is a complex process involving membrane vesicle trafficking and sorting machinery, there are many potential steps that may be impaired. The steps in the GLUT4 translocation process include budding or release of GLUT4 from an intracellular reservoir compartment, transit to the plasma membrane (possibly involving the cytoskeleton), and docking and fusion with the plasma membrane (involving components of the SNAP and SNARE family of proteins and associated regulatory proteins) (52). In the basal state, a large proportion of GLUT4 in skeletal muscle from type 2 diabetic subjects sediments in a denser sucrose gradient fraction than usual (18). GLUT4 does not appear to translocate normally from this dense fraction after insulin stimulation. This impairment may be due to anomalous sorting of GLUT4, resulting in its inability to reach its normal reservoir and highly insulin-sensitive intracellular compartment. Alternatively, the dense GLUT4 fraction may actually be associated with the plasma membrane. Thus, an impairment may occur at a late stage in GLUT4 trafficking (i.e., during the fusion of GLUT4 vesicles), which leads to deficient GLUT4 exposure at the cell surface. The difficult issue of resolving the localization of GLUT4 in muscle and in subcellular fractions derived from muscle is compounded by its presence in at least two locations (the sarcolemma and the T-tubules) (53,54). The photolabel we have used to detect GLUT4 will detect this protein at the sarcolemma and T-tubule cell surface membranes (55). In the future, it may be possible to resolve whether GLUT4 translocation at one or both of these locations is insulin resistant.
In conclusion, impaired insulin action on glucose transport in skeletal muscle from type 2 diabetic patients results from reduced cell surface GLUT4 content, as measured by using a newly described phototable. Nevertheless, the defect in glucose transport was less severe, suggesting another transporter may contribute to insulin-stimulated glucose transport. In response to hypoxia, cell surface GLUT4 content and glucose transport activity are reduced in type 2 diabetic patients. This finding suggests that the glucose transport defects in skeletal muscle from type 2 diabetic patients are not limited to impaired insulin signal transduction. Thus, an impairment at or beyond a point of convergence of the insulin- and noninsulin-mediated signaling pathways or a defect in a common step mediating GLUT4 vesicle traffic appears to play a role in the pathogenesis of insulin resistance in type 2 diabetes. Whether these defects are a primary cause of type 2 diabetes remains to be determined.

Note added in proof. Ibbernson et al. (56) have now described the cloning and functional characterization of a novel glucose transporter (GLUTX1) that is expressed in the central nervous system and insulin-sensitive tissue. This or another novel GLUT may account for the discrepancy between reductions in cell surface GLUT4 and transport activity reported here.

ACKNOWLEDGMENTS

This study was supported by a Junior Individual and a project grant from the Foundation for Strategic Research and grants from the Swedish Society for Medical Research, the NovoNordisk Foundation, the Swedish Diabetes Association, the Marcus and Amalia Wallenbergs Foundation, the Swedish Medical Research Council (9517, 11945, 11823, and 12211), the Medical Research Council of the United Kingdom, and the Wellcome Trust.

We are indebted to M. Fernström, E.-L. Olausson, and H. Tetzlaf for excellent technical assistance.

REFERENCES

CELLSURFACE GLUT4 IN DIABETIC MUSCLE

