Intramyocellular Lipid Is Associated With Resistance to In Vivo Insulin Actions on Glucose Uptake, Antilipolysis, and Early Insulin Signaling Pathways in Human Skeletal Muscle

Antti Virkamäki,1 Elena Korsheninnikova,1 Anneli Seppälä-Lindroos,2 Satu Vehkavaara,2 Takashi Goto,1 Juha Halavaara,3 Anna-Maija Hänkinen,4 and Hannele Yki-Järvinen2

To examine whether and how intramyocellular lipid (IMCL) content contributes to interindividual variation in insulin action, we studied 20 healthy men with no family history of type 2 diabetes. IMCL was measured as the resonance of intramyocellular CH2 protons in lipids/resonance of CH3 protons of total creatine (IMCL/CrT), using proton magnetic resonance spectroscopy in vastus lateralis muscle. Whole-body insulin sensitivity was measured using a 120-min euglycemic-hyperinsulinemic (insulin infusion rate 40 mU/m2·min) clamp. Muscle biopsies of the vastus lateralis muscle were taken before and 30 min after initiation of the insulin infusion to assess insulin signaling. The subjects were divided into groups with high IMCL (HiIMCL; 9.5 ± 0.9 IMCL/CrT, n = 10) and low IMCL (LoIMCL; 3.0 ± 0.5 IMCL/CrT, n = 10), the cut point being median IMCL (6.1 IMCL/CrT). The groups were comparable with respect to age (43 ± 3 vs. 40 ± 3 years, NS, HiIMCL versus LoIMCL), BMI (26 ± 1 vs. 26 ± 1 kg/m2, NS), and maximal oxygen consumption (33 ± 2 vs. 36 ± 3 ml·kg−1·min−1, NS). Whole-body insulin-stimulated glucose uptake was lower in the HiIMCL group (3.0 ± 0.4 mg·kg−1·min−1) than in the LoIMCL group (5.1 ± 0.5 mg·kg−1·min−1, P < 0.05). Serum free fatty acid concentrations were comparable basally, but during hyperinsulinemia, they were 35% higher in the HiIMCL group than the LoIMCL group (P < 0.01). Study of insulin signaling indicated that insulin-induced tyrosine phosphorylation of the insulin receptor (IR) was blunted in HiIMCL compared with LoIMCL (57 vs. 142% above basal, P < 0.05), while protein expression of the IR was unaltered. IR substrate-1–associated phosphatidylinositol (PI) 3-kinase activation by insulin was also lower in the HiIMCL group than in the LoIMCL group (49 ± 23 vs. 84 ± 27% above basal, P < 0.05 between HiIMCL and LoIMCL). In conclusion, IMCL accumulation is associated with whole-body insulin resistance and with defective insulin signaling in skeletal muscle independent of body weight and physical fitness. Diabetes 50:2337–2343, 2001

A

From the 1Minerva Foundation Institute for Medical Research, University of Helsinki, Helsinki; the 2Department of Medicine, Division of Diabetes, University of Helsinki, Helsinki; the 3Department of Radiology, University of Helsinki, Helsinki; and the 4Department of Oncology, University of Helsinki, Helsinki, Finland.

Address correspondence and reprint requests to Antti Virkamäki, Minerva Foundation Institute for Medical Research, Biotemium Helsinki, Haartmaninkatu 8, FIN-00290, Helsinki, Finland. E-mail: antti.virkamaki@hus.fi.

A.V. and E.K. contributed equally to this work.

Received for publication 26 January 2001 and accepted in revised form 13 July 2001.

CPT, carnitine palmitoyltransferase; CrT, CH3 protons of total creatine; ECL, enhanced chemiluminescence; FFA, free fatty acid; HiIMCL, high intramyocellular lipid; IMCL, intramyocellular lipid; IMCL/CrT, resonance of intramyocellular CH2 protons in lipids/resonance of CH3 protons of total creatine; IRS-1, insulin receptor; IRS-1-associated phosphatidylinositol (PI) 3-kinase activation by insulin; LCA, long-chain fatty acid–CoA; LoIMCL, low IMCL; MR, magnetic resonance; MRS, MR imaging; PKC, protein kinase C.
INTRAMYOCELLULAR LIPID AND INSULIN RESISTANCE

Insulin resistance, existing data suggest that an infusion of FFAs during hyperinsulinemia, but not under basal fasting conditions, acutely increases IMCL (15). This result seems physiologically feasible, given that FFAs appear to be transported in a concentration-dependent fashion into skeletal muscle, which has little need to oxidize FFAs under hyperinsulinemic conditions (16). In the studies mentioned above (4,6,7,11), FFAs were not determined during hyperinsulinemia to establish whether circulating FFAs are associated with IMCL in a chronic situation.

There are several potential intracellular mechanisms, in addition to the original glucose fatty-acid cycle theory proposed by Randle et al. (17), by which IMCL could impair insulin action. First, the mechanism could resemble that described for circulating FFAs. Acute elevation of serum FFAs causes whole-body insulin resistance, and a defect in the ability of insulin to normally activate insulin receptor substrate-1 (IRS-1)-associated phosphatidyl-inositol (PI) 3-kinase, a step that is important for insulin-stimulated glucose transport in skeletal muscle (18). Acute maintenance of FFAs during hyperinsulinemia by infusion of fat emulsion in rats has also been suggested to induce insulin resistance via overactivation of the hexosamine pathway (19). High-fat feeding in rats increases the concentration of long-chain acyl-CoA esters, which correlates with insulin sensitivity in humans (20) and directly inhibits activities of key enzymes, such as glycogen synthase (21), pyruvate dehydrogenase (16), and hexokinase (22).

In the present study, we determined 1) whether IMCL is associated with insulin sensitivity not only independent of BMI, but also independent of other factors, such as VO2\textsubscript{max} and visceral fat, as determined by magnetic resonance imaging (MRI); 2) whether IMCL correlates with serum FFAs during hyperinsulinemia; and 3) whether elevated IMCL is associated with defects in early insulin signaling, as has been described under conditions in which serum FFAs are increased.

RESEARCH DESIGN AND METHODS

Subjects and grouping. A total of 20 healthy men (42 ± 2 years), with a BMI ranging from 21 to 32 kg/m\(^2\) (25.7 ± 0.7 kg/m\(^2\), means ± SE) and no family history of type 2 diabetes, were studied on three occasions. On the first visit, IMCL content was measured using proton spectroscopy of the vastus lateralis muscle. On this visit, visceral and subcutaneous fat were also quantified using MRI. The subjects were divided into two groups: low IMCL (LoIMCL; 3.0 ± 0.5 mmol/kg fat-free mass) and high IMCL (HiIMCL; 9.5 ± 3.0 mmol/kg fat-free mass) based on their median IMCL content (6.1 ± 0.9 mmol/kg fat-free mass). The LoIMCL and HiIMCL groups were comparable with respect to several parameters thought to cause insulin resistance (see METHODS). On the second study occasion, maximal oxygen consumption (VO2\textsubscript{max}) was measured directly using an Incremental Bicycle Ergometer Test. On the third occasion, insulin sensitivity was measured using the euglycemic-hyperinsulinemic clamp technique. Before and after 30 min of insulin infusion, biopsies of the left and right vastus lateralis muscles were taken, respectively, for determination of early insulin signaling steps. All subjects were right-handed.

1H-MR spectroscopy of IMCLs in muscle. Magnetic resonance (MR) images for localization and 1H-MR spectroscopy were acquired using a 1.5 T MR system (Magneton Vision; Siemens, Erlangen, Germany). A loop surface coil was used for detection. The subjects lay supine, with the left leg immobilized by firm padding. One-third of the distance from the trochanter major of the femur to the middle of the patella was measured, and the center of the coil was placed in contact with that spot. The 1H-spectra were obtained with a quadrupolar probe (vastus lateralis muscle). The volume of interest, voxel (13 × 13 × 20 mm\(^3\)), was placed inside the lateral part of the vastus lateralis muscle to ensure parallel fiber orientation. The position of the voxel was chosen on the T1-weighted MR images so that it did not contain any visible fat or fasciae known to contain significant amounts of adipocytes (23), which would affect the resonance-frequency shift data. Spatial localization was achieved by using a stimulated echo acquisition mode applied with a repetition time of 3,000 ms, with an echo time of 20 ms, and a mixing time of 30 ms. We used 128 excitations with water presaturation. The resonance at 1.5 ppm originates from the extramyocellular CH\(_2\)-protons of lipids (triglycerides and fatty acids) and the resonance at 1.3 ppm from intramyocellular CH\(_2\)-protons of lipids (23–25) (Fig. 1). Resonance intensities were expressed relative to the resonance at 3.0 ppm, which is derived from the CH\(_3\)-protons of total creatine (Cr\(_{\text{T}}\); creatine and phosphorylcreatine). The spectral data were fitted in time domain with the program MRUI, based on the solution of nonlinear least squares problems (26). The IMCL data were quantified by using Cr\(_{\text{T}}\) signal intensity as a reference. The total water-to-Cr\(_{\text{T}}\) ratios were constant between subjects (signal intensity ratio 829 ± 46, correlation coefficient for signal intensity of water vs. Cr\(_{\text{T}}\) 0.96) and the Cr\(_{\text{T}}\)-to-water ratio (×10\(^4\)) averaged 12.9 ± 0.9 and 12.3 ± 1.2 in the LoIMCL and HiIMCL groups, respectively (NS). We chose IMCL/Cr\(_{\text{T}}\) for grouping criterion because both signals are of intramyocellular origin and of comparable magnitude of intensity (Fig. 1).

Visceral and subcutaneous fat. A series of TI-weighted transaxial scans for the determination of visceral and subcutaneous fat were acquired from a region extending from 4 cm above to 4 cm below the 4th and 5th lumbar interspace (16 slices, field of view 375 × 500 mm\(^2\), slice thickness 10 mm, and breath-hold repetition time divided by the echo time 138.9 ms/4.1 ms), as previously described (27). Visceral and subcutaneous fat areas were calculated using an image analysis program (available at www.perceptive.com/alice.htm). A histogram of pixel intensity in the intra-abdominal region was displayed, and the intensity corresponding to the nadir between the lean and fat peaks was used as a cut point. Visceral adipose tissue was defined as the area of pixels in the intra-abdominal region above this cut point. For calculation of subcutaneous adipose tissue area, a region of interest was first manually drawn at the demarcation of subcutaneous adipose tissue and visceral tissue.

Maximal aerobic power (VO2\textsubscript{max}). Maximal aerobic power was measured directly, using an incremental work-conducted upright exercise test with an electrically braked cycle ergometer (Ergometer Ergoline 900ERG; Ergoline GmbH, Bitz, Germany) combined with continuous analysis of expiratory gases and minute ventilation (Vmax 229 series; SensorMedics). Exercise was started at a workload of 50 W. The workload was then increased by 50 W every 3 min, until perceived exhaustion or a respiratory quotient of 1.10 was reached. Maximal aerobic power was defined as the VO2\textsubscript{max} during the last 30 s of exercise.

Euglycemic-hyperinsulinemic clamp and muscle biopsies. After an overnight fast, whole-body insulin sensitivity was measured using a euglycemic-hyperinsulinemic clamp technique as previously described (28). Briefly, two indwelling catheters were inserted, one in an antecubital vein for infusion of insulin and glucose and another in a heated hand vein for sampling of arterialized venous blood. The rate of the continuous-rate insulin infusion was 40 mU/m² · min. The rate of the glucose infusion was adjusted to maintain euglycemia based on plasma glucose measurements that were performed every 5 min from arterialized venous blood.

FIG. 1. Examples of spectral fitting using the MRUI program in subjects from the HIIMCL (A) and LoIMCL (B) groups (see research design and methods). The upper profiles in each panel show the experimental 1H-spectrum (raw data). The middle profiles demonstrate the fitted spectrum using prior knowledge of (a) trimethyl-groups of total choline (3.2 ppm), (b) methyl-groups of total creatine (3.0 ppm), (c) CH\(_3\)-groups of EMCL (1.5 ppm), and (d) CH\(_3\)-groups of IMCL (1.3 ppm). The lower profiles show the difference spectrum (experimental-fitted profile).

2338 DIABETES, VOL. 50, OCTOBER 2001
TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>HiIMCL</th>
<th>LoIMCL</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>10</td>
<td>10</td>
<td>NS</td>
</tr>
<tr>
<td>Age (years)</td>
<td>43 ± 3</td>
<td>40 ± 3</td>
<td>NS</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26 ± 1</td>
<td>26 ± 1</td>
<td>NS</td>
</tr>
<tr>
<td>Lean body mass (kg)</td>
<td>67 ± 3</td>
<td>64 ± 3</td>
<td>NS</td>
</tr>
<tr>
<td>fS-glucose (mmol/l)</td>
<td>5.8 ± 0.2</td>
<td>5.4 ± 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>fS-insulin (pmol/l)</td>
<td>55 ± 10</td>
<td>38 ± 4</td>
<td><0.05</td>
</tr>
<tr>
<td>V̇o₂max (ml · kg⁻¹ · min⁻¹)</td>
<td>33 ± 2</td>
<td>36 ± 3</td>
<td>NS</td>
</tr>
<tr>
<td>fS-triglycerides (mmol/l)</td>
<td>1.6 ± 0.3</td>
<td>1.3 ± 0.2</td>
<td>NS</td>
</tr>
<tr>
<td>fS-cholesterol (mmol/l)</td>
<td>5.5 ± 0.3</td>
<td>5.0 ± 0.3</td>
<td>NS</td>
</tr>
<tr>
<td>fS-HDL-cholesterol (mmol/l)</td>
<td>1.3 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>fS-free fatty acids (mmol/l)</td>
<td>0.63 ± 0.03</td>
<td>0.58 ± 0.05</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data are means ± SE. f, Fasting; P, plasma; S, serum.

Muscle biopsies of vastus lateralis were obtained under local lidocaine anesthesia using a Bergström needle as previously described (29). Biopsies were frozen and stored in liquid nitrogen until analyzed. To minimize variability due to non-muscle tissue contaminants, such as blood, blood vessels, connective tissue, and fascia and fat deposits, the muscle biopsy (~50 mg) was lyophilized (2–4 mbar, Edward freeze-dryer) for 14 h and macroscopically dissected free of nonmuscle contaminants using forceps and scalpels at room temperature conditions before homogenization.

Homogenization. Freeze-dried and purified muscle fibers (~10 mg) were homogenized (HETO, Birkerød, Denmark) for 2 min using a Teflon pestle in 1 ml of buffer A containing (in mmol/l) 25 Tris-Cl (pH 7.4), 10 sodium vanadate, 100 sodium fluoride, 10 sodium pyrophosphate, 10 EGTA, 10 ethylenediaminetetraacetic acid, one phenylmethylsulfonyl fluoride, and 5 mg/ml leupeptin, 5 μg/ml aprotinin, and 1% Nonidet P40. After centrifugation (2750g, 0.1 mmol/l, HiIMCL versus LoIMCL, NS) were slightly higher in the HiIMCL group than in the LoIMCL group, but other lipid concentrations were comparable between the groups. The HiIMCL group had a

RESULTS

Characteristics of the study groups. The LoIMCL and HiIMCL groups were comparable with respect to age, BMI, and physical fitness (Table 1, Fig. 2). The groups also had similar volumes of visceral (3.4 ± 0.5 vs. 2.9 ± 0.3 l, LoIMCL versus HiIMCL, NS) and subcutaneous (2.9 ± 0.3 vs. 2.5 ± 0.5 l, NS) fat. The ratios of IMCL versus CrT were higher in the HiIMCL (15 ± 4) and LoIMCL (17 ± 8, NS) groups. Plasma triglyceride concentrations were slightly higher in the HiIMCL group than in the LoIMCL group, but other lipid concentrations were comparable (Table 1).

Insulin action on glucose and lipid metabolism. The fasting plasma glucose concentrations (Table 1) as well as the steady-state mean plasma glucose concentrations during the euglycemic-hyperinsulinemic clamp study (5.2 ± 0.1 vs. 5.2 ± 0.1 mmol/l, HiIMCL versus LoIMCL, NS) were comparable between the groups. The HiIMCL group had a
46% higher fasting insulin concentration (Table 1), and the insulin concentration remained slightly but significantly higher during the euglycemic-hyperinsulinemic clamp in the HiIMCL group (450 ± 24 vs. 382 ± 18 pmol/l, HiIMCL versus LoIMCL, P < 0.05), despite a similar insulin priming and infusion protocol. The serum insulin concentrations at the time of the muscle biopsy (30 min) were comparable between the groups (382 ± 26 vs. 340 ± 20 pmol/l, HiIMCL versus LoIMCL, respectively, NS). Basally, before the insulin infusion, serum FFA concentrations were comparable between the groups (Table 1). During hyperinsulinemia, the FFA concentrations decreased slower (0.47 ± 0.04 vs. 0.51 ± 0.21 nmol/l at 20 min, HiIMCL versus LoIMCL, P < 0.01) and remained higher (0.23 ± 0.02 vs. 0.17 ± 0.02 nmol/l at 120 min) in the HiIMCL compared with the LoIMCL group (Fig. 3). IMCL was significantly correlated with serum FFA at all time points during the insulin infusion (data not shown) and with the mean FFA concentration during hyperinsulinemia (r = 0.53, P < 0.02) but not with the fasting FFA concentration (r = 0.22, NS).

The rate of glucose uptake expressed per body weight, fat-free mass, or body surface area was significantly lower in the HiIMCL compared with the LoIMCL group (3.0 ± 0.4 vs. 5.1 ± 0.4 mg/kg [total weight] · min, 3.8 ± 0.5 vs. 6.1 ± 0.5 mg/kg [fat-free mass] · min, P < 0.005; 124 ± 17 vs. 202 ± 16 mg/m² · min, P < 0.005; HiIMCL versus LoIMCL, P < 0.005) (Fig. 2). The correlation coefficient between IMCL and glucose uptake per body weight was −0.63 (P < 0.01).

IR tyrosine phosphorylation and PI 3-kinase activity.

Insulin-induced IR tyrosine phosphorylation was determined using Western blotting from anti-IR immunoprecipitates after SDS-PAGE by determining the increase above basal phosphorylation in each subject. There were no detectable differences in the IR expression level by direct Western blotting from the tissue homogenates (data not shown). Normalized for respective protein expression level in each subject, the HiIMCL group had a blunted insulin–stimulated IR tyrosine phosphorylation (from 0.28 ± 0.07 to 0.44 ± 0.10, from basal to insulin-stimulated, respectively; NS) compared with the LoIMCL group (from 0.22 ± 0.08 to 0.55 ± 0.07, P < 0.05). The insulin-stimulated increase in tyrosine phosphorylation of the IR above basal was significantly blunted in the HiIMCL group (57 ± 7% compared with the LoIMCL group (142 ± 8%, P < 0.001) (Fig. 4). The insulin-stimulated increase in the IRS-1–associated PI 3-kinase activity above basal activity was markedly decreased in the HiIMCL group (42 ± 13% above basal) compared with the LoIMCL group (88 ± 13% above basal, P < 0.05) (Fig. 4).

DISCUSSION

In the present study, we found two in vivo actions of insulin to be impaired in healthy men with a high content of IMCL (HiIMCL) compared with equally fit men with a similar BMI but a low content of IMCL (LoIMCL). Insulin-stimulated whole-body glucose uptake, which occurs primarily in skeletal muscle (34), was significantly blunted, as was the ability of insulin to decrease circulating FFA concentrations. Both insulin action on glucose and FFA metabolism were significantly correlated with IMCL independent of obesity, age, and physical fitness. We also measured early insulin signaling from vastus lateralis muscle biopsies taken before and after 30 min of in vivo hyperinsulinemia. Insulin stimulation of tyrosine phosphorylation of the IR and IRS-1–associated PI 3-kinase activity were significantly blunted in the HiIMCL group compared with the LoIMCL group.

The HiIMCL and LoIMCL groups had virtually identical BMIs and amounts of visceral and subcutaneous fat, as determined by MRI. This can be considered the first demonstration of an independent association between insulin sensitivity and IMCL in healthy subjects. This may be because previous studies either failed to separately quantify intra- and extramyocellular fat (4,9,10,35), studied relatives (7) or offspring (11) of patients with type 2 diabetes, studied mixed sexes (5), or failed to find an independent association when BMI was included in the analysis (6). In the latter study, the number of subjects was similar, but the range of BMIs was greater than in the present study (6). The previous studies did not distinguish between intra- and extramyocellular fat, and obese subjects had higher muscle lipid contents than nonobese subjects in some (9,10) but not all (8) of those studies. Taken together, these data support the idea that IMCL can be related to insulin sensitivity independent of obesity, but also that obesity itself is associated with an increase in IMCL. Because the percentage of muscle that is lipid (extramyocellular lipid plus IMCL) is ~1% in lean individuals and 2–3% in obese subjects (10), and because the IMCL stimulated increase in tyrosine phosphorylation of the IR above basal was significantly blunted in the HiIMCL group (57 ± 7%) compared with the LoIMCL group (142 ± 8%, P < 0.001) (Fig. 4). The insulin-stimulated increase in the IRS-1–associated PI 3-kinase activity above basal activity was markedly decreased in the HiIMCL group (42 ± 13% above basal) compared with the LoIMCL group (88 ± 13% above basal, P < 0.05) (Fig. 4).
component is usually smaller than the extramyocellular peak (25), variation in IMCL does not per se change total fat mass.

In addition to overall adiposity, fat distribution in visceral versus subcutaneous regions and physical fitness are established independent causes of variation of insulin sensitivity (36,37). Visceral and subcutaneous fat have previously been quantitated in one study in which a correlation was found between IMCL and measures of obesity, including BMI, percent fat, and visceral fat (6). In the present study, where an identical number of subjects were studied, such an association was not found, possibly because of a narrower range of obesity. During endurance exercise, muscle triglycerides represent an important source of energy. During low-intensity exercise, most of the oxidized fatty acids are derived from circulating fatty acids (38). During moderate-intensity exercise, the relative contribution of intramyocellular triglycerides increases and can represent nearly half of all fat that is oxidized (38). Physical training increases the capacity of muscle to oxidize fat (39) via mechanisms such as an increase in 1) the density of mitochondria, 2) the activities of respiratory enzymes, and 3) the amount of carnitine palmitoyltransferase (CPT), which facilitates fatty acid transport across the mitochondrial membrane (40). These adaptations are opposite those found in obese human skeletal muscle, in which lipid oxidation (41), activities of muscle mitochondrial enzymes (42,43), and CPT-1 activity (41) are reduced. Data on IMCL levels are sparse but suggest, perhaps unexpectedly, that muscle triglyceride levels are similar or even higher in trained athletes than in sedentary control subjects (39,44–46). Electron microscopy studies have, however, revealed that the anatomical localization of lipid droplets within the myocyte differs between trained and untrained human subjects (47,48). In trained dogs, lipid droplets have been reported to surround and be in direct contact with mitochondria, whereas such an association is not observed in untrained animals (49). In sedentary subjects, lipid droplets may be located in the neutral lipid domains of the plasma membrane itself (47,48), which could interfere with membrane-associated signaling pathways, such as IR tyrosine phosphorylation. These data suggest that in addition to total IMCL content, study of the intramyocellular localization of fat might be of interest. Thus, although there was no correlation between $V_{O_2\text{max}}$ and IMCL in our untrained subjects, a correlation might have been found between physical fitness and the amount of lipid localized in the mitochondrial compartment compared with the plasma membrane compartment.

In the present study, both IR tyrosine phosphorylation and IRS-1-associated PI 3-kinase activation by insulin were significantly lower in the HiIMCL group than in the LoIMCL group. The defect in IRS-1-associated PI 3-kinase activity is similar to that recently found in fatless mice with a twofold increase in muscle triglycerides (12). In humans, an elevation of circulating FFA acutely, about fourfold above basal, decreases whole-body glucose uptake by 50% and abolishes insulin stimulation of IRS-1-associated PI 3-kinase activity (18). IR tyrosine phosphorylation was not measured in these two studies. The present data imply that regardless of whether FFAs originate from intramyocellular triglycerides or from the circulation, they may similarly influence early insulin signaling events. In the present study, the concentration of serum FFAs during hyperinsulinemia, but not under fasting conditions, was significantly correlated with IMCL. This finding is consistent with acute FFA infusion studies in which IMCL increased during hyperinsulinemia but not under basal conditions, perhaps because the combined effects of increased FFA availability and increased inhibition of intramyocellular lipolysis by insulin favor IMCL accumulation (15). It is thus possible that insulin resistance of lipolysis in adipose tissue or other sites, which contribute to circulating FFA, may be responsible for IMCL accumulation. On the other hand, because FFA fluxes were not quantitated in the present study, it is also possible that impaired insulin stimulation of FFA uptake in skeletal muscle or adipose tissue (50) was responsible for the higher FFA levels during hyperinsulinemia in the HiIMCL group compared with the LoIMCL group. Whether it is IMCL or circulating FFA that causes the signaling defects, or whether the signaling defects preceede lipid accumulation, cannot be determined in a cross-sectional study.

Several possible mechanisms could link IMCL or circulating FFA to impaired insulin signaling. These include activation of signaling cascades known to downregulate either IR tyrosine phosphorylation or IRS-1 association with PI 3-kinase, such as activation of the hexosamine pathway (51), various protein tyrosine phosphatases (52), or protein kinase C (PKC) (53). The hexosamine pathway can be activated by infusion of either lipid or glucosamine (19). Both agents also decrease IRS-1–associated PI 3-kinase activity (18,51). Activation of the hexosamine pathway also increases O-glycosylation of IRS-1 (51), which may reduce IRS-1 phosphorylation and association with PI 3-kinase, but whether the effect of FFAs on the hexosamine pathway is important in mediating FAA-induced alterations in early insulin signaling and glucose uptake is not known and requires more definite experiments. Finally, it is also possible that increases in metabolites, such as malonyl-CoA (54) and long-chain fatty acid–CoA (LCACoA), may mediate effects of increased lipid availability on glucose metabolism and early insulin signaling. Infusion of FFA in rats increases muscle LCACoA (55). This increase has been suggested to increase PKC θ, a serine/threonine kinase, which is associated with decreased tyrosine and increased serine phosphorylation of IRS-1 (56). However, in humans, PKC θ is lower in obese subjects than in lean subjects (57). LCACoA may also interact directly with glucose metabolism through the inhibition of enzymes such as glycogen synthase (21) and hexokinase (22).

In summary, IMCL appears to be a feature of insulin resistance in skeletal muscle, which is associated with insulin resistance of antilipolysis and with signaling defects similar to those found to be acutely induced by infusion of FFA. It is unclear at present to what extent FFA derived from intra- versus extramyocellular sources regulates insulin signaling. If IMCL is important, it is an attractive therapeutic target because total myocardial lipid can be altered by weight loss (58), a low fat diet (46), and exercise (59,60). Although these manipulations may also change insulin sensitivity by mechanisms other than IMCL,
it is of interest that drugs such as troglitazone in Zucker diabetic fatty rats prevent overexpression of genes such as the sterol regulatory element–binding protein-1c (SREBP-1c; a lipogenic transcription factor) and ectopic fat accumulation, insulin resistance, and diabetes, despite increasing body weight and fat mass (61).

ACKNOWLEDGMENTS

This study was supported by grants from the Sigrid Juselius Foundation (to A.V. and H.Y.-J.), Liv och Halsa (to A.V.), the Academy of Finland (to E.K., S.V., and H.Y.-J.), and the Finnish Diabetes Research Foundation (to A.V.).

REFERENCES

