Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans

Kitt Falk Petersen,1 Didier Laurent,1 Chunli Yu,2 Gary W. Cline,1 and Gerald I. Shulman1,2,3

Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used 13C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (~5 mmol/l) hyperinsulinemic conditions (~400 pmol/l) with and without a low-dose infusion of fructose (~3.5 µmol · kg⁻¹ · min⁻¹). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 µg · kg⁻¹ · min⁻¹) and insulin (240 pmol · m⁻² · min⁻¹). During the initial 120 min, [1,13C]glucose was infused to assess glycogen synthase flux followed by an ~120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of hepatic glycogen synthesis by the metabolic kitchen of the Yale–New Haven Hospital General Clinical Research Center; NMR, nuclear magnetic resonance.

Glucokinase activity is acutely regulated by interaction with a regulatory protein (1) that binds to fructose-6-phosphate (P) and allosterically inhibits glucokinase by lowering the enzyme’s affinity for glucose. In contrast, when the regulatory protein binds to fructose-1-P, glucokinase dissociates and becomes fully active (1). Small amounts of fructose have been shown to acutely elevate fructose-1-P concentrations in the hepatocytes and may cause release of glucokinase from the regulatory protein (2–4). Shiota et al. (5) showed that in dogs under conditions of hyperglycemia and hyperinsulinemia, intraportal low-dose infusions of fructose triple the amount of hepatic glucose uptake and increase the direct pathway of glycogen synthesis (glucose → glucose-6-P → glucose-1-P → UDP-glucose → glycogen) to account for ~90% of glycogen synthesis. Whether small amounts of fructose have a similar effect on hepatic glycogen metabolism in humans remains unknown.

To address this question, we applied a 13C nuclear magnetic resonance (NMR) spectroscopic technique to assess net hepatic glycogen synthesis as well as flux through glycogen synthase and phosphorylase in humans (6–8). Using this technique, we examined the effects of a small dose of fructose during a glucose-insulin clamp on rates of hepatic glycogen synthesis by monitoring the rate of [1,13C]glucose incorporation into the C1 position of the glycogen moiety (6). Correction for the relative contribution of the indirect pathway was performed by monitoring the relative 13C enrichments in plasma acetaminophen-glucuronide and glucose after an oral dose of acetaminophen (9,10). Flux through glycogen phosphorylase was assessed by replacing the [1-13C]glucose infusion with an unlabeled glucose infusion for the last 2 h of the glucose-insulin clamp and monitoring the amount of 13C-labeled glycogen replaced by unlabeled glycogen (7).

RESEARCH DESIGN AND METHODS

Six healthy sedentary volunteers (three men and three women, aged 26 ± 2 years, body weight 63 ± 2 kg, BMI 22 ± 1 kg/m², glycosylated hemoglobin 5.6 ± 0.2% [normal range 4–8%]) were studied in two separate 4-h euglycemic–hyperinsulinemic clamp studies with and without a concomitant low-dose infusion of fructose. The experimental protocol was reviewed and approved by the Yale University Human Investigation Committee, and informed written consent was obtained from all subjects. An isocaloric diet consisting of 60% carbohydrate, 20% protein, and 20% fat (33 kcal/kg body wt daily), prepared by the metabolic kitchen of the Yale–New Haven Hospital General Clinical

From the Departments of 1Internal Medicine and 2Cellular and Molecular Physiology and the 3Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut.

Address correspondence and reprint requests to Kitt Falk Petersen, Dept. of Internal Medicine, Yale University School of Medicine, 333 Cedar St., FMP 104, P.O. Box 208020, New Haven, CT 06520-8020. E-mail: k.f.petersen@yale.edu.

Received for publication 1 August 2000 and accepted in revised form 5 March 2001.

APE, atom percent enrichment; GC-MS, gas chromatography–mass spectrometry; GCRC, General Clinical Research Center; NMR, nuclear magnetic resonance.
Research Center (GCRC), was given for 3 days before each study. During these days, the subjects were instructed to limit their activity to normal walking. On the day before the study, the subjects were admitted to the GCRC at 6:00 a.m., given dinner (600 ± 22 kcal, 66 carbohydrates, 238 fat, 20 protein) at 9:00 p.m., and fasted overnight. The studies were performed in random order and spaced 6–12 weeks apart. To minimize changes in ovarian hormonal effects on glucose metabolism, female subjects were studied during the follicular phase (day 0–12) of the menstrual cycle.

Experimental procedures. On the morning of the study, a Teflon catheter was placed in an antecubital vein in the left arm for infusion, and another catheter was placed in an antecubital vein in the right arm for blood withdrawal. The subjects were brought to the Yale Magnetic Resonance Center in a wheelchair and positioned in a 2.1-Tesla NMR spectrometer. At 5 min before the start of the clamp, an infusion of somatostatin was begun at a rate of 0.1 μg·kg⁻¹·min⁻¹ body wt ·min⁻¹ and continued throughout the study to inhibit endogenous insulin and glucagon secretion (11). At time 0 min, an euglycemic–hyperinsulinemic clamp was begun by raising plasma insulin levels to ~400 pmol/l with a primed constant infusion of insulin at a rate of 240 pmol·min⁻¹ and continued throughout the study to minimize the discomfort of the subjects from lying motionless. The measurements were limited to these time periods to minimize the discomfort of the subjects from lying motionless and from 185 to 240 min. The mean rate of 13C1 glycogenolysis (b) was calculated as the difference between the observed change in 13C1 glycogen concentration during the chase period (120–240 min) with the predicted change in 13C1 glycogen, when assuming that constant glycogen breakdown, i.e., only the fraction of glycogen that escapes the hepatic glucose pool, was estimated by comparing the observed change in the 13C1 glycogen concentration during the chase period (120–240 min) with the predicted change in 13C1 glycogen, when assuming that constant glycogen synthesis is without breakdown. The observed change in the 13C1 glycogen concentration was given as ΔPI·13C1 glycogen concentration, whereas the predicted change in 13C1 glycogen during each 15 min-time interval of the chase period is given as follows:

\[
\text{rate of glycogen synthesis} = b \times (1 - \text{glucose enrichment}) + 1 / 100.
\]

The difference between the predicted and the observed change in 13C1 glycogen represents an estimate for the amount of 13C1 glycogen that is broken down during each 15 min-time interval. The mean rate of 13C1 glycogenolysis is obtained by the slope of the line from the plot of the difference between the predicted and observed changes in 13C1 glycogen versus time. The rate of total glycogen breakdown (13C1 + 12C) is obtained by dividing this slope with the maximum plasma 13C UDP-glucose enrichment [b · maximum plasma 13C UDP-glucose enrichment + 1.1]. The relative percent hepatic glycogen turnover is then calculated as the ratio of the rate of glycogenolysis to the rate of hepatic glycogen synthesis × 100%; and the net rate of hepatic glycogen synthesis was calculated as the difference between the rates of hepatic glycogen accumulation and glycogen breakdown (7).

Data are presented as means ± SE. Linear regressions were calculated by the method of the least squares, and differences between the control and the fructose studies were assessed by paired t tests.

RESULTS

Plasma substrate and hormone concentrations. Plasma concentrations of glucose (control 6.0 ± 0.2 and fructose 5.8 ± 0.2 mmol/l) and insulin (control 48 ± 6 and fructose 42 ± 6 mmol/l) were similar between the experimental protocols in the overnight-fasted state. During the euglycemic–hyperinsulinemic clamp, plasma glucose concentrations were maintained at similar steady-state concentrations between the fructose and control studies (plasma glucose control 6.8 ± 0.1 and fructose 6.8 ± 0.1 mmol/l; plasma insulin control 354 ± 6 and fructose 312 ± 30 pmol/l; P < 0.001 vs. basal) (Fig. 1). There were no differences between plasma glucagon concentrations in the control and fructose studies at baseline (control 49 ± 5 and fructose 51 ± 5 ng/l) or during the clamp (control 33 ± 1 and fructose fast 35 ± 1 ng/l; P = 0.23). Fasting plasma concentrations of fatty acids (control 611 ± 35 and fructose 551 ± 17 μmol/l) were suppressed equally during the clamps studies (control 147 ± 8

REGULATION OF HEPATIC GLYCOGEN METABOLISM BY FRUCTOSE
and fructose $161 \pm 6 \, \mu mol/l$ ($P = 0.14$). There were no differences in plasma lactate concentrations between the control ($0.64 \pm 0.06 \, mmol/l$) and the fructose ($0.50 \pm 0.06 \, mmol/l$) studies before the experiments, and plasma lactate increased similarly in both protocols during the clamp (control 1.06 ± 0.14 and fructose $1.10 \pm 0.06 \, mmol/l$; $P < 0.005$ vs. basal). Basal plasma fructose concentrations were $128 \pm 5 \, \mu mol/l$ and increased during the fructose infusion by approximately a factor of 2 to $276 \pm 9 \, \mu mol/l$ ($P < 0.0001$).

Glucose infusion rates. The mean glucose infusion rates from 60 to 240 min were similar in the two studies (control 45.5 ± 3.8 and fructose $45.7 \pm 3.8 \, \mu mol \cdot kg^{-1} \cdot min^{-1}$). The fructose infusion rate was $3.5 \, \mu mol \cdot kg^{-1} \cdot min^{-1}$.

Pathways of hepatic glycogen synthesis. An estimate of the percent contribution of the direct pathway of hepatic glycogen synthesis was obtained by the ratio of plasma 13C enrichments in glucose and acetaminophen-glucuronide. The percent contribution of the direct pathway to hepatic glycogen synthesis was similar in the control ($63 \pm 5\%$) and the fructose ($57 \pm 2\%$; $P = 0.10$) studies.

Basal hepatic glycogen concentration and estimated rates of glycogen synthase flux, glycogen phosphorylase flux, and net hepatic glycogen synthesis. Fasting liver glycogen concentrations were similar before each clamp study (control 259 ± 25 and fructose $255 \pm 15 \, mmol/l$). Total liver glycogen concentrations increased in a linear fashion 60–120 min during both study protocols (control $r = 0.99$ and fructose $r = 0.99$) (Fig. 2). Figure 3 depicts the mean increase in the integrated peak intensity from C1 liver glycogen in the 13C NMR spectra in the control and fructose infusion studies, respectively. The peak intensity at the beginning of the chase period was set to one in all subjects. Note that the 120-min time point, when the [1^{-13}C]glucose infusion was replaced by the 12C glucose chase, was set to time 0 in Fig. 3. It should also be noted that the variability indicated by the SE bars is primarily caused by differences between subjects, not intra-individual variations. The intra-individual variations caused by noise in the NMR measurements were $<10\%$ in the basal state and remained constant, i.e., approximately ± 0.1 peak intensity unit, throughout each study. The C1 glycogen peak intensity reached a peak at the end of the [1^{-13}C]glucose infusion and declined in a similar fashion in the control and fructose studies (Fig. 3). Also in Fig. 3A and B are the predicted mean increases in C1 glycogen peak intensity calculated from the measured plasma glucose 13C enrichment during the chase period as described in RESEARCH DESIGN AND METHODS. In both the control and the fructose studies, a measurable increase in C1 glycogen peak intensity is predicted in the absence of glycogen turnover. In the control studies, the flux through glycogen synthase was $0.31 \pm 0.06 \, mmol/l$ per min and through glycogen phosphorylase was $0.17 \pm 0.04 \, mmol/l$ per min ($\sim 55\%$ of the glycogen synthase flux). Consequently, rates of net hepatic glycogen synthesis were relatively low ($0.14 \pm 0.05 \, mmol/l$ per min), which is consistent with our previous observations under the same conditions (7). During the fructose infusion, flux through glycogen synthase increased by a factor of 2.5 to $0.79 \pm 0.16 \, mmol/l$ per min ($P = 0.018$ vs. control) (Fig. 4), whereas flux through glycogen phosphorylase was unchanged ($0.24 \pm 0.06 \, mmol/l$ per min; $P = 0.16$ vs. control) (Fig. 4). This stimulating effect of fructose on glycogen synthase flux resulted in a threefold increase in the net rate of hepatic glycogen synthesis ($0.54 \pm 0.12 \, mmol/l$ per min; $P = 0.008$ vs. control) (Fig. 4) and a tendency toward a decrease in the percent hepatic glycogen cycling as estimated by the ratio of glycogen synthase flux and glycogen phosphorylase flux (control 57 ± 14 and fructose $33 \pm 6\%$; $P = 0.18$).
DISCUSSION

In the present study, we show that a relatively low-dose (−9 g) infusion of fructose during a euglycemic-hyperinsulinemic clamp, which raised plasma fructose concentrations from 130 to 280 μmol/l, resulted in a 2.5-fold stimulation of flux through glycogen synthase without affecting glycogen phosphorylase flux, thereby resulting in a threefold increase in rates of net hepatic glycogen synthesis when compared with the control studies, where no fructose was infused. These data are consistent with the findings of a study performed in dogs in which small amounts of fructose were infused into the portal circulation during a hyperglycemic-hyperinsulinemic clamp (5). The rate of hepatic glycogen synthesis was estimated from the glycogen concentration in the liver tissue obtained at the end of the study and the net incorporation of 3H into liver glycogen. Using this approach, the rate of hepatic glycogen synthesis was found to be threefold higher when compared with historical controls. Because the rate of glycogen synthesis was calculated indirectly and these studies were performed with three ascending infusion rates of fructose, it is difficult to compare directly the rates of glycogen synthesis in these dog studies with our study (5).

There were no differences in rates of glucose infusion during the control and fructose studies, although rates of hepatic glucose uptake increased significantly in the fructose studies. The increase in hepatic glucose uptake during the fructose studies (from 0.31 mmol/l per min [−7.4 μmol·kg⁻¹·min⁻¹] to 0.79 mmol/l per min [−19 μmol·kg⁻¹·min⁻¹]) would account for −12 or −2 mg·kg⁻¹·min⁻¹. The infusion rate of fructose was 3.5 ± 0.2 μmol·kg⁻¹·min⁻¹, which could account for approximately one-third of the increase in hepatic glucose uptake. The remaining would be too small to detect in our glucose infusion rates.

Shiota et al. (5) estimated the amount of glycogen synthesized by the direct pathway by dividing the 3H radioactivity in liver glycogen by the average 3H specific activity in arterial plasma glucose during the hyperglycemic clamp and found it to be ~90% compared with 54–58% in historical control studies (15,16). In contrast, we found that the direct pathway accounted for ~60% of hepatic glycogen synthesis in the control study, which is similar to our previous results in humans (7,17), and that the contribution of the direct pathway of liver glycogen synthesis was unchanged by the infusion of fructose. It is unclear why these results differ, but this may be attributed to differences in the protocols, as our study was conducted under conditions of euglycemia (6.8 mmol/l), and the dog studies were performed under conditions of hyperglycemia (12.5 mmol/l) with a graded infusion of fructose. In addition, plasma insulin concentrations in our human studies were ~330 pmol/l, which was 1.7-fold higher than those in the dog studies (195 pmol/l), and we did not replace basal glucagon levels, as was done in the dog studies.

Interestingly, fructose caused a 2.5-fold increase in flux through glycogen synthase without any changes in the percent contribution of flux through the direct or indirect pathways of glycogen synthesis. These data suggest that fructose regulates flux into liver glycogen not only at glucokinase but also possibly at the level of glycogen synthase. In contrast to the marked stimulatory effects of fructose on glycogen synthase flux, we found that infusion of small amounts of fructose had no significant effects on glycogen phosphorylase activity. The regulation of phos-
phorylase activity by fructose is controversial. In liver extract studies, fructose-1-P has been found to inhibit phosphorylase phosphatase and to activate phosphorylase (18,19), whereas in the perfused liver, fructose has been shown to stimulate glycogen synthesis by inhibition of glycogen phosphorylase activity (20).

In summary, these are the first studies to demonstrate directly that small amounts of fructose can have a profound impact on stimulating net hepatic glycogen synthesis in humans. Furthermore, these studies reveal that the mechanism by which this occurs is through stimulation of glycogen synthase flux by 2.5-fold, with no significant effect to inhibit glycogen phosphorylase flux. Because net hepatic glycogen synthesis (21,22) has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of net hepatic glycogen synthesis by this mechanism may be of potential therapeutic value.

ACKNOWLEDGMENTS
This work was supported by grants from the U.S. Public Health Service (RO1 DK-42930, MO1 RR-00125, and P30 DK-45735) and the Juvenile Diabetes Foundation International (to K.F.P.).

K.F.P. is the recipient of a K23-award from the National Institutes of Health, and G.I.S. is an investigator of the Howard Hughes Medical Institute.

We thank Martin Krssak, Veronika Walton, Suzanne Casseria, Karynn Gerow, and the staff of the Yale–New Haven Hospital GCRC for expert technical assistance.

REFERENCES
6. Magnusson I, Rothman DL, Jucker B, Cline GW, Shulman RG, Shulman GI.

