Insulin is released in high-frequency pulsatile bursts at intervals of 6–13 min. Intrapancreatic mechanisms are assumed to coordinate pulsatile insulin release, but small oscillations in plasma glucose concentrations may contribute further. To gain additional insight into β-cell (patho)physiology, we explored the ability of repetitive small glucose infusions (6 mg/kg over 1 min every 10 min) to modify rapid pulsatile insulin secretion in 10 type 2 diabetic individuals (plasma glucose 9.3 ± 1.0 mmol/l, HbA1c 7.9 ± 0.5%, mean ± SE) and 10 healthy subjects. All subjects were investigated twice in randomly assigned order: during saline and during glucose exposure. Blood was collected every minute for 90 min to create a plasma insulin concentration time-series for analysis using 3 complementary algorithms: namely, spectral analysis, autocorrelation analysis, and approximate entropy (ApEn). During saline infusion, none of the algorithms were able to discriminate between diabetic and control subjects (P > 0.20). During glucose entrainment, spectral density peaks (SP) and autocorrelation coefficients (AC) increased significantly (P < 0.001), and ApEn decreased (P < 0.01), indicating more regular insulin time-series in the healthy volunteers. However, no differences were observed in the diabetic individuals between the glucose and saline conditions. Furthermore, in spite of identical absolute glucose excursions (~0.3 mmol/l) glucose pulse entrainment led to a complete (SP: 4.76 ± 0.62 [range 2.06–7.60] vs. 17.24 ± 0.93 [11.70–20.58], P < 0.001; AC: 0.01 ± 0.05 [0.33–0.24] vs. 0.64 ± 0.05 [0.35–0.83], P < 0.001) or almost complete (ApEn: 1.59 ± 0.02 [1.48–1.67] vs. 1.42 ± 0.05 [1.26–1.74], P < 0.005) separation of the insulin time-series in diabetic and control subjects. Even elevating the glucose infusion rate in the diabetic subjects to achieve comparable relative (and hence higher absolute) glucose excursions (~4.9%) failed to entrain pulsatile insulin secretion in this group. In conclusion, the present study demonstrates that failure to respond adequately with regular oscillatory insulin secretion to recurrent high-frequency and (near)-physiological glucose excursions is a manifest feature of β-cell malfunction in type 2 diabetes. Whether the model will be useful in unmasking subtle (possible pre-diabetic) defects in β-cell sensitivity to glucose drive remains to be determined. Diabetes 49:1334–1340, 2000
of minute plasma glucose excursions (~0.3 mmol/l = ~5%) to entrain oscillatory insulin secretion has recently been recognized in healthy humans (17). In the latter investigations, large amplitude insulin pulses (~100%) were triggered at a lag time of 2 min by the subtle glucose oscillations (~5%) during minimal glucose infusions, and the periodicity was easily modified by periodicity shifts between 7 and 12 min.

Type 2 diabetes is characterized by a broad array of abnormalities in insulin secretion, among which is disruption of high-frequency pulsatile insulin secretion (18). To elucidate the nature of this β-cell abnormality in more detail and consequently to enhance our knowledge of human β-cell pathophysiology, we explored the ability of frequent and near-physiological glucose excursions to govern the insulin release process in 10 type 2 diabetic individuals versus 10 healthy control subjects. To this end, we used a recently developed pulse induction protocol in humans (17), wherein small amounts of glucose (6 mg/kg) are given as a bolus every 10 min, and insulin was collected every minute from 1 to 90 min. The sampling catheter was perfused with saline (0.9% 10 ml/min), and 20 s before sampling, the saline infusion was stopped and 1.4 ml blood was drawn and discarded. To assure patency of the sampling catheter, blood was collected at a constant rate by use of a 2-ml syringe from 5 s before to 10 s after each minute, with which saline infusion (1.0 ml/min) was repeated until 20 s before the next sampling. Dead-space of the cannula and a 3-way stopcock (Connecta; BOC Ohmeda, Helsingborg, Sweden) was in total 0.38 ml. This sampling procedure has previously been evaluated in our laboratory, and variation due to sampling has been estimated as <4% (16).

In addition, 8 of the diabetic subjects, a third examination was accomplished using a higher glucose infusion based on the degree of fasting glycaemia (protocol 3) to ensure comparable relative fractional glucose excursions between control and diabetic subjects. The amount of glucose infused for 1 min every 10 min was calculated as fasting plasma glucose divided by 5 mmol/l multiplied by 6 mg/kg and was on average 10.6 mg/kg (range 7.3–14.6). Blood sampling procedures were as described above.

Assays. Plasma glucose concentrations were measured in duplicate by the glucose oxidation method (Beckman Instruments, Palo Alto, CA). Serum insulin concentrations were measured in duplicate by a 2-site immunospecific insulin enzyme-linked immunosorbent assay, which uses 2 monoclonal antibodies (Dako Diagnostics, Cambridgeshire, U.K.) specific for human insulin. The detection range of this insulin enzyme-linked immunosorbent assay was 5–600 pmol/l. The intra-assay coefficient of variation was 2.8 and 4.2% at concentrations of 150 and 350 pmol/l, respectively. There was no cross-reactivity with proinsulin, and with split (32–33)- and des(31,32)-proinsulin, the antibodies cross-reacted (65 and 66%) with proinsulin. Proinsulin, respectively, whereas C- peptide, IGF-I, IGF-II, and glucagon did not cross-react (19). Serum C-peptide measurements were performed using a commercially available kit (K621B; Dako Diagnostics). Finally, serum FFA concentrations were determined by a colorimetric method using a commercial kit (Wako Chemicals, Neuss, Germany).

Analytical strategy. Spectral analysis, autocorrelation analysis, and approximate entropy were performed on the residuals. This detrending method was used to preserve pulsatility with a periodicity near 10 min, which would be expected spontaneously and after the glucose entrapment protocol. Spectral analysis. To quantify the degree of periodicity in the series, spectral analysis was performed. A Tukey window of 25 data points was used, and the spectra were normalized using the assumption that the total variance in each time-series was 100%. The effect parameter was chosen to be 10 min, inasmuch as the stimulus was given every 10 min.

Auto- and cross-correlation analyses. The periodic nature of individual insulin and glucose profiles was assessed by autocorrelation analysis, and the relationship between the profiles of glucose and insulin was quantified by cross-correlation analysis. In the autocorrelation analyses, the correlation coefficients between the time-series and a copy of itself at lag times of 0, 1, 2, 3, etc., up to 15 min were calculated. Similarly, in the cross-correlation analyses, the coefficients of cross-correlation between the glucose and insulin series at lag times of 0 (i.e., simultaneous values of glucose and insulin), ±1 (i.e., glucose leading insulin by 1 min or vice versa), ±2, ±3, etc., up to ±15 min were calculated. The largest coefficient of cross-correlation and the lag time at which it occurred were assessed in each case.

Quantification of irregularity. The regularity of serum insulin concentration time-series was assessed by application of approximate entropy (ApEn), which is a model-independent and scale-variant statistic (20–22). ApEn assigns a single non-negative number to a time-series, in which larger values correspond to more recognizable patterns or consistent features in the data. Briefly, ApEn measures the logarithmic likelihood that runs of patterns that are close (within r) for m contiguous observations remain close (within the same tolerance width r) on the next incremental comparison; the precise mathematical definition is given (22). For this study, we calculated approximate entropy values for all data sets, with m = 1 and r = 0.2 as well as r = 0.1% of the SD, in the individual subject time-series. The choice of r value of 0.2 SD is a more microscopic parameter, whereas r = 1.0 SD provides a coarser-scale (macroscopic) assessment of subpattern persistence within time-series. Ten-minute periodicity means. The plasma glucose and serum insulin concentration changes occurring as a consequence of glucose infusion every 10 min were assessed by calculating average concentrations for all 9 cycles in data from glucose pulse induction every 10 min for 90 min; i.e., concentrations at

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>Control subjects</th>
<th>Type 2 diabetic patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (F/M)</td>
<td>7/3</td>
<td>4/6</td>
</tr>
<tr>
<td>Age (years)</td>
<td>48 ± 2</td>
<td>54 ± 3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.3 ± 1.1</td>
<td>28.2 ± 1.3</td>
</tr>
<tr>
<td>Fasting plasma glucose concentration (mmol/l)</td>
<td>4.7 ± 0.1</td>
<td>9.3 ± 1.0</td>
</tr>
<tr>
<td>HbA₁c (%)</td>
<td>—</td>
<td>7.9 ± 0.5</td>
</tr>
<tr>
<td>Serum insulin concentration (pmol/l)</td>
<td>36 ± 6</td>
<td>55 ± 13</td>
</tr>
<tr>
<td>C-peptide concentration (nmol/l)</td>
<td>529 ± 58</td>
<td>722 ± 102</td>
</tr>
<tr>
<td>Fasting serum FFA concentration (mmol/l)</td>
<td>0.51 ± 0.03</td>
<td>0.68 ± 0.08</td>
</tr>
</tbody>
</table>

Data are n or means ± SE.

DIABETES, VOL. 49, AUGUST 2000 1335

M. HOLLINGDAL AND ASSOCIATES
times 1, 11, 31, 41, etc., and times 2, 12, 22, 32, and 42 and so forth to 10, 20, 30, 40, and 50 to yield a mean 10-min periodicity. The mean concentration change of the oscillation was calculated in each data set by subtracting the lowest concentration from the highest concentration. Absolute excursions were calculated as the maximum value minus the minimum value for the 10-min periodicity means, and the relative amplitude was estimated as maximum excursion minus lowest value and divided by the maximum excursion for the 10-min periodicity means.

Statistics. The statistics dealing with data analysis are described above. All data in text and figures are given as means ± SE, and a significance level of 5% was used if not otherwise stated. Student’s 2-tailed paired and unpaired t tests were used to evaluate statistical significance. Statistical comparisons were performed using the statistical software package SPSS version 9.0 (SPSS).

RESULTS

Serum insulin and plasma glucose concentrations. As expected, fasting plasma glucose concentrations were markedly lower in the control subjects versus the diabetic individuals (P < 0.01), whereas serum insulin tended to be increased only in the latter group (Table 1). Inspection of glucose concentration time-series (Fig. 1) revealed obvious but small glucose concentration changes during glucose entrainment versus more random glucose concentration changes during saline infusion. Absolute glucose excursions calculated as a 10-min periodicity mean observed during glucose entrainment (protocol 2) in control subjects (0.23 ± 0.1 mmol/l) and diabetic subjects (0.29 ± 0.1 mmol/l) were identical. During protocol 3, absolute glucose excursions were significantly augmented in the diabetic subjects (0.40 ± 0.1 mmol/l; P < 0.05) compared with the control group. The relative glucose excursions were 4.9 ± 0.6% (control), 3.4 ± 0.5% (diabetic, protocol 2), and 4.8 ± 0.7% (diabetic, protocol 3) (Fig. 2). In contrast to the rather small excursions in plasma glucose concentrations caused by glucose entrainment, changes in serum insulin concentration were much more pronounced in the healthy control subjects than in the
diabetic individuals (Fig. 1). Average serum insulin concentrations oscillated during glucose entrainment by 19 ± 3 pmol/l (59 ± 8%) in the healthy subjects, which was considerably augmented (P < 0.001) compared with the oscillations in the diabetic subjects (4 ± 1 pmol/l [9 ± 1%] and 5 ± 1 pmol/l [9 ± 1%] for protocol 2 and 3, respectively) (Fig. 2).

Time-series analysis. During saline administration (protocol 1), insulin oscillatory peaks at 10-min periodicity were comparable in the 2 groups irrespective of the time-series analysis used. Because data analysis assumes this periodicity, this comparison does not allow for any qualitative comparison of data pattern. Similarly, no significant differences in spectral density or autocorrelation analysis were detected using observed peaks. However, during glucose entrainment (protocol 2, 6 mg/kg), significant insulin peaks became manifest at 10 min periodicity in the control subjects using spectral analysis (normalized spectral density 17.2 ± 0.93, range 11.7–20.6% total power). This result was almost 4-fold higher (P < 0.001) than the normalized spectral density present in type 2 diabetic subjects (4.76 ± 0.62, range 2.08–7.6% total power). Of note, the glucose pulse entrainment resulted in complete separation between the 2 groups (Fig. 3). A similar pattern was observed when analyzing the glucose pulse-entrained serum insulin concentration time-series at a lag time of 10 min by autocorrelation analysis. The glucoselpulsed infusions induced large and synchronized insulin oscillations in the control subjects (autocorrelation coefficient 0.65 ± 0.05; range 0.35–0.83), whereas the same regimen
failed to prompt oscillations in the type 2 diabetic subjects (autocorrelation coefficient 0.01 ± 0.05; range –0.33 to 0.24). Similar to spectral analysis, autocorrelation analysis led to a separation of the 2 groups without any overlap (P < 0.001) (Fig. 3). Finally, glucose entrainment resulted in a higher degree of orderliness of the insulin concentration time-series in the control subjects than in the type 2 diabetic subjects, as assessed by ApEn (1.42 ± 0.05 [range 1.26–1.74] vs. 1.59 ± 0.02 [1.48–1.67], P < 0.005) (Fig. 3). However, ApEn did not allow a complete separation of the 2 groups. Similar data were obtained using a coarser-scale assessment of subpattern persistence within the serum insulin time-series (r = 1.0 SD) (data not shown).

There was no relationship among autocorrelation coefficients, spectral density peaks, and ApEn versus glycemic control in type 2 diabetic subjects, as assessed by fasting plasma glucose concentration or HbA1c (r < 0.51 and P > 0.13 in all calculations). Similarly, no relationship was found between the results of time-series analysis versus BMI (r < 0.47 and P > 0.17 in all calculations).

Cross-correlation analysis between plasma glucose and serum insulin concentrations during glucose entrainment showed a higher coefficient at a lag time of 10 min in the control group (0.47 ± 0.06) compared with that in the diabetic subjects (0.08 ± 0.03; P < 0.001). In contrast, no difference was observed between the 2 groups during saline administration. Entrainment with a larger glucose pulse (protocol 3, on average 10.6 mg/kg) in 8 of the diabetic subjects lead to an expected, almost identical, relative fractional plasma glucose excursion in type 2 diabetic subjects and control subjects (4.9 vs. 4.8%). Nevertheless, spectral density, autocorrelation coefficients, or regularity, as assessed by ApEn, were not altered significantly—the 2 former techniques again discriminating completely between the 2 groups (Fig. 3).

DISCUSSION

In the present study, we examined high-frequency pulsatile insulin secretory patterns under basal conditions and during punctuated minimal glucose infusions at 10-min intervals in healthy and type 2 diabetic individuals. To compare the release patterns in diabetic and nondiabetic subjects, serum insulin concentration time-series were analyzed by complementary algorithms to quantify data regularity (spectral analysis, autocorrelation analysis, and ApEn). Insulin release during basal and glucose infusions was compared to evaluate the possible merit of glucose pulse entrainment to detect secretory dysfunction in diabetes. The predictive value of insulin concentration time-series analysis to discriminate β-cell pathophysiology in type 2 diabetes was markedly improved by application of minimal glucose infusions. Indeed, glucose drive allowed complete separation of insulin secretory patterns in healthy and diabetic subjects, based on defined thresholds in spectral density and autocorrelation coefficients.

Entrainment of ultradian insulin oscillations by slow oscillatory infusions of exogenous glucose is now well established. A number of studies have demonstrated increasing failure of glucose entrainment in individuals with impaired glucose tolerance and type 2 diabetes (14,23,24). Conversely, a substantial improvement in β-cell responsiveness to oscillatory glucose infusion after in vivo antidiabetic treatment with troglitazone (25) and glucagon-like peptide 1 has been reported (26). In contrast, literature on glucose entrainment of high-frequency insulin pulsatility in humans is limited. In a recent study, we evaluated the present model in healthy humans (17), but another study has lately examined glucose entrainment of rapid insulin pulsatility in type 2 diabetes (27). In line with our observations, the latter report demonstrated a diminished ability of glucose to entrain high-frequency insulin secretion in type 2 diabetes. However, clear differences emerge between the study of Mao et al. (27) and the current analysis in terms of design and results. First, in the former study, 15 mg/kg glucose was injected every 29 min, whereas we sought to mimic physiological glucose excursions more closely by injecting smaller amounts of glucose (6 mg/kg) even more frequently (every 10 min). Second, unlike the study by Mao et al., our design completely separated control and diabetic subjects, not only by spectral analysis, as used in both protocols, but also by autocorrelation analysis.

It could be argued that the failure of type 2 diabetic individuals to respond normally to glucose oscillations is due to their increased glycemic level, which thus imposes potential differences on the enzyme kinetics crucial for the insulin release mechanism or alternatively imposes glucose toxicity. This issue can of course only be addressed in studies with type 2 diabetic individuals, in whom plasma glucose is (near)-normalized, but failure to demonstrate any relationship between glycemic level and abnormal insulin pulsatility makes this assumption less likely.

Although the mechanisms behind the development of type 2 diabetes are heterogeneous and complex and so far only understood rudimentarily, both insulin resistance and deranged insulin release are defects present in healthy first-degree relatives of type 2 diabetic individuals (28)—a group at a considerable risk of developing type 2 diabetes. Whereas many studies have demonstrated impaired insulin-stimulated glucose uptake in potentially prediabetic individuals, only fewer have defined abnormalities in insulin secretory patterns (29–35). Studies revealing disturbed high-frequency pulsatile secretory patterns in first-degree relatives of type 2 diabetic individuals (33,34) suggest that an impairment of insulin pulsatility may be an early marker of β-cell dysfunction. However, a substantial overlap indicated that even rather complicated data analysis of frequently sampled insulin concentration time-series did not allow good prediction of diabetic versus nondiabetic insulin release patterns. The important aspect of the current study is the ability to separate the secretory patterns vividly by applying a punctuated minimal glucose stimulus every 10 min to entrain the coordinate release of insulin. This observation further implies that such methods of glucose pulse induction may be advantageous in studies in prediabetes and in mechanistic studies of metabolic and inherited abnormalities that cause β-cell dysfunction.

Although minimal glucose infusion may be informative as a tool in the evaluation of some aspects of β-cell performance, the observed defects in β-cell function might be linked to one or more distinct insulin secretory abnormalities. First-phase (and pulsatile) insulin secretion likely represent the amount of insulin that can be immediately released upon a sudden maximal glucose challenge, which presumably relates to granular stores of insulin residing at the β-cell membrane. In contrast, postprandial insulin concentration excursions result from the ability to mobilize and release
stored insulin upon stimulation by absorbed metabolites and
by the entero-insular secretagogues/inhibitors released
(such as glucagon-like peptide 1, gastric inhibitory polypep
dide, somatostatin, and glucagon). Pulsatile insulin secretion
reflects the oscillatory pattern of insulin release that may be
controlled by neuronal factors (11,36) but, as demonstrated
herein, may also be controlled by minimal glucose oscillations.
Impaired insulin oscillations could mirror defects at the
β-cell level, defects in coordinating the release, or impaired
cirulating glucose oscillations secondary to impaired insulin
action. Based on the present data, it is unlikely that impaired
insulin oscillations due to insulin oscillations caused defects
in insulin pulsatility; similar glucose-enforced oscillations in
diabetic and healthy subjects (both as absolute and relative
changes) failed to entrain oscillatory insulin release in diabetic
subjects only. Therefore, the insulin secretory defect in dia-
betes demonstrated here seems to correspond to an inability
to sense and/or respond to small glucose concentration
changes in diabetes. The defect may reside in one or more of
the numerous biochemical steps involved in stimulus-secretion
coupling. It therefore seems plausible that the minimal
glucose infusion method may be able to monitor conse-
quences of defects in β-cell glucose uptake, in glucose
metabolism, and in ATP-dependent membrane depolariza-
tion with subsequent calcium mobilization.

In conclusion, a pronounced failure to respond adequately
with regular oscillatory insulin secretion to recurrent high-
frequency and (near)-physiological glucose excursions is a man-
ifest feature of β-cell dysfunction in type 2 diabetes. Whether
this abnormality is also present in the prediabetic state and thus
could serve to predict type 2 diabetes remains to be clarified.

ACKNOWLEDGMENTS
This study was supported by the Danish Diabetes Association;
the Danish Research Council; the Institute of Experimental and
Clinical Research, University of Aarhus; Novo Nordisk
Foundation and Novo Nordisk A/S Copenhagen; and the
National Institutes of Health.

We thank Annette Mengel, Elsebeth Horneman, Lena
Trudse, and Hanne Mertz for excellent technical assistance.

REFERENCES
Palmer J, Kalnasy L: Insulin, glucagon, and glucose exhibit synchronous, sus-
2. Hansen BC, Jen KC, Belbez P, Wolfe RA: Rapid oscillations in plasma insulin,
glucagon, and glucose in obese and normal weight humans. J Clin
Endocrinol Metab 54:785–792, 1982
nous, sustained oscillation of C-peptide and insulin in the plasma of fasting
4. Lang DA, Matthews DR, Petro J, Turner RC: Cyclic oscillations of basal plasma
glucose and insulin concentrations in human beings. N Engl J Med 301:
1023–1027, 1979
nations in pulsatile insulin secretion in isolated rat islets. Diabetes
39:578–582, 1990
ML, Veldhuis J D: Fasted glucose secretion with more process regu-
J D: Older males decrease luteinizing hormone and testosterone more irregularly,
and jointly more asynchronously, than younger males. Proc Natl Acad Sci
U S A 93:14100–14105, 1996
8. Pincus SM: Approximate entropy as a measure of system complexity. Proc Natl
9. Tornheim K: Are metabolic oscillations responsible for normal oscillatory
10. Ristow M, Vorgard M, Mohlig M, Schatz H, Pfeiffer A: Deficiency of phos-
phofructo-1-kinase/muscle subtype in humans impairs insulin secretion and
11. Sagner J, Samols E: Role of intrapancreatic ganglia in regulation of periodic
Scand 114:27–58, 1933
13. Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS:
Insulin secretory defects in polycystic ovary syndrome: relationship to insulin
sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin
Invest 95:520–527, 1995
of ultradian insulin secretory oscillations in impaired glucose tolerance and in
nations in pulsatile insulin secretion in the Zucker diabetic fatty rat. Am J
Physiol 267:E250–E259, 1994
17. Porksen N, Juhi CB, Hollingdal M, Pincus S, Sturis J, Veldhuis J, Schmitz O:
Concordant induction of rapid in vivo pulsatile insulin secretion in healthy
humans by recurrent punctuated glucose infusions. Am J Physiol 278:
E162–E170, 2000
18. Lang DA, Matthews DR, Burnett M, Turner RC: Brief, irregular oscillations of
basal plasma insulin and glucose concentrations in diabetetic man. Diabetes
19. Andersen L, Dinesen B, Jorgensen PN, Poulsen F, Roder ME: Enzyme
immunoassay for intact human insulin in serum or plasma. Clin Chem
39:578–582, 1993
entrainment of high-frequency oscillations in fasting monkeys. Am J Physiol
270:E742–E747, 1996

