Expression of Angiogenic Factors During Acute Coronary Syndromes in Human Type 2 Diabetes

Raffaele Marfella,1,2 Katherine Esposito,1,2 Francesco Nappo,1 Mario Siniscalchi,1 Ferdinando Carlo Sasso,1 Michele Portoghese,2 Maria Pia Di Marino,4 Alfonso Baldi,4 Salvatore Cuzzocrea,5 Clara Di Filippo,2,6 Guglielmo Barboso,6 Feliciano Baldi,4 Francesco Rossi,2,6 Michele D’Amico,2,6 and Dario Giugliano1,2

Inadequate angiogenic response to ischemia in diabetic myocardium could result in poor collateral formation. Because hypoxia-inducible factor (HIF)-1α is a transcriptional activator of vascular endothelial growth factor (VEGF) and is critical for initiating angiogenic responses to hypoxia, we investigated the expression of HIF-1α and VEGF in specimens of human heart tissue to elucidate the molecular responses to myocardial ischemia in diabetic patients during unstable angina. Moreover, accumulation of a marker of protein nitration nitrotyrosine, as well as the superoxide anion (O2·−) levels and inducible nitric oxide synthase (iNOS), were evaluated. Ventricular biopsy specimens from 15 type 2 diabetic and 14 nondiabetic patients presenting with unstable angina (ischemic group) and from 20 patients (11 type 2 diabetic and 9 nondiabetic patients) who underwent coronary bypass surgery without angina within the preceding 10 days (control group) were collected during coronary bypass surgery. Nondiabetic patients had higher HIF-1α and VEGF expressions compared with diabetic patients (P < 0.001). As compared with nondiabetic specimens, diabetic specimens showed higher levels of both iNOS mRNA and protein levels (P < 0.001) associated with the highest tissue levels of nitrotyrosine and O2·− (P < 0.001). Diabetes is associated with increased myocardial tissue levels of iNOS, O2·−, and nitrotyrosine and reduced expression of myocardial angiogenesis factors during ischemia. Diabetes 53:2383–2391, 2004

Diabetic patients whose tests sustain a nonfatal myocardial infarction (MI) experience a more complicated course, including more frequent postinfarction angina, infarction extension, and congestive heart failure (1). The basis for these differences in outcome remains unclear. The survival of myocardial tissue subjected to ischemia can be increased by the ability to promote growth of new blood vessels into ischemic areas, thus limiting regions of impairment and ultimately preserving myocardial function (2). Although the impairment of collateral vessel development is well established in diabetic patients (3), the factors responsible for this alteration are not well known.

Hypoxia, subsequent to ischemia, is a potent regulator of a variety of biologic processes, including angiogenesis, vascular contractility, and erythropoiesis (4). When a coronary artery is partially or totally occluded, metabolic and contractile changes are initiated in the heart within seconds (5). Some of these early changes facilitate cellular preservation and functional survival of the heart. If the myocardium remains deprived of blood, changes of progressively greater severity eventually culminate in cell death, tissue necrosis, and myofibrillar remodelling (6). Hypoxia-inducible factor (HIF)-1α is a transcriptional factor that is expressed in response to a decrease in the partial pressure of cellular oxygen and activates the transcription of gene whose protein products mediate adaptive responses to hypoxia/ischemia. HIF-1α is an 826–amino acid protein that functions as a trans-acting transcriptional activator of vascular endothelial growth factor (VEGF) and inducible nitric oxide (NO) synthase (iNOS) (7). Peak of expression of HIF-1α and VEGF, as well as the NO production from iNOS, may contribute to limitation of ischemic injury by promoting angiogenesis and vascular remodeling in the human heart during ischemia (8,9). Although an impairment of HIF-1α and VEGF expressions as well as an increment of iNOS expression have been evidenced in diabetic animals after ischemia-reperfusion injury (10–12), there are no data that indicate these alterations in human diabetic hearts.

This study was undertaken to examine whether the angiogenic process during unstable angina is influenced by diabetes. To address these issues, HIF-1α and VEGF expressions were evaluated in myocardial biopsies obtained from patients with and without type 2 diabetes who were admitted to emergency wards for unstable angina and had to undergo coronary bypass surgery. Additionally, iNOS expression, the localization of nitrotyrosine, and the production of superoxide anion (O2·−) in myocytes were measured quantitatively. Nitrotyrosine was determined because this modified amino acid is a product of reactive O2·− (13).
Immunohistochemical staining. Portions of the biopsy specimens were fixed in 10% formalin and prepared as 5-μm-thick tissue sections on slides. The paraffin was then removed with a xylene substitute (Hemo-De; Fisher Scientific), and the sections were rehydrated with ethanol gradient washes. Tissue sections were quenched sequentially in 3% hydrogen peroxide in aqueous solution and blocked with PBS/0.6% nonfat dry milk (Biorad) for 1 h at room temperature.

The sections of affected tissue and normal tissue from patients with ischemia and the sections from patients without ischemia were incubated with rabbit polyclonal anti-VEGF (cat. no. Sc-650; Santa Cruz), or mouse monoclonal anti-VEGF (cat. no. Sc-7269; Santa Cruz,) at a dilution of 1:100 and visualized by the streptavidin-biotin system (Dako) using diaminobenzidine (DAB) as the final chromogen. Tyrosine nitration, an index of the nitrosylation of proteins by peroxynitrite and/or reactive oxygen species (ROS), was determined by immunohistochemistry as previously described (15). Sections were incubated overnight with anti-nitrotyrosine rabbit polyclonal antibody (1:500 in PBS, vol/vol). Sections were washed with PBS and incubated with secondary antibody. Specific labeling was detected with a biotin-conjugated goat anti-rabbit IgG and avidin-biotin peroxidase complex (DBA, Milan, Italy). The sections were then scored for intensity of immunostaining (0 = absent, 1 = faint, 2 = moderate, and 3 = intense) for each antibody, and the average value was calculated for each section.

RESULTS
Preoperative characteristics of the patients and classification of ventricular specimens. The characteristics and cardiac measurements of the patients before coronary bypass surgery and heart biopsy are shown in Table 1. The unstable angina was similar in both groups (data not shown). There were no significant differences in the indication for coronary artery bypass grafting (CABG) among the groups (Table 1). As expected, on admission patients with diabetes had significantly higher plasma glucose levels compared with nondiabetic patients (P < 0.001). The glycosylated fraction of the major component of adult hemoglobin (HbA1c) was elevated in diabetic patients; this elevation ranged from 7.1 to 10.9%, with a median of 8.2%. Among the diabetic subjects, eight were being treated with insulin therapy, eight with sulfonylureas, and six with metformin. The duration of diabetes ranged from 2 to 14 years, averaging 7 years. All ventricular biopsy specimens were examined by light microscopy for evidence of ischemia by a cardiac pathologist who was unaware of the patients’ identity. Fifteen specimens had evidence of acute ischemia that had occurred within 48 h before biopsy (the ischemic group), and 12 specimens had no evidence of ischemia (the control group). For each patient in ischemic group, the second ventricular biopsy specimen, taken from an area remote from ischemic area, was found on microscopical examination to be normal.

Molecular analysis of ventricular specimens HIF-1α. Figure 1 shows the results of the analysis of HIF-1α and HIF-1α mRNA levels from ventricular specimens from the groups of patients. Nondiabetic patients of the ischemic group had detectable steady-state levels of HIF-1α and HIF-1α mRNA in specimens from the ischemic area and did not have detectable levels of both HIF-1α expressions in the nonischemic area: HIF-1α expression...
reached a value of 757.3 ± 36% and HIF-1α mRNA reached a value of 875.8 ± 99% in specimens of the ischemic area compared with those of the nonischemic area (P < 0.001).

In diabetic patients, HIF-1α mRNA transcripts were slightly detected in specimens from the ischemic area: HIF-1α expression reached a value of 163.7 ± 51% and HIF-1α mRNA reached a value of 185.6 ± 69% in specimens of the ischemic area compared with those of the nonischemic area (P < 0.001). These values are only 21.6 and 21.2% of the incremental expressions seen in nondiabetic patients in ischemic specimens (P < 0.001). Both diabetic and nondiabetic patients without acute ischemia (control groups) had no detectable expressions of HIF-1α in their single specimens. Notably, HIF-1α expression in ischemic specimens was strongly dependent on glycemic control (Fig. 1C), as also reflected by the statistically significant inverse correlation (R = −0.533, P < 0.001) between plasma HbA1c and HIF-1α concentrations.

VEGF. Figure 2 shows the results of the analysis of VEGF and VEGF mRNA levels from ventricular specimens from the groups of patients. Nondiabetic patients in the ischemic group had detectable steady-state levels of VEGF and VEGF mRNA in specimens from the ischemic region and did not have detectable levels of VEGF mRNA in the nonischemic area (VEGF 765.9 ± 94% and VEGF mRNA 818.7 ± 101% vs. the nonischemic region). In diabetic patients, VEGF mRNA transcripts were slightly detected in specimens from the ischemic area of the ventricle (VEGF 148.4 ± 43% and VEGF mRNA 176.7 ± 55% vs. the nonischemic area). These values are only 19.4 and 21.6% of the incremental VEGF expressions seen in nondiabetic ischemic areas (P < 0.001). Both diabetic and nondiabetic control groups had no detectable expressions of VEGF in their single specimens. Strong immunostaining for VEGF was seen in biopsy from the ischemic area of nondiabetic patients. VEGF protein in these specimens was found in cytoplasm of endothelial cells lining small vessels and in cardiomyocytes (Fig. 2). In contrast, VEGF protein was almost undetectable in the ischemic area of diabetic patients, where it was confined to the myocardial vasculature (Fig. 2). Moreover, VEGF expression was inversely correlated with plasma HbA1c in ischemic specimens (R = −0.483, P < 0.001).

iNOS. Figure 3 shows the results of the iNOS and iNOS mRNA levels from ventricular specimens from the groups of patients. In the ischemic group, iNOS and iNOS mRNA expressions were present in specimens from the nonischemic areas in both groups, although at a higher level in the diabetic group (P < 0.001). Nondiabetic patients with acute ischemia had levels of iNOS and iNOS mRNA in the ischemic areas significantly lower compared with levels of iNOS and iNOS mRNA in the nonischemic area (P < 0.001). Diabetic patients with acute ischemia had significantly higher levels of both iNOS and iNOS mRNA in specimens from the ischemic area compared with the levels of iNOS expressions in the nonischemic area: iNOS expression reached a value of 466 ± 70% and iNOS mRNA reached a value of 568 ± 79% in specimens of the ischemic area compared with those of the nonischemic area (P < 0.001). These values are significantly higher compared with the increments of iNOS expressions seen in the ischemic area of nondiabetic patients.
patients (iNOS 269.7 ± 76% and iNOS mRNA 333.7 ± 74% vs. the nondiabetic ischemic area, $P < 0.001$). Nondiabetic patients of the control group had slightly detectable expressions of iNOS and iNOS mRNA in their single specimens that were significantly lower than iNOS expressions seen in the diabetic control group ($P < 0.001$). Immunohistochemical staining with antibody to iNOS of sectioned biopsy specimens from diabetic patients with ischemia revealed iNOS protein in areas of ischemia. Specifically, immunoreactivity was seen in the cytoplasm of cardiomyocytes and endothelial cells lining the small vessels (Fig. 3). iNOS protein from nondiabetic patients compared with diabetic patients showed a significantly lower immunostaining in both ischemic and nonischemic areas and in specimens from patients without ischemia (Fig. 3). Notably, iNOS expression in ischemic specimens was strongly dependent on glycemic control, as also reflected by the statistically significant correlation ($R = 0.677$, $P < 0.001$) between plasma HbA$_{1c}$ and iNOS concentration.

Nitrotyrosine. When immunostaining for the nitrotyrosine antigen was compared, differences were found between tissues from diabetic and nondiabetic ischemic specimens. Significantly intense nitrotyrosine immunostaining was present in diabetic tissue compared with nondiabetic tissues (score 3.4 ± 0.43 vs. 1.2 ± 0.31, $P < 0.001$) (Fig. 4). In the nonischemic areas, significantly intense nitrotyrosine immunostaining was present in diabetic compared with nondiabetic patients (1.8 ± 0.12 vs. 0.28 ± 0.05, $P < 0.001$). Nitrotyrosine immunostaining from specimens of the diabetic control group was signifi-

FIG. 1. A: Western blot analysis of HIF-1α content in heart specimens from diabetic and nondiabetic patients (boxplot—a plot type that displays the 10th, 25th, 50th, 75th, and 90th percentiles as lines on a bar centered around the mean and the 5th and 95th percentiles as error bars; the mean line and data points beyond the 5th and 95th percentiles can also be displayed). B: Representative PCR analysis of HIF-1α content in heart specimens from diabetic and nondiabetic patients. C: Relationship between HIF-1α expression and HbA$_{1c}$. *$P < 0.001$ vs. nondiabetic patients.*
significantly higher than those of the nondiabetic control group \((P < 0.001)\).

\(O_2^-\). When \(O_2^-\) production was compared, differences were found between tissues from diabetic and nondiabetic ischemic specimens. Significantly higher levels of \(O_2^-\) were present in diabetic tissue compared with nondiabetic tissue \((P < 0.001)\) (Fig. 5). In nonischemic areas, significantly higher levels of \(O_2^-\) were present in diabetic tissue compared with nondiabetic tissue \((P < 0.001)\). \(O_2^-\) levels from specimens of the diabetic control group were significantly higher than those of the nondiabetic control group \((P < 0.001)\).

DISCUSSION

To the best of our knowledge, there have been no studies investigating the association among diabetes, angiogenic factors, and oxidative stress in human heart tissue affected by ischemic insult. The main findings of our study demonstrate an association between diabetes, reduced expression of HIF-1\(\alpha\) and VEGF, and increment of iNOS, \(O_2^-\), and nitrotyrosine levels in heart specimens of patients with unstable angina. Diabetes amplifies oxidative reaction and worsens the angiogenic process. In nondiabetic patients, we detected increased steady-state levels of HIF-1\(\alpha\) and VEGF after unstable angina. This accumulation of both mRNA and protein was limited to the region of affected myocardium. No HIF-1\(\alpha\) and VEGF transcripts or proteins were detectable in nonischemic specimens. In diabetic patients, the picture is quite different because both HIF-1\(\alpha\) and VEGF levels were significantly lower than those in nondiabetic heart specimens. Thus, the roles of HIF-1\(\alpha\) and VEGF in beginning angiogenic process after myocardial ischemia seem to be reduced in diabetes.

Development of collateral vessels is triggered by the pressure gradient between the coronary bed of arteries caused by an obstruction and myocardial ischemia (17). Diabetes has been found to be an inhibiting factor on coronary collateral vessels development in a large patient population (3) and in a postmortem study (18). However, a lack of collateral vessels in diabetic patients, despite the
presence of coronary obstruction and evidence of myocardial ischemia, suggests that additional factors may contribute to collateral development. It is now widely accepted that myocardial ischemia somehow triggers collateral growth (19). A biochemical signal produced by ischemic myocardium may trigger the events leading to DNA synthesis and to mitosis in collateral vessels (20). Over the past decade, numerous angiogenic factors have been purified, and their amino acid sequences have been determined with subsequent gene cloning (21). Semenza (7) has shown in both in vitro and in vivo models of ischemia that one of the first genes upregulated by hypoxia is the gene encoding HIF-1α. The expression of the gene for HIF-1α is exquisitely sensitive to the onset of cellular hypoxic conditions, making it one of the earliest effectors of the response to ischemia (7). Thus, the decrease in the partial pressure of cellular oxygen induced by ischemia is a potent stimulator of HIF-1α expression and of HIF-1α–mediated VEGF gene transcription. VEGF has an important role in stimulating the growth of new capillaries in several organ systems and thus is a good candidate for the role of stimulating neovascularization to limit damage from ischemia in the heart. Although the mechanism of enhanced VEGF expression remains to be determined, it is worth noting that the gene for VEGF has an HIF-1α regulatory consensus sequence (a hypoxia-responsive element) in its promoter region (22). These observations, together with the previous finding that HIF-1α is responsible for the increase in VEGF in cultured hypoxic myocytes (23), suggest that the increase in myocardial HIF-1α protein that we detected in nondiabetic ischemic tissue is necessary for the enhanced expression of myocardial VEGF in states of acute ischemia. In contrast, the reduction of HIF-1α gene and protein by diabetes may lead to impairment of VEGF-mediated angiogenesis during acute ischemia. Several investigations have shown increased VEGF-mediated angiogenesis in microvascular complications associated with diabetes (24), but the decrease in cardiac mRNA expression of VEGF and its protein in ischemic heart tissue is also consistent with pathological reports that collateral vascular formation after myocardial ischemia is blunted in diabetic patients (3). The paradoxical changes in the expression of VEGF and its receptors suggest that local regulatory factors differ between myocardium and microvessels.

The recent demonstrations that reduced NO availability (25) and iNOS overexpression (26) may inhibit HIF-1α activity reveal a negative feedback loop in the HIF-1α–
iNOS cascade and suggest that the reduction of the angiogenic factors may be linked to a greater oxidative stress evoked by diabetes, acting to either reduce NO availability (27) or stimulate iNOS expression (16). An effect of diabetes to enhance iNOS expression has recently been reported (12). iNOS is a calcium-independent enzyme and produces high levels of NO. Although increased NO production from iNOS may enhance early defensive response against reperfusion injury (9), high levels of NO generated by iNOS expression, through formation of peroxynitrite, may inhibit HIF-1α and VEGF expressions (26). According to these observations, our findings demonstrate a presence of overexpression of iNOS gene and protein and nitrotyrosine formation in ischemic diabetic myocardial tissue that was not present in nondiabetic heart specimens. Although these findings do establish a cause-and-effect relationship between these cellular events, they could suggest an involvement of the NO-peroxynitrite pathway in the impaired angiogenesis during diabetes. Recently it has been demonstrated that in isolated rat

![Graph A](image)

FIG. 4. A: Nitrotyrosine score in specimens from patients with and without diabetes. B: Representative nitrotyrosine immunostaining from ischemic ventricular biopsy specimens. *P < 0.001 vs. nondiabetic patients; † P < 0.001 vs. control specimens.

![Graph B](image)

FIG. 5. O_2^{-} levels in heart specimens from patients with and without diabetes. *P < 0.001 vs. nondiabetic patients; † P < 0.001 vs control specimens.
We acknowledge the expert assistance of G. D’Orta.

REFERENCES

22. Shima DT, Kuroki M, Deutsch U, Ng YS, Adams AP, D’Amore PA: The...

