K_{ATP} Channels and Pancreatic Islet Blood Flow in Anesthetized Rats

Increased Blood Flow Induced by Potassium Channel Openers

Leif Jansson, Mikael Kullin, F. Anders Karlsson, Birgitta Bodin, John Bondo Hansen, and Stellan Sandler

K_{ATP} channels are important for insulin secretion and depolarization of vascular smooth muscle. In view of the importance of drugs affecting K_{ATP} channels in the treatment of diabetes, we investigated the effects of these channels on splanchnic blood perfusion in general and pancreatic islet blood flow in particular. We treated anesthetized Sprague-Dawley rats with the K_{ATP} channel openers diazoxide or NNC 55-0118 or the K_{ATP} channel closer glipizide. Both diazoxide and NNC 55-0118 dose-dependently increased total pancreatic and islet blood flow in the presence of moderate hypoglycemia, but had no effects on the blood perfusion of other splanchnic organs. Diazoxide markedly lowered the mean arterial blood pressure and thus increased vascular conductance in all organs studied. NNC 55-0118 had much smaller effects on the blood pressure. Glipizide did not affect total pancreatic blood flow, but decreased islet blood flow by 50% in the presence of hypoglycemia. We conclude that K_{ATP} channels actively participate in the blood flow regulation of the pancreatic islets and that substances affecting such channels may also influence islet blood flow. Diabetes 52:2043–2048, 2003

The vascular system of the pancreatic islets is both anatomically and functionally autonomous from that of the exocrine parenchyma (1,2). Previous studies have demonstrated that islet blood perfusion is adapted to the high metabolic demands of the endocrine cells and that the islets are able to regulate their flow to the needs for hormone release (1). To achieve this minute regulation, the islet blood perfusion is influenced by both metabolic and nervous signals (1,3). Adenosine seems to be of major importance for metabolic blood flow responses in the islets (3) and, for example, in retina (4) and heart (5). In the latter organs, the effects of adenosine are mediated by K_{ATP} channels.

In addition to being present in vascular smooth muscle (6), K_{ATP} channels are of crucial importance for insulin release by maintaining a hyperpolarization of normal β-cells. Thus, when the potassium channels are closed by increased cellular concentrations of ATP (e.g., in association with β-cell glucose metabolism, an altered ion flux leads to depolarization). This opens voltage-gated Ca²⁺ channels, which increase cytosolic Ca²⁺ concentrations, thereby favoring exocytosis (7,8). Both K_{ATP} channel closers and openers are available, and the former, i.e., sulfonylureas, have widespread use as a treatment for type 2 diabetes.

Recently, K_{ATP} channel openers, like diazoxide, have also become of interest in view of the concept of β-cell rest as an option in the initial treatment of type 1 diabetes. An argument for this approach is that inhibition of insulin secretion lowers the expression of β-cell autoantigens (9), which may diminish the immune-mediated assault characteristic of type 1 diabetes. However, most of the early K_{ATP} channel openers were associated with marked hypotension, which made their continuous and frequent clinical use difficult. Recently, more β-cell–specific drugs with only minor effects on blood pressure have been developed (10,11).

Given the combined vasoactive and insulin-releasing properties associated with activation or inhibition of K_{ATP} channels, we deemed it of interest to investigate their effects on pancreatic islet blood perfusion. To achieve this, we used diazoxide, which opens both β-cell and vascular smooth muscle K_{ATP} channels as well as the more β-cell–specific K_{ATP} channel opener NNC 55-0118 (10,11). Furthermore, we also examined the effects of a K_{ATP} channel closer, glipizide. Our findings suggest that opening of K_{ATP} channels in β-cells are associated with a marked increase in total pancreatic and islet blood flow, with a preference for the exocrine parenchyma.

RESEARCH DESIGN AND METHODS

Animals. Male Sprague-Dawley rats, weighing 325–350 g, were obtained from a local breeding colony (Biomedical Center, Uppsala, Sweden) and were used in all experiments. All animals had free access to tap water and pelleted rat food. The use of animals was in accordance with international guidelines (NIH 85-23) and were approved by the local animal ethics committee at Uppsala University.

From the 1Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; the 2Department of Medical Sciences, Uppsala University, Uppsala, Sweden; and 3Novo Nordisk A/S, Måløv, Denmark.

Address correspondence and reprint requests to Dr. Leif Jansson, Department of Medical Cell Biology, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden. E-mail: leif.jansson@medcellbiol.uu.se.

Received for publication 13 February 2003 and accepted in revised form 12 May 2003.

ELISA, enzyme-linked immunosorbent assay; SUR, sulfonylurea receptor; VSMC, vascular smooth muscle cell.

© 2003 by the American Diabetes Association.
TABLE 1
Measurements were made before (0 min) or 20 min after an intravenous injection of 2 ml/kg saline or diazoxide (10, 20, or 30 mg/kg) in anesthetized Sprague-Dawley rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Saline</th>
<th>Diazoxide (10 mg/kg)</th>
<th>Diazoxide (20 mg/kg)</th>
<th>Diazoxide (30 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Blood glucose (mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 min</td>
<td>6.6 ± 0.1</td>
<td>6.8 ± 0.2</td>
<td>6.3 ± 0.1</td>
<td>6.4 ± 0.2</td>
</tr>
<tr>
<td>20 min</td>
<td>6.8 ± 0.2</td>
<td>9.1 ± 0.3</td>
<td>10.6 ± 0.6</td>
<td>9.6 ± 0.5</td>
</tr>
<tr>
<td>Serum insulin (ng/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 min</td>
<td>1.17 ± 0.17</td>
<td>0.82 ± 0.09</td>
<td>0.74 ± 0.11</td>
<td>0.12 ± 0.03</td>
</tr>
<tr>
<td>20 min</td>
<td>122 ± 4</td>
<td>120 ± 4</td>
<td>118 ± 4</td>
<td>116 ± 4</td>
</tr>
</tbody>
</table>

Mean arterial blood pressure (mmHg)

----------	--------	----------------------	----------------------	
0 min	120 ± 5	120 ± 5	118 ± 4	116 ± 4
20 min	120 ± 5	93 ± 4	69 ± 4	60 ± 1

Data are means ± SE. *P < 0.001 vs. saline-injected rats; †P < 0.001 vs. animals given diazoxide 10 mg/kg; ‡P < 0.01 vs. animals given diazoxide 20 mg/kg. All comparisons were made with ANOVA using Bonferroni's correction.

Blood flow measurements after administration of diazoxide. The rats were anesthetized with an intraperitoneal injection of thiobutabarbital sodium (130 mg/kg body wt, Inactin; Research Biochemicals International, Natick, MA) and placed on a heated operating table to maintain body temperature. Polyethylene catheters were inserted into the ascending aorta, via the right carotid artery, and into the left femoral artery and vein. The former catheter was connected to a pressure transducer (PDCR 75/1; Druck Ltd., Groby, U.K.), whereas the latter was used to infuse Zinger solution (5% dextrose in water + 0.1% heparin) to substitute for fluid losses. When the blood pressure had remained stable for at least 15 min an intravenous injection of diazoxide (Hypertstat; Schering-Plough AB, Stockholm, Sweden; 10, 20, or 30 mg/kg body wt) or the corresponding volume (2 ml/kg body wt) of saline was given. The blood flow measurements were then performed 20 min later.

The arterial blood perfusion of the whole pancreas, islets, duodenum, colon, adrenal glands, and kidneys was then measured with a microsphere technique (12). Briefly, a total of 1.5-2.0·10⁵ nonradioactive microspheres (EZ-Trac; Triton Microspheres, San Diego, CA), with a diameter of 10 μm, was dissolved in a 50% solution of DMSO and then administered intravenously. After an equilibration period of 5 s before the microsphere injection, and continuing for a total of 60 s, an arterial blood sample was collected by free flow from the catheter in the femoral artery at a rate of 0.40 ml/min. The exact withdrawal rate was confirmed in each experiment by weighing the sample. Arterial blood was collected from the carotid catheter for determination of blood glucose and serum insulin concentrations as given below. The animals were then killed, and the pancreas and adrenal glands were removed in toto, blotted, weighed, and treated with a freeze-thawing technique, which visualized the pancreatic islets and microspheres (12). Approximately 100 mg each of the duodenum (around the papilla), colon (descending part), and left kidney (slice through the center) were also removed and treated in the same way. The number of microspheres in these samples were then counted in a microscope equipped with both bright and dark field illumination. The blood flow values were measured according to the formula Q_{org} = Q_{ref} × N_{org}/N_{ref}, where Q_{org} is organ blood flow (ml/min), Q_{ref} is withdrawal rate of the reference sample, N_{org} is number of microspheres present in the organ, and N_{ref} is number of microspheres in the reference sample. Blood flow values based on the microsphere content of the adrenal glands were used to confirm that the microspheres were adequately mixed in the circulation. A difference <10% in the blood flow values was taken to indicate sufficient mixing.

The number of microspheres in the arterial reference sample was determined by sonicating the blood, then transferring samples to glass microfiber filters (pore size <0.2 μm), and then counting the number of microspheres in the same microscope as referred to above.

Blood flow measurements after administration of glipizide. The surgical preparation was performed as given above. Glipizide (Sigma, St. Louis, MO) was dissolved in a 50% solution of DMSO and then administered intravenously (25 μg/kg body wt) 45 min before the blood flow measurements. This time point was chosen since it was the earliest providing a significant decrease in blood glucose concentrations. Control animals were given the same volume (0.5 ml/kg body wt) of vehicle alone. The blood flow measurements were performed with the microsphere technique referred to above. However, only the blood perfusion to the whole pancreas, islets, and the adrenal glands was determined in these animals.

Blood flow measurements after administration of diazoxide and glipizide. All comparisons were made with ANOVA using Bonferroni's correction.

Blood flow measurements after administration of different doses of diazoxide or saline (concentration 0) to anesthetized Sprague-Dawley rats. Values are means ± SE for 7-8 experiments. **P < 0.01, ***P < 0.001 when compared with the animals receiving only saline. §§P < 0.05, §§§P < 0.01 when compared with animals receiving diazoxide 10 mg/kg. All comparisons were made with ANOVA using Bonferroni's correction.
pancreatic islet blood flow, a decrease was seen when 10 or 30 mg/kg of diazoxide was given (Fig. 3). When 20 mg/kg diazoxide was given, the difference was not significant ($P = 0.055$). This indicates that diazoxide caused a redistribution of the blood perfusion within the pancreas in favor of the exocrine compartment.

The blood perfusion of the kidneys and adrenal glands was unaffected by diazoxide (Table 2). The highest dose of diazoxide induced an increase in both duodenal and colonic blood flow when compared with animals given 10 mg/kg, but not when compared with control rats (Table 2).

Because all doses of diazoxide decreased mean arterial blood pressure, we calculated the vascular conductance of the different organs in which blood flow measurements were made (Table 3). As can be seen, diazoxide at the lowest dose increased pancreatic vascular conductance. The value for adrenal vascular conductance showed an increase, whereas the values for the other organs were unchanged. The two highest doses of diazoxide, however, markedly increased the vascular conductance in all examined organs when compared with both control rats and those given 10 mg/kg diazoxide. No further increase in vascular conductance was seen when rats receiving 30 mg/kg diazoxide were compared with those given 20 mg/kg.

Administration of NNC 55-0118 (Table 4). The drug did not affect blood glucose concentrations, but it did decrease serum insulin concentrations and mean arterial blood pressure in the anesthetized rats. No effects on duodenal, colonic, renal, or adrenal blood flow were seen after administration of NNC 55-0118. However, both total pancreatic and islet blood flow were increased after administration of NNC 55-0118. Fractional islet blood flow was not changed after administration of NNC 55-0118 (7.6 ± 0.7 vs. 8.9 ± 0.6%, respectively).

Administration of glipizide (Table 5). No effects on mean arterial blood pressure (104 ± 3 vs. 103 ± 1 mmHg in vehicle-treated versus glipizide-treated rats, respectively) were seen. Blood glucose concentrations were decreased 45 min after glipizide administration. Serum insulin concentrations were not measured in these animals due to a technical failure. No effects on total pancreatic blood flow were seen, whereas islet blood flow was decreased after glipizide administration. Consequently, fractional islet blood flow was also diminished.

DISCUSSION

K_{ATP} channels are composed of a pore-forming unit that is a member of the inwardly rectifying K^+ channel family and constitutes either Kir6.1 or Kir6.2 (7). Normally, Kir6.1 is found in vascular smooth muscle cells (VSMCs), whereas Kir6.2 is located in β-cells (7). Recently Kir6.1 knockout mice were found to exhibit VSMCs, which have no detectable K_{ATP} currents and lack all vasodilator responses to K_{ATP} channel agonists (13). These animals showed spontaneous bouts of coronary vasospasm and ST-elevation, i.e., they reproduced key features of Prinzmetal angina (13). These findings would suggest that most VSMCs have Kir6.1 as their pore-forming unit. However, other studies have demonstrated that Kir6.2 also may be expressed in...
TABLE 3
Measurements were made 20 min after an intravenous injection of 2 ml/kg saline or diazoxide (10, 20, or 30 mg/kg) in anesthetized Sprague-Dawley rats

<table>
<thead>
<tr>
<th>Treatment (dose)</th>
<th>Saline (0)</th>
<th>Diazoxide (10 mg/kg)</th>
<th>Diazoxide (20 mg/kg)</th>
<th>Diazoxide (30 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pancreas (m·g⁻¹·mmHg⁻¹)</td>
<td>5.7 ± 0.7</td>
<td>12.6 ± 1.9*</td>
<td>26.5 ± 2.2†‡</td>
<td>30.0 ± 3.8†‡</td>
</tr>
<tr>
<td>Duodenum (m·g⁻¹·mmHg⁻¹)</td>
<td>17.1 ± 3.5</td>
<td>17.4 ± 5.0</td>
<td>42.9 ± 5.4†‡</td>
<td>60.1 ± 10.7†‡</td>
</tr>
<tr>
<td>Colon (m·g⁻¹·mmHg⁻¹)</td>
<td>6.3 ± 2.2</td>
<td>8.7 ± 1.6</td>
<td>26.9 ± 4.9§</td>
<td>26.2 ± 4.3*†</td>
</tr>
<tr>
<td>Kidney (m·g⁻¹·mmHg⁻¹)</td>
<td>33.5 ± 6.7</td>
<td>58.1 ± 14.3</td>
<td>67.8 ± 8.9*</td>
<td>92.3 ± 11.1†</td>
</tr>
<tr>
<td>Adrenals (m·g⁻¹·mmHg⁻¹)</td>
<td>25.4 ± 4.2</td>
<td>58.5 ± 13.9</td>
<td>88.3 ± 11.4†</td>
<td>91.0 ± 12.5†</td>
</tr>
</tbody>
</table>

Data are means ± SE. *P < 0.01 and †P < 0.001 when compared with saline-injected rats; ‡P < 0.001, §P < 0.01, ||P < 0.05 when compared with animals given diazoxide 10 mg/kg. All comparisons were made with ANOVA using Bonferroni’s correction.

Data collected from the table indicate that diazoxide leads to increased blood flow in several organs. The effect is more pronounced at higher doses, with a significant increase observed in the pancreas, kidney, and adrenals. The mechanism behind this increase is likely related to the opening of K_{ATP} channels, which is suggested to be selective for mitochondria and VSMCs depending on their location.

The table also shows that certain organs, such as the duodenum, exhibit a less pronounced response, indicating the complexity of K_{ATP} channel regulation in different cell types and organs.

In summary, the study demonstrates the selective nature of diazoxide in opening K_{ATP} channels, with implications for understanding the pharmacological effects of this drug in diabetic conditions.
TABLE 5
Measurements were made before (0 min) or 45 min after an intravenous injection of vehicle or glipizide (25 μg/kg) in anesthetised Sprague-Dawley rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Vehicle</th>
<th>Glipizide</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Blood glucose (mmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 min</td>
<td>4.7 ± 0.2</td>
<td>4.2 ± 0.1</td>
</tr>
<tr>
<td>45 min</td>
<td>4.4 ± 0.1</td>
<td>2.4 ± 0.3†</td>
</tr>
<tr>
<td>Total pancreatic blood flow (ml·min⁻¹·g⁻¹)</td>
<td>0.57 ± 0.10</td>
<td>0.55 ± 0.05</td>
</tr>
<tr>
<td>Islet blood flow (μl·min⁻¹·g⁻¹)</td>
<td>57 ± 10</td>
<td>35 ± 3†</td>
</tr>
<tr>
<td>Islet blood flow (% of pancreatic blood flow)</td>
<td>9.0 ± 0.4</td>
<td>6.5 ± 0.7*</td>
</tr>
</tbody>
</table>

Data are means ± SE. *P < 0.05, †P < 0.01 when compared with vehicle-treated rats. Comparisons were made with Student’s unpaired t test.

effects of the K_{ATP} channel openers on islet blood perfusion are not primarily dependent on activation of VSMCs potassium channels (i.e., those primarily containing Kir6.1/Sur2B potassium channels). It can instead be that activation of the β-cell Kir6.2/SUR1 channel and/or that substances released from the islet cells themselves affect the islet arteriolar blood vessels and lead to the marked increase in blood flow. This notion would then explain why diazoxide increases the vascular conductance more in the pancreas and islets, since diazoxide would also affect the common Kir6.1-containing VSMC potassium channels, leading to the general increase in vascular conductance seen in all studied organs, including the whole pancreas. Furthermore, diazoxide would also affect the β-cell K_{ATP} channel, which could cause a further increase in islet blood flow (see below) and, perhaps, total pancreatic blood flow. Several previous studies have demonstrated the independent regulation of islet blood flow when compared with the exocrine pancreas (1,2).

In favor of such an interpretation is our finding after administration of glipizide, i.e., a closer of K_{ATP} channels, with a selectivity for the β-cell Kir6.2/SUR1 form. Glipizide leads to a decrease in islet blood flow but had no effects on total pancreatic blood flow. In line with the anatomical organization of islet afferent blood supply (see above), it can also be that a substance affecting the islets may release substances that can diffuse to the islet arterioles and directly affect VSMCs. Immunolocalization of K_{ATP} channels in rat islets have demonstrated that SUR1 and Kir6.2 are found not only in β-cells, but also in α-, δ-, and pancreatic polypeptide cells (31). This implies that any of these endocrine cells can be a source of a substance(s) that may affect the islet afferent arteriole. At present, the nature of such a mediator is unknown. Glucagon is worthy of mentioning in this context because it is a vasoactive hormone (32). Furthermore, the administered glipizide caused hypoglycemia, which is likely to have increased glucagon release. Preliminary findings with insulin-induced hypoglycemia also demonstrate a decreased pancreatic islet blood flow, and this response seems to be nervously mediated (P.-O. Carlsson, L.J., unpublished observations). Thus, to what extent the decreased islet blood flow seen after glipizide administration is due to an effect on K_{ATP} channels or is nervously mediated is at present unknown.

A piece of indirect evidence pointing toward an effect of K_{ATP} channels in the regulation of normal islet blood flow is the association between these potassium channels and adenosine. We have recently shown that adenosine, probably produced by β-cells, can stimulate islet blood flow during conditions associated with increased islet metabolism (3). Moreover, a coupling between K_{ATP} channels and adenosine effects on pancreatic vasculature has been suggested in experiments on the perfused rat pancreas (33). In this context, it has been reported that heart microvascular dilation in response to adenosine is enhanced at lower intraluminal pressures by selective activation of VSMC K_{ATP} channels (5). This should be compared with islets, where the capillary blood pressure is lower than in the exocrine parenchyma, but where the blood flow response to adenosine is more pronounced (3).

To what extent the increased blood glucose concentrations may affect the islet blood perfusion in the present study is of interest. It has previously been demonstrated that hyperglycemia may increase the blood perfusion of the islets (34), presumably mediated by nitric oxide (35). Diazoxide increased the values to ~9 mmol/l, whereas NNC 55-0118 had no such effects. In view of the similarity on blood flow response but differences in blood glucose concentrations, it seems unlikely that the latter is responsible for the changes in islet blood flow. Furthermore, in a previous study, we observed that the blood glucose concentrations needed for this response to occur in anesthetized animals were higher than those seen in the present study (34). In general, however, the blood flow changes seen in the present study include effects mediated by K_{ATP} channels as well as more unspecific changes induced by altered blood pressure, blood glucose (see above), and serum insulin concentrations.

In an earlier study, the sulfonylurea tolbutamide was found to increase blood flow to the islets in rats in doses inducing hypoglycemia, but had no effects on total pancreatic blood flow (36). The reasons for the discrepancy between their findings and those in the present study are unknown. In the tolbutamide study, young rats, aged 5 weeks, were used, whereas we studied adult rats ~15 weeks old. We have previously noted marked differences in the absolute values in islet blood flow depending on the age of the animals, and it is also likely that the blood flow regulation differs (37,38). It is also possible that there are differences in the actions of tolbutamide and glipizide, although this seems less likely. However, in view of previous findings when applying sulfonylureas, we consider a decrease in islet blood flow to be a logical consequence of administering these substances. Thus, depending on the dose, glibenclamide is known to reduce early and peak vasodilation following reactive hyperemia in humans (39). Furthermore, glibenclamide (20 mg/kg) to rats increased vascular resistance and caused a systemic vasoconstriction (40). Therefore, it seems as if K_{ATP} channel closers would favor a vasoconstriction rather than a dilation. It may seem physiologically appropriate that insulin release induced by sulfonylureas would be associated with an increased blood perfusion, as suggested by Vetterlein et al. (36). However, in other contexts, we have been able to...
show that the very high basal blood perfusion of the islets allows for a substantial reduction in islet blood flow before any effects on insulin secretion can be observed (1).

In summary, our results suggest that K\textsubscript{ATP} channels play an important role for regulation of total pancreatic and islet blood flow. To what extent effects on islet function are mediated by a modulated islet blood perfusion by substances affecting these channels merits further investigation.

ACKNOWLEDGMENTS

Financial support was received from the Swedish Research Council (72X-109, 72X-8273), the Swedish Diabetes Association, the Swedish-American Diabetes Research Program funded by the Juvenile Diabetes Foundation and the Wallenberg Foundation, the EFSF/Novo Nordisk for Type 2 Diabetes Research Grant, the Novo Nordic Research Fund, and the Family Ernfors Fund.

The authors are grateful to Astrid Nordin for excellent technical assistance.

REFERENCES