Peroxisome proliferator-activated receptor (PPAR)-α controls the expression of genes involved in lipid metabolism. PPAR-α furthermore participates to maintain blood glucose during acute metabolic stress, as shown in PPAR-α-null mice, which develop severe hypoglycemia when fasted. Here, we assessed a potential role for PPAR-α in glucose homeostasis in response to long-term high-fat feeding. When subjected to this nutritional challenge, PPAR-α-null mice remained normoglycemic and normoinsulinemic, whereas wild-type mice became hyperinsulinemic (190%; P < 0.05) and slightly hyperglycemic (120%; NS). Insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) were performed to evaluate insulin resistance (IR). Under standard diet, the response to both tests was similar in wild-type and PPAR-α-null mice. Under high-fat diet, however, the efficiency of insulin in ITT was reduced and the amount of hyperglycemia in GTT was increased only in wild-type and not in PPAR-α-null mice. The IR index, calculated as the product of the areas under glucose and insulin curves in GTT, increased fourfold in high-fat–fed wild-type mice, whereas it remained unchanged in PPAR-α-null mice. In contrast, PPAR-α deficiency allowed the twofold rise in adiposity and blood leptin levels elicited by the diet. Thus, the absence of PPAR-α dissociates IR from high-fat diet–induced increase in adiposity. The effects of PPAR-α deficiency on glucose homeostasis seem not to occur via the pancreas, because glucose-stimulated insulin secretion of islets was not influenced by the PPAR-α genotype. These data suggest that PPAR-α plays a role for the development of IR in response to a Western-type high-fat diet. *Diabetes* 50: 2809–2814, 2001

Mitochondrial β-oxidation is the major metabolic process by which fatty acids are utilized intracellularly, thus providing energy primarily for the heart and skeletal muscles. In the liver, β-oxidation also provides the substrates required for the synthesis of ketone bodies and supplies ATP and reducing equivalents to sustain gluconeogenesis. The physiological impact of enzymatic defects in these pathways is evidenced by the phenotype of patients with inherited β-oxidation deficiency. The clinical presentation includes cardiomyopathy, liver and muscle dysfunction, and episodes of nonketotic hypoglycemia (rev. in Eaton et al. [1]). Recently, a mouse model of β-oxidation deficiency was produced by targeted disruption of long-chain acyl-CoA dehydrogenase, an enzyme that catalyzes the initial step of this pathway. These mice display several features that resemble those of patients with β-oxidation defects, including reduced tolerance to fasting as a result of hypoglycemia and hepatic and cardiac disturbances (2).

The peroxisome proliferator–activated receptor (PPAR-α) plays a central role in the control of mitochondrial β-oxidation of fatty acids. PPAR-α-null mice (3) exhibit a reduced capacity to metabolize long-chain fatty acids (4,5), which likely contributes to dyslipidemia (6) and larger adipose stores observed in these mice with aging (7). When fasted, PPAR-α–null mice develop a severe and prolonged hypoglycemia (8,9). Blood glucose levels are tightly controlled through a coordinated interplay among the liver, the pancreatic β-cells, and peripheral insulin-sensitive tissues. Because PPAR-α is expressed in these tissues, with the highest levels in the liver (10,11), this factor could function in glucose homeostasis. In the present study, this hypothesis was tested by using PPAR-α-null mice and a nutritional challenge known to induce insulin resistance (IR) in rodents. We show that in the absence of PPAR-α, mice develop increased adiposity in response to a high-fat diet but are protected from the development of IR. Although beneficial during fasting, the function of PPAR-α may prove to be deleterious under long-term metabolic stress induced by a high-fat Western-type diet.

RESEARCH DESIGN AND METHODS

Animals. This study was conducted according to the *Guidelines for the Care and Use of Experimental Animals.* Male PPAR-α–null mice on either pure Sv/129 (3) or 10 generations–backcrossed C57BL/6J (12) genetic background were used. Mice were maintained under a constant light-dark cycle (light from 7:00 a.m. to 7:00 p.m.) and received either a standard diet (AO4; UAR, Epinay, France) or a high-fat diet containing hydrogenated coconut oil (29% wt/wt) according to Surwit et al. (13). Body weight and food intake, monitored by
performed to compare glucose curves in ITT. A difference at
considered statistically signi-

ITT. Food was removed for 2 h before the mice were lightly anesthetized with
halothane between 9:00 and 10:00 A.M. Glucose (1 g/kg) was administered
by intraperitoneal injection, and blood samples were collected from the
orbital sinus at various times after the glucose load, as indicated. Plasma

Facebook
Google
Twitter

Results

PPARα-null mice are protected from high-fat diet–
duced hyperinsulinemia. To evaluate a potential role
for PPARα in modulating diet-induced IR, Sv/129 wild-
type and PPARα-null mice were fed a diet enriched with
hydrogenated coconut oil for several weeks. Plasma glu-
cose and insulin levels were measured at the end of the
feeding period. As expected, a twofold increase in insulin
levels, accompanied by a moderate increase in plasma
glucose, was induced in response to this nutritional chal-
genle in wild-type mice (Fig. 1). Surprisingly, PPARα-null
mice remained normoinsulinemic. Moreover, their plasma
glucose was not increased but rather tended to be lower
than in mice that were fed a standard diet. These obser-
vations were confirmed in a second series of experiments,
in which wild-type and PPARα-null mice on the
C57BL/6N genetic background were submitted to high-fat
feeding. A similar pattern of diet-induced changes oc-
curred, demonstrating increased insulin levels in wild-type
but not in PPARα-null mice, and no major alteration of
plasma glucose in either genotype (Table 1). Moreover,
preliminary data indicate that this feature also occurs in
C57BL/6N female mice (data not shown). Thus, the ab-

Facebook
Google
Twitter

 RESULTS

PARRα-null mice are protected from high-fat diet–
duced hyperinsulinemia. To evaluate a potential role
for PPARα in modulating diet-induced IR, Sv/129 wild-
type and PPARα-null mice were fed a diet enriched with
hydrogenated coconut oil for several weeks. Plasma glu-
cose and insulin levels were measured at the end of the
feeding period. As expected, a twofold increase in insulin
levels, accompanied by a moderate increase in plasma
glucose, was induced in response to this nutritional chal-
genle in wild-type mice (Fig. 1). Surprisingly, PPARα-null
mice remained normoinsulinemic. Moreover, their plasma
glucose was not increased but rather tended to be lower
than in mice that were fed a standard diet. These obser-
vations were confirmed in a second series of experiments,
in which wild-type and PPARα-null mice on the
C57BL/6N genetic background were submitted to high-fat
feeding. A similar pattern of diet-induced changes oc-
curred, demonstrating increased insulin levels in wild-type
but not in PPARα-null mice, and no major alteration of
plasma glucose in either genotype (Table 1). Moreover,
preliminary data indicate that this feature also occurs in
C57BL/6N female mice (data not shown). Thus, the ab-

Facebook
Google
Twitter

 RESULTS

PARRα-null mice are protected from high-fat diet–
duced hyperinsulinemia. To evaluate a potential role
for PPARα in modulating diet-induced IR, Sv/129 wild-
type and PPARα-null mice were fed a diet enriched with
hydrogenated coconut oil for several weeks. Plasma glu-
cose and insulin levels were measured at the end of the
feeding period. As expected, a twofold increase in insulin
levels, accompanied by a moderate increase in plasma
glucose, was induced in response to this nutritional chal-
genle in wild-type mice (Fig. 1). Surprisingly, PPARα-null
mice remained normoinsulinemic. Moreover, their plasma
glucose was not increased but rather tended to be lower
than in mice that were fed a standard diet. These obser-
vations were confirmed in a second series of experiments,
in which wild-type and PPARα-null mice on the
C57BL/6N genetic background were submitted to high-fat
feeding. A similar pattern of diet-induced changes oc-
curred, demonstrating increased insulin levels in wild-type
but not in PPARα-null mice, and no major alteration of
plasma glucose in either genotype (Table 1). Moreover,
TABLE 1
Effect of long-term high-fat feeding in wild-type and PPAR-α-null mice on two genetic backgrounds

<table>
<thead>
<tr>
<th></th>
<th>C57BL/6N mice</th>
<th></th>
<th>Sv/129 mice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wild-type</td>
<td>PPAR-α-null</td>
<td>Wild-type</td>
<td>PPAR-α-null</td>
</tr>
<tr>
<td></td>
<td>Standard diet</td>
<td>High-fat diet</td>
<td>Standard diet</td>
<td>High-fat diet</td>
</tr>
<tr>
<td>Food intake (kcal · kg⁻¹ · day⁻¹)</td>
<td>465 ± 28.5</td>
<td>511 ± 15.2</td>
<td>506 ± 21.0</td>
<td>560 ± 28.9</td>
</tr>
<tr>
<td>Food intake (kcal · kg⁻¹ · day⁻¹)</td>
<td>465 ± 28.5</td>
<td>511 ± 15.2</td>
<td>506 ± 21.0</td>
<td>560 ± 28.9</td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>32.7 ± 0.95</td>
<td>38.0 ± 1.37†</td>
<td>30.8 ± 0.94</td>
<td>32.4 ± 0.78</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>1.46 ± 0.12</td>
<td>1.44 ± 0.10</td>
<td>1.50 ± 0.07</td>
<td>1.48 ± 0.11</td>
</tr>
<tr>
<td>Adiposity index* (%)</td>
<td>1.60 ± 0.33</td>
<td>3.58 ± 0.34†</td>
<td>1.71 ± 0.25</td>
<td>3.74 ± 0.40†</td>
</tr>
<tr>
<td>Plasma glucose (mmol/l)</td>
<td>9.8 ± 0.67</td>
<td>11.5 ± 0.75</td>
<td>10.6 ± 0.72</td>
<td>9.3 ± 0.42</td>
</tr>
<tr>
<td>Plasma insulin (pmol/l)</td>
<td>209 ± 21.3</td>
<td>398 ± 50.1†</td>
<td>189 ± 31.8</td>
<td>225 ± 30.2</td>
</tr>
</tbody>
</table>

Data are means ± SE. Mice on the C57BL/6N genetic background were fed the high-fat diet for 16 weeks. Mice on the Sv/129 genetic background were fed the high-fat diet for 22 weeks. *Adiposity index was the ratio of epididymal adipose tissue to body weight for C57BL/6N mice and the ratio of epididymal + inguinal adipose tissue to body weight for Sv/129 mice. †P < 0.05 versus standard diet.

DISCUSSION
The present study, coupled with previous observations (8,9), reveals an unexpected role of PPAR-α in glucose homeostasis. Indeed, PPAR-α-null mice display abnormal systemic glucose metabolism in response to both short-term (8,9) and long-term (this study) nutritional challenges. In fasted conditions, PPAR-α-null mice develop severe hypoglycemia, suggesting that PPAR-α function is crucial to maintain blood glucose during fasting. Our data suggest that PPAR-α is involved in the alterations of glucose metabolism induced by high-fat feeding, which lead eventually to hyperglycemia and hyperinsulinemia. Thus, although this receptor can have a beneficial effect during fasting, PPAR-α seems to provoke potentially deleterious changes in glucose homeostasis after long-term high-fat feeding.

PPAR-α-deficiency did not alter systemic glucose and insulin levels or insulin sensitivity in response to standard diet feeding, as assessed by ITT and GTT. Consistent with these observations, normal glucose clearance in response to intraperitoneal glucose load has been reported in PPAR-α–null mice

![FIG. 3. Effect of high-fat feeding on ITT. Intraperitoneal ITTs were performed in Sv129 wild-type (○) and PPAR-α-null (●) mice fed either standard or high-fat diet for 22 weeks. Data are expressed relative to time 0 and represent the means ± SE of seven independent tests. Response curves were compared by two-way analysis of variance. The diet effect was statistically significant (P < 0.01) in wild-type mice. The genotype effect was statistically significant (P < 0.05) in high-fat-fed mice.](Image)
null mice (8). However, a PPAR-α-dependent alteration of glucose homeostasis was observed in response to the high-fat diet. Indeed, in agreement with changes in plasma glucose and insulin levels, ITT and GTT suggested a high-fat–fed phenotype of IR in wild-type mice, which was absent in PPAR-α–null mice. These observations suggest a role for PPAR-α in the control of peripheral glucose utilization in response to dietary fat. This nuclear receptor is expressed in muscles and brown adipose tissue, which are major sites of insulin-sensitive glucose utilization. According to Randle et al. (16), increased fatty acid oxidation inhibits insulin-stimulated glucose uptake. The absence of PPAR-α, by reducing the rate of fatty acid oxidation, would favor glucose utilization in these tissues, despite lower glucose availability as in high-fat–fed mice. Shulman (17) recently suggested that intracellular fatty acid metabolite(s) could alter insulin signaling. If such a mechanism is involved in diet-induced IR, then our observations suggest that the potential mediator(s) derives from PPAR-α-dependent pathways. The PPAR-α–null mice could help to elucidate the molecular link between fatty acid metabolism and insulin signaling.

In line with our observations, a recent study reported that PPAR-α expression is increased in the liver of high-fat–fed rats, potentially as an adaptive response to attenuate liver steatosis (18). Our present data suggest that this might also result in the activation of metabolic pathways leading to IR. For example, increased glucose production from enhanced gluconeogenesis that is stimulated by increased fatty acid oxidation (19) could be dependent on a functional PPAR-α. It is interesting that when this article was under review, Tordjman et al. (20) reported that insulin was more efficient to suppress endogenous hepatic glucose production in the absence of PPAR-α in Western diet–fed apolipoprotein E–null mice. Although not studied here, it is likely that a similar mechanism is operative under the experimental conditions of our study.

The present study did not reveal major alterations of insulin secretion in islets isolated from PPAR-α–null mice, regardless of the diet. These observations are surprising because decreased fatty acid oxidation (as a result of the absence of PPAR-α) and, in turn, fat overload are likely to occur in these islets. On a long-term basis, increased lipid content results in high basal secretion and decreased insulin response to glucose. This feature is prominent in islets of obese prediabetic fa/fa ZDF rats (11) and in INS-1 β-cells that are exposed long-term to high glucose (21). Moreover, both conditions are associated with a marked downregulation of PPAR-α expression. It is interesting that the PPAR-γ ligand troglitazone reverses the secretory

![FIG. 4. Effect of high-fat feeding on GTT. Intraperitoneal GTTs were performed in Sv129 wild-type (○) and PPAR-α–null (■) mice fed either standard or high-fat diet for 22 weeks. Data are expressed as changes relative to time 0 and represent the means ± SE of five independent tests.](image)

![FIG. 5. Insulin secretion in isolated islets. Insulin secretion was measured in static incubations of isolated islets from wild-type and PPAR-α–null mice on the C57BL/6N genetic background fed standard diet (○) or high-fat diet (■) for 16 weeks. Data are the means ± SE of three (high-fat diet) and five (standard diet) separate incubations.](image)

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of high-fat feeding on IR index</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Wild-type</th>
<th>PPAR-α–null</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard diet (n = 5)</td>
<td>High-fat diet (n = 5)</td>
</tr>
<tr>
<td>AUC glucose (mg/dl · 2 h)</td>
<td>115 ± 15</td>
<td>296 ± 78*</td>
</tr>
<tr>
<td>AUC insulin (ng/dl · 2 h)</td>
<td>17.3 ± 3.1</td>
<td>27.6 ± 2.7*</td>
</tr>
<tr>
<td>IR Index (AUC glucose · AUC insulin)</td>
<td>1,970 ± 413</td>
<td>8,400 ± 2,790*</td>
</tr>
</tbody>
</table>

Data are means ± SE. Areas under the insulin and glucose curves were calculated from the data shown in Fig. 4. The IR index is the product of glucose and insulin AUCs. *P < 0.05 versus standard diet.
and lipid alterations of the β-cells in ZDF rats (22). This raises the hypothesis of a compensatory increase in PPAR-γ in PPAR-α–null islets, which might lower fat content and reduce the deleterious effects of PPAR-α deficiency on insulin release. In support of this idea, PPAR-γ mRNA is increased in the liver of PPAR-α–null mice (7,23). Nevertheless, the efficiency of PPAR-γ to compensate for the absence of PPAR-α is likely to depend on several factors, including level of expression and cellular environment in a given tissue.

Increasing dietary fat in rodents enhances adiposity and results in elevated plasma leptin levels (13,18,24,25). PPAR-α–null mice exhibit the expected phenotype irrespective of the Sv/129 or C57BL/6 genetic background. This indicates that lep gene regulation is not influenced by PPAR-α signaling, in agreement with previous observations (26,27). Thus, PPAR-α–null mice define a model for diet-induced obesity uncoupled from IR. Resistin is a newly discovered adipose protein that could represent a molecular link between increased adipose tissue mass and newly discovered adipose protein that could represent a molecular link between increased adipose tissue mass and IR. Resistin is a newly discovered adipose protein that could represent a molecular link between increased adipose tissue mass and IR. Resistin is a newly discovered adipose protein that could represent a molecular link between increased adipose tissue mass and IR. Resistin is a newly discovered adipose protein that could represent a molecular link between increased adipose tissue mass and IR.

Increased IR in these three models relies on reduced liver glucose output in PPAR-α–null mice as a result of a low rate of gluconeogenesis. Altogether, these observations raise the hypothesis that the lack of diet-induced IR in these three models relies on reduced liver glucose output, although through different mechanisms.

The targeted mutation of the adipose fatty acid binding protein aP2 results in uncoupling obesity from IR in the context of both high-fat feeding (33) and extreme obesity (34). Although not expressed in the same tissues, aP2 and PPAR-α participate in a similar metabolic pathway of intracellular fatty acid metabolism. This suggests that the integrity of this pathway is critical for the development of IR in obesity, although the mechanisms involved might differ depending on the tissue.

A fourth model of transgenic mice, heterozygous PPAR-γ mice, display refractoriness to high-fat diet–induced IR (35). However, in contrast to the models described above, these mice exhibit a reduction in food intake and do not develop obesity. This has been attributed to a partial release of the suppressive effect of PPAR-γ on leptin gene expression, resulting in higher plasma leptin levels, despite lower adipose tissue mass.

In this model, the more insulin-sensitive phenotype of heterozygous PPAR-γ compared with wild-type mice has been ascribed to a lack of adipocyte hypertrophy under high-fat diet, a feature that does not occur in the PPAR-α–deficient mice and that might directly rely on low resistin release.

In conclusion, our observations suggest that PPAR-α participates in glucose homeostasis. Such a role of PPAR-α might be physiologically relevant to avoid hypoglycemia under states of acute metabolic stress, such as fasting and exercise. However, under long-term metabolic stress, such as high-fat feeding, this function might become health-threatening by allowing the development of IR.

ACKNOWLEDGMENTS

This work was supported by grants from the Région Nord-Pas de Calais/FEDER and INSERM and Institut Pasteur de Lille. We thank Folkert Kuipers, Nik Morton, Jonathan Seckl, and Pascal Ferré for scientific discussions. We acknowledge Bruno Derudas for expert technical assistance.

REFERENCES

2814 DIABETES, VOL. 50, DECEMBER 2001

