Circulating Adiponectin Levels Are Reduced in Nonobese but Insulin-Resistant First-Degree Relatives of Type 2 Diabetic Patients

F. Pellmé,1 U. Smith,1 T. Funahashi,2 Y. Matsuzawa,2 H. Brekke,3 O. Wiklund,4 M.-R. Taskinen,5 and P.-A. Jansson1

Adiponectin, one of the most abundant gene transcript proteins in human fat cells, has been shown to improve insulin action and is also suggested to exert antiatherogenic effects. We measured circulating adiponectin levels and risk factors for atherosclerosis in 45 healthy first-degree relatives of type 2 diabetic subjects (FDR) as well as 40 healthy control subjects (CON) without a known family history of diabetes. Insulin sensitivity (S_i) was studied with the minimal model, and measurements of adiponectin, metabolic variables, inflammatory markers, and endothelial injury markers, as well as lipoprotein concentrations, were performed. FDR were insulin resistant $(3.3 \pm 2.4 < 4.5 \pm 2.6 \times 10^{-4} \times \text{min}^{-1} \times \mu\text{U/mL} \ [\text{mean} \pm \text{SD}], P < 0.01)$, and their circulating plasma adiponectin levels $(6.6 \pm 1.8 < 8.1 \pm 3.0 \text{ ng/mL}, P < 0.05)$ were decreased. After adjustments for age in FDR, adiponectin levels were negatively correlated with fasting proinsulin $(r = 0.64, P < 0.001)$, plasminogen activator inhibitor $(PAI)-1$ activity $(r = 0.56, P < 0.001)$, fasting insulin $(r = 0.55, P < 0.001)$, and acute insulin response $(r = 0.40, P < 0.05)$; they were positively related to HDL cholesterol $(r = 0.48, P < 0.01)$ and S_i $(r = 0.41, P < 0.01)$. Furthermore, when adjusted for age, waist, and S_i, adiponectin was associated with HDL cholesterol and proinsulin, which explained 51% of the variation in adiponectin in multiple regression analyses in that group. In conclusion, circulating plasma adiponectin levels were decreased in nonobese but insulin-resistant FDR and, in addition, related to several facets of the insulin resistance syndrome (IRS). Thus, hypo-adiponectinemia may be an important component of the association between cardiovascular disease and IRS.

Diabetes 52:1182–1186, 2003

ReSEARCH DESIGN AND METHODS

Forty-five FDR were recruited by advertisements in local newspapers and via questionnaires, and 40 CON were randomly selected among men in the county council register for Göteborg. Inclusion criteria were subjects with two first-degree relatives or one first-degree relative and two second-degree relatives with type 2 diabetes (grandparents, uncle, or aunt); male sex (to exclude variation in insulin sensitivity during the menstrual cycle); normal glucose tolerance; and no evidence of hypertension, endocrine disease, or obesity (BMI >30 kg/m²) (Table 1). The control group consisted of subjects who did not have a known family history of diabetes but fulfilled the remaining criteria. FDR and CON were similar with respect to age $(43 \pm 9$ vs. 45 ± 7 years), cigarette smoking $(3.7 \pm 6.8$ vs. 5.7 ± 10.9 pack-years), and use

© 2003 by the American Diabetes Association.

From 1The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy at Göteborg University, Göteborg, Sweden; the 2Department of Internal Medicine and Molecular Science, Osaka University, Osaka, Japan; the 3Department of Clinical Nutrition, the Sahlgrenska Academy at Göteborg University, Göteborg, Sweden; the 4Wallenberg Laboratory for Cardiovascular Research, the Sahlgrenska Academy at Göteborg University, Göteborg, Sweden; and the 5Department of Medicine, University of Helsinki, Helsinki, Finland.

Received for publication 7 August 2002 and accepted in revised form 21 January 2003.

1CON, control subjects; CRP, C-reactive protein; CVD, cardiovascular disease; FDR, first-degree relatives of type 2 diabetic subjects; IRS, insulin resistance syndrome; OGTT, oral glucose tolerance test; PAI, plasminogen activator inhibitor; PAIR, peroxisome proliferator–activated receptor; S_i, insulin sensitivity index; TNF, tumor necrosis factor.
of smoke-free tobacco (6.4 ± 11.4 vs. 2.3 ± 8.0 g/day, NS), respectively. All participants gave informed consent and the study was approved by the Ethical Committee of Göteborg University.

Blood pressure, oral glucose tolerance test, insulin sensitivity, and acute insulin response. Blood pressure was measured with a standard mercury sphygmomanometer on the right arm after the subjects had been resting in the supine position for at least 5 min. Mean values were determined from two independent measurements taken at 5-min intervals.

All subjects underwent a 75-g oral glucose tolerance (OGTT) test after fasting in the supine position for at least 5 min. Mean values were determined using the Bergman MINIMOD computer program (18).

Glucose was injected intravenously in an antecubital vein over a period of 60 s (0.3 g/kg body wt of 30% glucose) to measure the acute insulin response. Twenty minutes after the glucose injection, insulin (Actrapid; Novo Nordisk, Copenhagen, Denmark) was administered intravenously as a bolus of 0.03 U/min (75 kg/m2) (19).

Plasma glucose at 120 min (mmol/l) 5.0 ± 0.9

Systolic (mmHg) 128 ± 16

Diastolic (mmHg) 76 ± 6

Fasting plasma glucose (mmol/l) 4.9 ± 0.5

Fasting plasma insulin (pmol/l) 54 ± 24

Plasma insulin at 120 min (pmol/l) 246 ± 174

Fasting plasma proinsulin (pmol/l) 11 ± 7

Plasma glucose at 120 min (mmol/l) 118 ± 9

Plasma insulin at 120 min (pmol/l) 73 ± 7

S(×10⁻⁴ × min⁻¹ per μU/ml) 3.3 ± 2.4

Oral glucose tolerance test

Data are mean ± SD. ICAM, intercellular adhesion molecule; VCAM, vascular cell adhesion molecule.

TABLE 1

<table>
<thead>
<tr>
<th>Test</th>
<th>Relatives</th>
<th>Control subjects</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male (n = 45)</td>
<td>Male (n = 40)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>43.1 ± 8.6</td>
<td>45.1 ± 6.9</td>
<td>0.03</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.8 ± 2.6</td>
<td>24.6 ± 2.6</td>
<td>0.05</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>94 ± 0.9</td>
<td>90 ± 0.9</td>
<td>0.05</td>
</tr>
<tr>
<td>Body fat (kg)</td>
<td>19.5 ± 6.1</td>
<td>16.5 ± 6.6</td>
<td>0.03</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic (mmHg)</td>
<td>128 ± 16</td>
<td>118 ± 9</td>
<td>0.01</td>
</tr>
<tr>
<td>Diastolic (mmHg)</td>
<td>76 ± 6</td>
<td>73 ± 7</td>
<td>0.05</td>
</tr>
<tr>
<td>Fasting plasma proinsulin (pmol/l)</td>
<td>11 ± 7</td>
<td>9 ± 6</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/l)</td>
<td>4.9 ± 0.5</td>
<td>4.4 ± 0.3</td>
<td>0.0001</td>
</tr>
<tr>
<td>Fasting plasma insulin (pmol/l)</td>
<td>54 ± 24</td>
<td>48 ± 30</td>
<td></td>
</tr>
<tr>
<td>Plasma glucose at 120 min (mmol/l)</td>
<td>5.0 ± 1.2</td>
<td>4.0 ± 1.1</td>
<td>0.0001</td>
</tr>
<tr>
<td>Plasma insulin at 120 min (pmol/l)</td>
<td>246 ± 174</td>
<td>168 ± 126</td>
<td>0.05</td>
</tr>
<tr>
<td>S(×10⁻⁴ × min⁻¹ per μU/ml)</td>
<td>3.3 ± 2.4</td>
<td>4.5 ± 2.6</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Insulin secretion rate

First-phase insulin response (0–10 min) (μU/min) 409 ± 305

Lipoprotein concentration

Fasting serum total cholesterol (mmol/l) 4.9 ± 0.9

Fasting serum HDL cholesterol (mmol/l) 1.15 ± 0.23

Fasting serum LDL cholesterol (mmol/l) 3.2 ± 0.8

Fasting serum triglyceride (mmol/l) 1.26 ± 0.60

Fasting plasma free fatty acid (mmol/l) 0.48 ± 0.18

LDL size (nm) 26.0 ± 1.22

Inflammatory markers

Serum C-reactive protein, (mg/l) 1.28 ± 2.04

Plasma fibrinogen (g/l) 2.55 ± 0.38

Endothelial injury markers

Serum VCAM-1 (ng/ml) 438 ± 72

Serum ICAM-1 (ng/ml) 249 ± 50

Serum E-selectin (ng/ml) 56.8 ± 19.6

Other markers

Serum adiponectin (μg/ml) 6.6 ± 1.8

Plasma PAI-1 (IU/ml) 19.4 ± 15.4

Statistical analysis. For descriptive purposes, mean and SD were used. The Mann-Whitney U test was used for comparisons between the groups. To adjust for confounding variables when comparing the groups, logistic regression was used. All correlations were analyzed with Spearman’s nonparametric correlation coefficient. To adjust for confounding variables in the correlation analysis, Spearman’s partial nonparametric correlation coefficient was calculated. To select independent predictors, only variables with a univariate correlation (P < 0.1) were chosen. Then, a stepwise multiple regression analysis was used after transforming the dependent variable to normal distribution by calculating normal score using Blom’s method (24).

All tests were two-tailed and conducted at 5% significance level. SAS 8.2 was used for statistical calculations.
significantly showed a negative correlation of borderline insulin (parameter estimate \(-0.12, SE 0.04, F \text{value} 7.7, P = 0.009 \) explained 48% of the variability in the adiponectin concentration.

DISCUSSION

The two salient findings of the present study are 1) circulating adiponectin levels are significantly lower in healthy individuals with high propensity for type 2 diabetes, adjusted for BMI, body fat, or waist circumference; and 2) adiponectin levels, when adjusted for age, are related to several key risk factors for CVD in the FDR group. These factors include both metabolic risk factors related to insulin sensitivity (like hyperinsulinemia, proinsulin, HDL cholesterol, and PAI-1) and cellular adhesion molecules (E-selectin). Thus, these data support experimental studies that adiponectin can improve insulin sensitivity and action in obese rodent models, as well as several observations suggesting that it exerts antiatherogenic effects (12,25–30).

In contrast, a recent study of FDR and CON found similar adiponectin levels in the two groups and no relationship between adiponectin and different measures of insulin sensitivity in the FDR group. However, the authors found significantly reduced levels of adiponectin mRNA in subcutaneous adipose tissue from FDR as compared with CON (31). We did not examine adiponectin mRNA in this study, but recent findings in our laboratory are consistent with lower adiponectin mRNA levels in nonobese insulin-resistant subjects (data not shown). This is a novel finding, although it is well established that plasma adiponectin levels are decreased in other insulin-resistant states, such as obesity and type 2 diabetes (9,13,15,32).

Interestingly, small insulin-sensitive adipocytes appear to secrete more adiponectin, since obese monkeys with hypercellular but small adipocytes have higher plasma adiponectin levels than obese monkeys with fat cell hypertrophy (33). By analogy, activation of PPAR-\(\gamma \), a transcription factor of key importance for adipocyte differentiation, also leads to increased adiponectin levels (34). Yu et al. (35) also recently reported that troglitazone, a synthetic PPAR-\(\gamma \) ligand, increased plasma adiponectin levels in lean, obese, and type 2 diabetic subjects after 3 months. Moreover, adiponectin correlated with HDL cholesterol, which is in agreement with the present data as well as other recent studies (14,16,17). Taken together, these observations support the concept that the cellular expression of adiponectin is under the control of PPAR-\(\gamma \) and that it is more closely related to insulin sensitivity than obesity.

In this study, we also found that adiponectin was inversely correlated with proinsulin. This was true after adjustment for age, waist circumference, and insulin sensitivity and has, to our knowledge, not been reported previously. The reason for this is unclear, but may be a consequence of the increased insulin levels and, initially, insulin resistance. However, other possibilities, including effects on the intracellular processing of insulin, cannot be
excluded. Hyperproinsulinemia has been shown to be a risk factor for cardiovascular disease (36), and this may also be related to lower adiponectin levels. Similarly, we found in the present study a strong correlation between circulating PAI-1 levels and adiponectin. PAI-1 is also a risk factor for CVD (37), and its secretion from the adipose tissue is increased by cytokines like TNF-α (38). Adiponectin has been shown to reduce TNF-α secretion as well as the TNF-α-induced expression of adhesion molecules in endothelial cells (12).

Taken together, our data lend further support to the hypothesis that adiponectin can exert antiatherogenic effects in humans.

In conclusion, adiponectin levels were significantly reduced in nonobese but insulin-resistant FDR with a high propensity for type 2 diabetes. In addition, an association was found between adiponectin, proinsulin, HDL cholesterol, and other facets of the insulin resistance syndrome. Thus, adiponectin may be an important mediator of the relationship between insulin resistance and atherosclerosis, and thus could be an important target for future diabetes therapy.

ACKNOWLEDGMENTS
This work was supported by the Inga-Britta and Arne Lundberg Foundation, the Swedish Diabetes Association, Novo Nordisk Foundation, the Regional Health Care Authority of West Sweden, Swedish Medical Research Council (grant no. K2002-72X-03506-31C) and the European Union (project QLG1-CT-1999-00674). We thank Eva Alfgren, Erika Löfstedt, and Caroline Moberg for technical assistance and for their help with recruiting the subjects. Statistical advice was provided by Gunnar Ekeroth.

REFERENCES

33. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y: Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. *Diabetes* 50:1126–1133, 2001

