Selective Loss of Calcitonin Gene–Related Peptide–Expressing Primary Sensory Neurons of the A-Cell Phenotype in Early Experimental Diabetes

Yun Jiang,1 Jens Randel Nyengaard,2 Jin Song Zhang,3 and Johannes Jakobsen1

To evaluate the possible role of neuropeptide immunoreactive primary sensory neurons on the development of nociceptive dysfunction in diabetes, the absolute numbers of immunoreactive substance P and calcitonin gene–related peptide (CGRP) dorsal root ganglion (DRG) cell bodies were estimated in diabetic and non-diabetic BALB/C (p75+/+) and p75 receptor knockout (p75−/−) mice with unilateral sciatic nerve crush. The total numbers of immunoreactive substance P A-cells, substance P B-cells, CGRP A-cells, and CGRP B-cells in L5DRG were estimated using semithick consecutive sections and the optical fractionator. After 4 weeks of streptozotocin-induced diabetes, the number of immunoreactive CGRP A-cells was reduced from 692 ± 122 to 489 ± 125 (P = 0.004) in p75+/+ mice on the noncrushed side. In p75−/− mice, there was no such effect of diabetes on the immunoreactive CGRP A-cell number. In p75+/+ and p75−/− mice, there was no effect of diabetes on the immunoreactive CGRP B-cell number, nor was there any effect of diabetes on the immunoreactive substance P B-cell number. Sciatic nerve crush was associated with a substantial loss of L5DRG B-cells in diabetic and nondiabetic p75+/+ mice and with substantial loss of immunoreactive substance P cells in diabetic p75+/+ mice. In diabetic and nondiabetic p75−/− mice, there was no crush effect on neuropeptide expression. It is concluded that experimental diabetes in the mouse is associated with loss of immunoreactive CGRP primary sensory neurons of the A-cell phenotype, that this loss could play a role for the touch-evoked nociception in the model, and that the neuronal immunoreactive CGRP abnormality possibly is mediated by activation of the p75 neurotrophin receptor. Diabetes 53:2669–2675, 2004

Sensory polyneuropathy develops insidiously in diabetes and involves all types of nerve fibers. Abnormal sensory perception in diabetic patients includes loss of pain and temperature sensations as well as burning and cutaneous hyperesthesia, typically in the feet and lower legs (1). The mechanisms underlying hypo- or hyperalgesia in diabetes are uncertain, but studies of diabetic rats indicate that unmyelinated afferents (2), myelinated afferents (3), and spinal and supraspinal sensory neurons (4) are all involved in the process.

Calcitonin gene–related peptide (CGRP) and substance P are nerve growth factor (NGF)-dependent neuropeptides (5,6). Increased expressions of CGRP and substance P in the peripheral nervous system relate to hyperalgesia or allodynia (7–9). Moreover, the CGRP-related hyperalgesia is abolished with a CGRP receptor antagonist (9), with an antiserum to CGRP (10), or by knockout of the CGRP gene (11).

In dorsal root ganglion (DRG), substance P and CGRP are synthesized predominantly in small B-cells, receiving signals through the peripheral C- and Aδ-afferents (12,13). Because of the deficits of NGF support in experimental diabetes (14), it is expected that substance P and CGRP expressions are decreased. Studies of substance P and CGRP content in rat sciatic nerve after 4 weeks of streptozotocin (STZ)-induced diabetes has confirmed this suggestion (15,16), whereas immunohistochemical studies indicate that the relative proportion of immunoreactive CGRP and substance P cells is unchanged in 4-week diabetic BB rats (17) and 12-month STZ-induced diabetic rats (18), despite dramatic reduction of CGRP and substance P mRNA in the DRG (5,14,18).

The mechanical and nociceptive afferents could interact with each other through the interneurons at the spinal cord level. Touch-induced pain seems to involve incoming activity from low-threshold mechanoreceptors to large neuronal A-cells with subsequent presynaptic interaction with central nociceptive afferents in the dorsal horn of the spinal cord (19).

We hypothesize that experimental diabetes is associated with an altered balance between the absolute numbers of large A-cells and small B-cells of CGRP- and substance P–expressing DRG neurons. Recently, we have shown that the low-affinity p75 neurotrophin receptor (p75NTR) influences the morphology of DRG cell bodies in STZ-induced diabetes, and, consequently, we hypothesize that the al-

From the 1Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; the 2Stereological Research and Electron Microscopy Laboratory, Aarhus University Hospital, Aarhus, Denmark; and the 3Department of Pathology, Aarhus University Hospital, Aarhus, Denmark.

Address correspondence and reprint requests to Yun Jiang, MD, Department of Neurology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark. E-mail: jiang@akhphd.au.dk.

Received for publication 24 March 2004 and accepted in revised form 15 July 2004.

CGRP, calcitonin gene–related peptide; DRG, dorsal root ganglion; NGF, nerve growth factor; p75NTR, p75 neurotrophin receptor; STZ, streptozotocin. © 2004 by the American Diabetes Association.
tered balance between immunoreactive CGRP and substance P A- and B-cells in experimental diabetes is mediated by p75NT

RESEARCH DESIGN AND METHODS

In this study, we used 12-week-old male p75NT knockout mice (p75+/−) and age-matched wild-type BALB/C mice (p75+/+) as the half gene background strain for p75−/− mice. The p75−/− offspring of homozygous breeders from The Jackson Laboratories (Bar Harbor, ME) were kindly provided by Martin Koltzenburg, Wurzburg, Germany. The mice were housed in top filter-barrier mouse cages, with food and water available at 25°C with 50% relative humidity and a 12-h light/dark cycle. By the end of the experiment, female mice of 16-week-old mice were harvested; p75−/− mice without diabetes (n = 8), p75−/−/NTR mice with diabetes (n = 9), p75−/− mice without diabetes (n = 9), and p75−/− mice with diabetes (n = 11).

Diabetes was induced with a single intraperitoneal injection of 190–200 mg/kg STZ (Bie & Berntsen, Roedovre, Denmark) freshly prepared in 10 mMol/l citrate buffer at pH 5.9. At 72 h later and at the end of the experiment, the tail vein blood glucose concentration was determined using a glucose touch meter (Johnson & Johnson, Munich, Germany). STZ-induced diabetic mice with blood glucose concentrations <15 mMol/l at 72 h or 4 weeks were excluded.

On the day of STZ treatment, the mice were anesthetized with 240 mg/kg avertin (Sigma-Aldrich, Vallensbaek Strand, Denmark), and one sciatic nerve was isolated in each mouse was crushed at the “sciatric notch” with 0.5-mm forceps (model Tubingen Amann Medizintechnic; S.W. Inox Castroviejo, Emningen-Liptingen, Germany). Before operation and for the following 2 days, 3 μg buprenorphin (Schering-Plough, Munich, Germany) was injected subcutaneously once a day. The crushed side was selected randomly, and the contralateral side served as control. At 4 weeks later, the mice were anesthetized and had a vascular perfusion through the heart with 0.1% mol/l PBS, pH 7.4 for 30 s followed by 4% paraformaldehyde in 0.15 mol/l PBS, pH 7.4 for 10 min.

The L5DRG on both sides were removed and postfixed in 4% paraformaldehyde at 4°C for 2 h, immersed in a cryoprotective solution containing 5% sucrose in 0.15 mol/l PBS, pH 7.4, for 24 h at 4°C, embedded in Tissue-Tek OCT compound, and stored at −80°C. The protocol was in accordance with the guidelines specified in the recommendation by the Federation of European Laboratory Animal Science Associations.

Immunohistochemistry. To minimize the variance induced by technical procedures, the two DRGs from the intact and the crushed sides of the same mouse were sectioned and stained together. The DRGs were cut into 40-μm thick consecutive sections on a cryostat and thawed on gelatin-coated glass slides. All of the sections were separated into two sets, using systematic, uniformly random sampling. One part was selected for the stain with CGRP antibody, and the other set was stained with substance P antibody. The immunohistochemical staining was carried out with the ABC method. The sections were incubated for 1 h with 0.05 mol/l Tris buffer solution (pH 7.6) containing 10% normal goat serum and 0.3% Triton-X, and then they were incubated with biotinylated goat anti-rabbit antibody (1:1,000 T-4032; Peninsular Laboratory, San Carlos, CA) or polyclonal rabbit anti-rat substance P antibody (1:4,000 T-4107; Peninsular Laboratory) containing 5% normal goat serum and 0.3% Triton-X for 24 h at 4°C. Afterward, sections were incubated with biotinylated goat anti-rabbit antibody (1:200 BA-1000; Vector Lab, Burlingame, CA) for 3 h followed by incubation with StreptABC complex/cheronardis peroxidase (R037; Dako, Glostrup, Denmark) for 2 h, according to the manufacturers’ instructions. The immunoreactive products were visualized with 0.05% diaminobenzidine containing 0.03% H2O2 for 10 min. To obtain total numbers of A- and B-cells, nuclei and nucleoli of all sections were counterstained with hematoxylin for 1 min. Finally, tissues were mounted in Aquatex (Merck), coverslipped, and evaluated using light microscopy. Sections were washed thoroughly with Tris buffer solution, containing 0.3% Triton-X, between each step.

Control staining was performed without the primary antibodies.

Stereology. The total L5DRG A- and B-cell numbers and the immunoreactive substance P or CGRP A- or B-cell numbers were estimated using the optical fractionator (20,21). A modified Olympus BX50 microscope was connected to an electronic microarct (MTI; Heidenheim, Traunreut, Germany) to record the plane of observation on the x and y directions. A color video camera (3-CCD video camera; Olympus, Copenhagen, Denmark) projected the tissue images to a computer screen. Using interactive graphic software (CAST-grid; Olympus, Albertslund, Denmark) and a 4× lens, tissues were sampled systematically after a random start. The number of sampled neuronal cell bodies depends on the step lengths in the x and y directions and on the number of counting units. Because the density of B-cells is higher than that of A-cells, the counting frame for B-cells was smaller than that for A-cells. For total L5DRG neuronal cell counting, the counting frames were 4,720 μm2

TABLE 1

<table>
<thead>
<tr>
<th>Weight (g)</th>
<th>Day 0</th>
<th>4 weeks</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>p75+/− without diabetes</td>
<td>30.0 ± 1.8</td>
<td>30.6 ± 1.3</td>
<td>0.6 ± 1.1</td>
</tr>
<tr>
<td>p75+/− with diabetes</td>
<td>30.8 ± 2.3</td>
<td>23.2 ± 3.7</td>
<td>−7.5 ± 3.3</td>
</tr>
<tr>
<td>p75−/− without diabetes</td>
<td>24.0 ± 1.9</td>
<td>25.8 ± 1.9</td>
<td>1.8 ± 1.9</td>
</tr>
<tr>
<td>p75−/− with diabetes</td>
<td>25.6 ± 2.7</td>
<td>20.7 ± 2.6</td>
<td>−4.9 ± 2.6</td>
</tr>
</tbody>
</table>

Data are means ± SD. *P < 0.001 in comparison with non-diabetic controls.

The 4,720-μm2 counting frame was applied for estimation of the total numbers of immunoreactive cells. To count the maximum number of immunoreactive cells and to avoid double counting, a 90-μm step length was applied in the x and y directions for immunoreactive substance P A- and B-cells, whereas the step length for immunoreactive CGRP A- and B-cells counting was 120–140 μm in p75+/− mice and 90–100 μm in p75−/− mice. According to the penetration of antibodies and Z calibration of the stained neurons (20), the area for counting frame (h) is the dissector height; Q is the number of counted cells; tX is the q-weighted section thickness; g is the number of sampled neurons for that particular section thickness.

The 4,720-μm2 counting frame was applied for estimation of the total numbers of immunoreactive cells. To count the maximum number of immunoreactive cells and to avoid double counting, a 90-μm step length was applied in the x and y directions for immunoreactive substance P A- and B-cells, whereas the step length for immunoreactive CGRP A- and B-cells counting was 120–140 μm in p75+/− mice and 90–100 μm in p75−/− mice. According to the penetration of antibodies and Z calibration of the stained neurons (20), the area for counting frame (h) is the dissector height; Q is the number of counted cells; tX is the q-weighted section thickness; g is the number of sampled neurons for that particular section thickness.

Statistical analysis.

p75−/− mice and p75−/− mice have different numbers of neuronal DRG cells. Therefore, all comparisons between nondiabetic and diabetic groups were exclusively performed within the wild-type p75+/− group or within the genetically modulated p75+/− group. The primary study parameters in the p75+/− group as well as in the p75−/− group were the absolute numbers of immunoreactive CGRP A- and B-cells and substance P B-cells on the noncrushed side in diabetic mice as compared with their nondiabetic controls. For statistical analysis of the three primary end points in the p75−/− group and in the p75−/− group, an unpaired Student’s t test with a 5% level of significance was applied (Bonferroni correction). All other comparisons were considered secondary end points and were analyzed with unpaired (between groups) or paired (within groups) Student’s t test using a 5% level of significance. Values were shown as the means ± SD.

RESULTS

At 3 days after treatment with STZ, blood glucose levels were 21.7 ± 4.7 mMol/l in p75−/− and 20.1 ± 1.9 mMol/l in p75+/− mice. At the end of the study, blood glucose values were >22.2 mMol/l in all diabetic mice.

Table 1 shows the mean body weight in all groups. The body weights at start were comparable in diabetic and nondiabetic controls.
homoogeneously, whereas the CGRP staining of A-cells is more granular.

Effects of diabetes and nerve crush on the number of L5DRG neuronal cells in p75^{+/-} and p75^{-/-} mice. Table 2 shows the number of total neuronal DRG cells of the A and B subtype in diabetic and nondiabetic p75^{+/-} and p75^{-/-} mice with and without sciatic nerve crush. There was no effect of diabetes on neuronal cell number in either p75^{+/-} or p75^{-/-} mice with intact nerves. Sciatic nerve crush was associated with a substantial loss of the B subtype of neuronal L5DRG cells in p75^{-/-} mice, whereas the loss in p75^{-/-} mice was modest, only.

Effect of diabetes on L5DRG CGRP expression on the noncrushed side of p75^{+/-} and p75^{-/-} mice. In nondiabetic p75^{+/-} mice, there was a total of 3,682 ± 756 or 40.1 ± 8.0% neuronal immunoreactive CGRP cells. CGRP immunoreactivity was present in both A- and B-cells. There was 892 ± 122 or 25.2 ± 5.9% immunoreactive CGRP A-cells and 2,990 ± 660 or 47.2 ± 11.8% immunoreactive CGRP B-cells (Fig. 1). The A-cell-to-B-cell ratio being 0.24 ± 0.04 (Fig. 2).

Diabetes did not induce any changes in the number of total immunoreactive CGRP cells. However, in p75^{+/-} diabetic mice, the number of immunoreactive CGRP A-cells was reduced by 29% (P = 0.004), and the relative number of immunoreactive CGRP A-cells was reduced from 25.2 to 16.9% (P = 0.002) (Table 3). Likewise, the A-cell-to-B-cell ratio of immunoreactive CGRP cells declined to 0.15 ± 0.03 (P < 0.001) (Fig. 2). There was no effect of diabetes on immunoreactive CGRP B-cells.

The nondiabetic p75^{-/-} mice had approximately half the number of neuronal L5DRG cells and total immunoreactive CGRP cells. The relative number of immunoreactive CGRP A-cells in nondiabetic p75^{-/-} mice was 8% lower than that in nondiabetic p75^{+/-} mice (P = 0.012). However, in p75^{-/-} mice, diabetes did not cause any alteration in the total number of immunoreactive CGRP cells, the number of absolute or relative immunoreactive CGRP A-cells or B-cells (Table 3), or the A-cell-to-B-cell ratio of immunoreactive CGRP cells (Fig. 2).

Effect of diabetes on L5DRG substance P expression on the noncrushed side of p75^{+/-} and p75^{-/-} mice. In nondiabetic p75^{+/-} mice, the total number of immunoreactive substance P cells was 2,245 ± 610 or, expressed relatively, 24.1 ± 4.5%. Substance P was almost exclusively observed in small B-cells, but a few A-cells displayed immunoreactivity (41 ± 41 [1.9 ± 1.8%]). Diabetes did not

nondiabetic p75^{+/-} mice as well as in diabetic and nondiabetic p75^{-/-} mice. The mean body weight of p75^{-/-} mice was 20% less than that of p75^{+/-} mice. Nondiabetic p75^{-/-} mice had a mild weight gain during the study, whereas no weight change occurred in nondiabetic p75^{+/-} mice. Diabetic mice in the p75^{+/-} group lost 24% of their body weight, and in the p75^{-/-} group, the loss was 19%.

Morphology. Immunostaining for CGRP and substance P was located in the cytoplasm, with diffuse granular staining of large immunoreactive CGRP A-cells and with homogenous staining of immunoreactive substance P B-cells and CGRP B-cells (Fig. 1). There was no apparent difference of stain intensity among the different groups. Cells with less staining intensity displayed sufficient contrast difference to the background.

FIG. 1. CGRP (A) and substance P (B) immunostained DRG cell bodies of a p75^{+/-} nondiabetic mouse. The cytoplasm of B-cells is stained homogeneously, whereas the CGRP staining of A-cells is more granular. Arrows show A-cells, arrowheads show B-cells. SP, substance P.

TABLE 2
Total numbers of total L5DRG neuronal cells and of the A- and B-cell subtypes in p75^{+/-} and p75^{-/-} mice with intact and crushed nerves and in those with and without diabetes

<table>
<thead>
<tr>
<th>Groups</th>
<th>Total neurons</th>
<th>A-cells</th>
<th>B-cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intact</td>
<td>Crushed</td>
<td>Intact</td>
</tr>
<tr>
<td>p75^{+/-}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without diabetes</td>
<td>9,233 ± 973</td>
<td>6,973 ± 1,368*</td>
<td>2,791 ± 439</td>
</tr>
<tr>
<td>with diabetes</td>
<td>9,951 ± 1,667</td>
<td>7,986 ± 1,462*</td>
<td>2,890 ± 494</td>
</tr>
<tr>
<td>p75^{-/-}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without diabetes</td>
<td>4,408 ± 773</td>
<td>4,176 ± 899</td>
<td>1,443 ± 219</td>
</tr>
<tr>
<td>with diabetes</td>
<td>4,306 ± 1,082</td>
<td>4,066 ± 868*</td>
<td>1,461 ± 356</td>
</tr>
</tbody>
</table>

Data are means ± SD. *P < 0.05 and †P < 0.01 in comparison with the intact nerve side in the same group.
induce any changes in total or in A or B subtype numbers of immunoreactive substance P cells in p75^{+/+} mice. In nondiabetic p75^{−/−} mice, the number of immunoreactive substance P cells was approximately half that of p75^{+/+} mice. Again, diabetes did not induce any changes in substance P immunoreactivity in p75^{−/−} mice. In nondiabetic p75^{+/+} mice, the proportion of A-cell to B-cell ratio of immunoreactive CGRP cells after nerve crush between diabetic and nondiabetic p75^{+/+} mice after 4 weeks (Table 3).

Effect of sciatic nerve crush on L5DRG CGRP expression in p75^{+/+} and p75^{−/−} mice. In nondiabetic p75^{+/+} mice, there was no effect of sciatic nerve crush on the numbers of immunoreactive CGRP A-cells or B-cells after 4 weeks. In diabetic p75^{+/+} mice, the proportion of immunoreactive CGRP B-cells increased from 46.0 ± 5.5% on the noncrushed side to 52.1 ± 7.5% on the crushed side (P = 0.04), and the A-cell–to–B-cell ratio of immunoreactive CGRP cells rose from 0.15 ± 0.03 to 0.20 ± 0.06 (P = 0.04) (Fig. 2). Compared with nondiabetic p75^{+/+} mice, the A-cell–to–B-cell ratio of immunoreactive CGRP cells after crush fell from 0.27 ± 0.05 to 0.20 ± 0.06 (P = 0.02) in those with diabetes (Fig. 2). In p75^{−/−} mice there was no effect of sciatic nerve crush on the number of immunoreactive CGRP cells in either diabetic or nondiabetic mice after 4 weeks (Table 3).

DISCUSSION

Intracellular electrophysiological recordings have shown that large DRG cells of the A subtype project myelinated...
Table 4
Absolute and relative number of total immunoreactive substance P L5DRG neuronal cells and B-cells in p75

<table>
<thead>
<tr>
<th>All immunoreactive substance P neurons (%)</th>
<th>Immunoreactive substance P B-cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p75+/+ without diabetes</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>Intact</td>
</tr>
<tr>
<td></td>
<td>Crushed</td>
</tr>
<tr>
<td>2,245 ± 610</td>
<td>1,688 ± 481</td>
</tr>
<tr>
<td>Relative (%)</td>
<td>24.1 ± 4.5</td>
</tr>
<tr>
<td>p75+/+ with diabetes</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>Intact</td>
</tr>
<tr>
<td></td>
<td>Crushed</td>
</tr>
<tr>
<td>2,761 ± 836</td>
<td>1,888 ± 547†</td>
</tr>
<tr>
<td>Relative (%)</td>
<td>27.4 ± 4.8</td>
</tr>
<tr>
<td>p75−/− without diabetes</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>Intact</td>
</tr>
<tr>
<td></td>
<td>Crushed</td>
</tr>
<tr>
<td>996 ± 210</td>
<td>922 ± 223</td>
</tr>
<tr>
<td>Relative (%)</td>
<td>22.5 ± 3.2</td>
</tr>
<tr>
<td>p75−/− with diabetes</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>Intact</td>
</tr>
<tr>
<td></td>
<td>Crushed</td>
</tr>
<tr>
<td>1,015 ± 374</td>
<td>877 ± 278</td>
</tr>
<tr>
<td>Relative (%)</td>
<td>23.1 ± 7.0</td>
</tr>
</tbody>
</table>

Data are means ± SD. *P < 0.01; †P < 0.05 in comparison with the intact nerve side in the same group.

Aβ-fibers and thinly myelinated Aδ-fibers associated with signal transmission from mechanoreceptors, whereas the small DRG cells of the B subtype project thinly myelinated Aδ-fibers and unmyelinated C fibers, which transmit nociceptive signals, mainly (23). The neuropeptides CGRP and substance P are predominantly located in the small neuronal B-cells (12,13).

In the present study, the relative numbers of all neuronal immunoreactive CGRP and substance P cells in L5DRG in p75+/+ as well as p75−/− mice are in accordance with those previously obtained in mice and rats (17,24). Our estimation of the absolute numbers of immunoreactive substance P and CGRP A- and B-cells has been obtained with stereological techniques not previously applied.

In diabetic p75+/+ and p75−/− mice, we observed no change in the absolute or relative number of total immunoreactive CGRP and substance P neurons. Similar results have been obtained in BB rats with 4 weeks of diabetes (17) and in STZ-induced diabetic rats with 12 months of diabetes (18). Nonetheless, it is well established that the expression of CGRP and substance P is reduced in diabetes. The mRNA of CGRP and substance P in DRG declines (5,14,18), and the immunoreactivity and the content of CGRP and substance P are both reduced in peripheral nerves (15,16). In diabetic BB rats, the immunoreactive CGRP neurons are smaller, whereas immunoreactive substance P neurons have an unchanged size (17). An in vitro study showed that the proportion of large immunoreactive CGRP DRG neurons was dramatically increased in diabetic mice in an NGF-free medium and that NGF supplementation normalized neuronal size (6). In the two former studies, small and large immunoreactive CGRP neurons were not separated, and A- and B-cells were not distinguished. The new finding of the present study is that the absolute and relative numbers of immunoreactive CGRP A-cells are markedly reduced in diabetic p75+/+ mice without any change of the number of the immunoreactive CGRP B-cell subtype, leading to reduction of the A-cell-to-B-cell ratio of immunoreactive CGRP neurons. Because there was no DRG A-cell loss in diabetic p75+/+ mice without nerve crush, the reduced number of immunoreactive CGRP A-cells is mostly likely caused by a loss of the immunoreactive CGRP phenotype. Because the DRG A- and B-cells were classified based on other cell morphology characteristics besides cell volume, the selective loss of immunoreactive CGRP A-cells can hardly be explained by misclassification leading to a shift from A- to B-cells. Furthermore, the number of total DRG A-cells and the ratio of DRG A-cells to B-cells in diabetes are unchanged. The pronounced reduction of the immunoreactive CGRP A-cell number in diabetic p75+/+ mice did not influence the total immunoreactive CGRP cell number because the fraction of immunoreactive CGRP A-cells is small. In the present study, a 29% reduction of immunoreactive CGRP A-cells will give rise to a 6% reduction in total immunoreactive CGRP DRG cells, only.

In experimental diabetes nociception has been studied with behavioral escape responses, using stimulus intensity or withdrawal latencies as effect parameters. In STZ-induced diabetic rats, the findings in studies of the nociceptive response to thermal stimulation are equivocal (25–27), whereas mechanically induced nociception is reported to be increased (28,29). However, in STZ-induced diabetic mice, a severe hypoalgesic response to mechanical stimulation occurs, and this can be improved after treatment with NGF (30).

Small C fibers are considered to play a significant role for abnormal nociception in diabetes. A study of the saphenous nerve showed that a subpopulation of C-fibers is hyperexcitable to sustained suprathreshold stimuli in diabetic rats (2). However, Khan et al. (3) reported that tactile allodynia appeared earlier in diabetic rats than thermal hyperalgesia, and this was associated with ectopic discharges and a higher spontaneous activity in Aδ- and Aβ-fiber afferents with an augmented response to mechanical stimuli. These findings indicate that myelinated as well as unmyelinated immunoreactive CGRP and substance P fibers could be involved in pain transmission in diabetes. The central branches of immunoreactive CGRP DRG neurons end in laminae I-IV of the spinal cord dorsal horn (17), where interactions between A-fibers and C-fibers can occur (19). Under normal conditions, activation of Aβ- afferents evokes presynaptic inhibition of nociceptive afferents, whereas under pathological conditions, intensive
activation of Aβ-afferents (31) and C-afferents (19) could sensitize the interneurons in the spinal cord that mediate the presynaptic link between low-threshold mechanoreceptors and nociceptors (19). We therefore suggest that the altered expression of CGRP between DRG A- and B-cells influences the balance between non-nociceptive and nociceptive sensations.

In wild-type mice the selective immunoreactive CGRP A-cell loss in early STZ-induced diabetes observed in the present study can account for the reported impairment of the nociceptive response to mechanical stimuli (30), whereas rats treated with STZ develop mechanical hyperalgesia within 2 weeks (29). Different cutaneous immunoreactive CGRP innervation in diabetic rats and mice could account for this discrepancy of sensation. Cutaneous immunoreactive CGRP nerves are largely lost in diabetic mice (32), similar to findings in diabetic patients (33), whereas in STZ-induced diabetic rats, numbers of cutaneous immunoreactive CGRP fibers are increased (34).

The p75\(^{−/−}\) mice have half the number of DRG neuronal cells, increased thermal and mechanical thresholds for noxious stimuli, and depletion of immunoreactive CGRP and substance P fibers in the footpad skin (22,24,35). As reported previously, we observed that the relative number of total immunoreactive CGRP neurons in p75\(^{−/−}\) - mice is similar to that in p75\(^{+/+}\) - mice (24). However, we find that the relative number of immunoreactive CGRP A-cells is reduced in nondiabetic p75\(^{-/-}\) mice. This new finding may well correspond to the selective reduction of the relative number of Aδ-mechano fibers shown electrophysiologically (36). Because Aδ-mechano nociceptors are sensitive to NGF during development (37,38), and because >90% of immunoreactive trkA (high-affinity tyrosine kinase receptor for NGF) DRG neurons coexpress CGRP (39), it is reasonable to speculate that Aδ-mechano neurons are CGRP immunoreactive. The selective loss of immunoreactive CGRP A-cells in nondiabetic p75\(^{-/-}\) mice could be responsible for the Aδ-mechano fiber alterations, including the loss of heat sensitivity (36). P75\(^{NTR}\) deficiency leads to reduced sensitivity to NGF in sensory neurons during development (40,41) and, subsequently, could be responsible for the loss of Aδ-mechano fibers and immunoreactive CGRP A-cells.

Diabetes had no effect on relative or absolute numbers of immunoreactive CGRP A-cells, nor did it have an effect on the A-cell-to-B-cell ratio of immunoreactive CGRP cells in p75\(^{−/−}\) mice. This observation might indicate that the p75\(^{NTR}\) is involved in the downregulation of the number of immunoreactive CGRP A-cells and in the A-cell-to-B-cell ratio of immunoreactive CGRP cells in diabetes in adult mice. However, the number of DRG cell bodies in the L5DRG is halved in p75\(^{-/-}\) mice, and the relative number of immunoreactive CGRP A-cells is also reduced. Therefore, conclusions on the role of the p75\(^{NTR}\) should be made with caution.

There was no influence of sciatic nerve crush on CGRP or substance P immunoreaction in either p75\(^{−/−}\) or p75\(^{+/−}\) mice after 4 weeks. Peripheral nerve axotomy leads to downregulation of substance P and CGRP in the DRG (42,43). At 2 weeks after axotomy, there is an overall decrease of CGRP immunoreaction in the DRG, but the A subpopulation of immunoreactive CGRP neurons and the A fibers in the spinal cord are dramatically increased (44). Upregulation of large immunoreactive CGRP neurons has also been observed during inflammation (8). The ratio changes in those studies were suggested to play a role in the development of hyperalgesia during axotomy or inflammation. The different regulation of immunoreactive CGRP A-cells in STZ-induced diabetes and in inflammation or axotomy suggests different pain mechanisms between the different conditions. The lack of effect on neuropeptide expression after nerve crush in the present study might well be caused by early recovery of CGRP expression. In C57BL/6j mice, immunoreactive CGRP cells were transiently reduced at 7 days after sciatic nerve transection, but they recovered to normal at 28 days (45). The fast recovery of CGRP and substance P immunoreaction could be induced by the recovery of NGF support in DRG neurons. Axotomy dramatically reduces the retrograde transport of NGF (46), leading to decreased NGF protein content in the ipsilateral DRG as early as 6 h after spinal nerve ligation in rats (47). However, the NGF protein levels recover almost to normal after 1–2 days with an increased mRNA NGF in the DRG (47,48). The fast recovery of NGF levels in DRG may be caused by new synthesis of NGF from non-neuronal satellite cells in the DRG (47) and from Schwann cells in the peripheral nerves (49).

In diabetic p75\(^{+/−}\) mice, the immunoreactive substance P B-cell number decreased significantly after nerve crush. There was no significant reduction of the immunoreactive CGRP A- and B-cell number after nerve crush, but the relative number of immunoreactive CGRP B-cell increased, indicating that non-neuropeptide immunoreactive B-cells are preferentially lost. The lack of an additional effect of diabetes on changes in cell number and CGRP phenotype at 1 month after nerve crush is in accordance with previous electrophysiological studies showing that diabetes delays, but does not ultimately impede, peripheral nerve regeneration (50).

The low-affinity p75\(^{NTR}\) plays a role for both myelinated and nonmyelinated peripheral nerve fibers, especially for the development of thinly myelinated and unmyelinated fibers. The influence of p75\(^{NTR}\) on immunoreactive CGRP A-cells is unknown, but our findings suggest that it could be involved in the regulation of CGRP expression in neuronal DRG cells of the A subtype. The effect of p75\(^{NTR}\) on CGRP expression in A-cells could be biologically significant during development and in various pathological disorders such as diabetes in adults.

ACKNOWLEDGMENTS

The Clinical Institute of Experimental Clinical Research, Aarhus University, Aarhus, Denmark, supported the study. The authors thank J.G. Müller, MD, and T.J.S. Shi, MD, for instructions and helpful comments.

REFERENCES

4. Chen SR, Pan HL: Hypersensitivity of spinothalamic tract neurons associ-
40. Davies AM, Lee KF, Jaenisch R: p75-deﬁcient trigeminal sensory neurons have an altered response to NGF but not to other neurotrophins. Neuron 11:565–574, 1993
41. Lee KF, Davies AM, Jaenisch R: p75-deﬁcient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development 120:1027–1033, 1994
46. Delcroix JD, Tomlinson DR, Fernyhough P: Diabetes and axotomy-induced deﬁcits in retrograde axonal transport of nerve growth factor correlate with decreased levels of p75NTR protein in lumbar dorsal root ganglia. Mol Brain Res 51:82–90, 1997