Amylin is a peptide hormone that is cosecreted with insulin from the pancreatic β-cell and is thus deficient in diabetic people. It inhibits glucagon secretion, delays gastric emptying, and acts as a satiety agent. Amylin replacement could therefore possibly improve glycemic control in some people with diabetes. However, human amylin exhibits physicochemical properties predisposing the peptide hormone to aggregate and form amyloid fibers, which may play a part in β-cell destruction in type 2 diabetes. This obviously makes it unsuitable for pharmacological use. A stable analog, pramlintide, which has actions and pharmacokinetic and pharmaco-dynamic properties similar to the native peptide, has been developed. The efficacy and safety of pramlintide administration has been tested in a vast number of clinical trials. Approximately 5,000 insulin-treated patients have received pramlintide and have been monitored. The aims of this review are to 1) briefly describe actions of amylin as demonstrated in animal and human models and 2) primarily review results from clinical trials with the amylin analog pramlintide. Diabetes 53 (Suppl. 3): S233–S238, 2004

A reduced HbA1c is closely linked with decline in late diabetic complications in both type 1 diabetic patients, as shown in the Diabetes Control and Complications Trial (DCCT) (1), and type 2 diabetic patients, as shown in the U.K. Prospective Diabetes Study (UKPDS) (2) and the Kumamoto Study (3). Consequently, the recommendations regarding HbA1c for diabetic individuals in satisfactory glycemic control is currently <7% and therefore even more stringent goals (i.e., HbA1c <6%) should be considered in individual patients (4,5). However, due to the shortcomings of the antihyperglycemic therapy currently available, novel approaches to lowering glycemia are clearly needed in many patients.

The glucagon-like peptide-1 (GLP-1) approach looks promising for the treatment of type 2 diabetes (6). In insulin-treated diabetic patients (type 1 or type 2), it is also difficult to achieve the HbA1c target because blood glucose is often characterized by unpredictable fluctuations; hypoglycemia and weight gain are additional difficulties. Certainly, insulin analogs have proven to be efficient in terms of plasma glucose excursions and hypoglycemic events in several insulin-treated patients. However, another novel approach for lowering glycemia in some insulin-treated diabetic subjects could be the addition of amylin agonists.

Amylin (also known as islet amyloid polypeptide, or IAPP) is a 37–amino acid peptide hormone that is costored and cosecreted with insulin and shares the same processing enzymes. The hormone has a signal transduction pathway similar to calcitonin (CT), calcitonin gene–related peptide (CGRP), and adrenomedullin (3), and the specificity of the amylin receptor has been characterized. Since the description of amylin almost two decades ago (7,8), a large body of data has documented the physiologic actions of this peptide. Amylin is secreted in response to nutrient stimuli and displays a 24-h profile similar to that of insulin (9). Also, amylin has been shown to be secreted in a high frequency pulsatile manner, similar to insulin (10). The peptide circulates in a nonglycosylated (50%) and a glycosylated form (11), of which the former is the biological active compound. In healthy humans, fasting plasma amylin concentrations are in the range of 4–25 pmol/L, and amylin is distributed equally to insulin in plasma and interstitial fluids. In opposition to insulin, it is not eliminated significantly in the liver (12) but mainly through renal metabolism.

Amylin agonists display some of the beneficial effects of GLP-1. Below we will not focus primarily on amylin actions but mainly on clinical data utilizing an amylin agonist. Bearing this in mind, it should be emphasized that it has been firmly established that deposits of amylin as amyloid are frequently found in the islets of type 2 diabetic individuals and could represent a visible pathological feature that disrupts islet structure and contributes to the islet dysfunction. Discussion of the latter is beyond the scope of this article but is reviewed in several recent articles (e.g., 13,14).

AMYLIN ACTIONS

Animal studies. In vitro and in vivo studies, mainly performed in rodents, have demonstrated effects of amylin on glucose metabolism (rev. in 15). In the rat skeletal muscle, amylin leads to insulin resistance by impairing glycogen synthase activity and increasing glycogen breakdown and subsequently glycolysis, the latter resulting in increased lactate output. Furthermore, it has been demonstrated that amylin is required for normalization of liver

From the Departments of Endocrinology and Diabetes, University Hospital of Aarhus; and the Department of Clinical Pharmacology, University of Aarhus, Aarhus, Denmark.

Address correspondence and reprint requests to Ole Schmitz, Department of Clinical Pharmacology, The Bartholin Building, University of Aarhus, DK 8000 Aarhus C, Denmark. E-mail: ole.schmitz@iekf.au.dk.

Received for publication 2 May 2004 and accepted in revised form 25 May 2004.

This article is based on a presentation at a symposium. The symposium and the publication of this article were made possible by an unrestricted educational grant from Servier.

GLP-1, glucagon-like peptide-1; IAPP, islet amyloid polypeptide.

© 2004 by the American Diabetes Association.

DIABETES, VOL. 53, SUPPLEMENT 3, DECEMBER 2004
glycogen content in streptozotocin-diabetic rats in which liver glycogen stores are depleted.

A selective amylin antagonist has been found to augment insulin secretion from isolated rat pancreatic β-cells (16). Moreover, the occurrence of amylin binding sites in β-cells (17) could point to a direct effect on insulin secretion. Amylin inhibits arginine-induced glucagon secretion in rats in a dose-dependent manner (18). A study has demonstrated that the glucagon inhibiting effect of amylin in rats is six times more potent than that of GLP-1 (19). However, amylin exhibits no glucagon inhibition on the isolated perfused pancreas (20), probably implying that this action depends on extrapancreatic pathways.

Amylin also delays gastric emptying (21). Dose-response studies have demonstrated that amylin is more potent in postponing gastric emptying than other gastrointestinal hormones like GLP-1 and cholecystokinin (22). Moreover, in rats the lack of amylin accelerates gastric emptying (23), supporting the theory that this action represents a physiological effect of the hormone. This specific effect of amylin is apparently mediated through the central nervous system and depends on an intact vagus nerve (24). The ability of amylin in slowing gastric emptying has, however, been shown to be overridden by hypoglycemia (25). Finally, amylin reduces food intake and body weight in rodents (26–28). The inhibitory effect on food intake is present after both intracerebral and peripheral administration of amylin (27). This effect appears to be mainly mediated via central pathways that include high-affinity binding sites in the area postrema in the hindbrain (24,29–31). The importance of amylin as a key player in the regulation of food intake is supported by the finding of increased weight gain in amylin gene knockout mice. Human studies. Three studies (32–34) have examined the impact of acute administration of native amylin on in vivo glucose metabolism in healthy humans. Despite using high pharmacological doses resulting in circulating amylin levels 50–100 times above normal postprandial concentrations, no effect of native amylin could be demonstrated on glucose uptake, neither as assessed by a hyperinsulinemic-euglycemic clamp (34) nor during an intravenous glucose tolerance test (32,33). This is in agreement with data of Zierath et al. (35) in which no effect on glucose transport in human muscle strips was observed. In terms of impact on β-cell function, only a blunted insulin response was demonstrated at very high doses (33).

AMYLIN ANALOGS

Human amylin has properties (36) that make it potentially unsuitable for pharmacological use. These include the ability to form amyloid fibers; as a result, amyloid plaques self-aggregate and are relatively insoluble in a number of diluents. This is primarily related to the amino acid sequence 25–29 of the peptide (37), but more recent data have also suggested that the amyloidogenic properties of amylin are influenced by other domains within the molecule (38). Whereas human amylin readily forms islet amyloid, this ability is not seen in rodents (36). Preparing the native human molecule for pharmacological use led to the development of an analog in which three proline residues were substituted at positions 25, 28, and 29 (39). This analog, named pramlintide (previously referred to as AC 137), is stable, soluble, nonaggregating, and nonadhesive and has been shown to exhibit beneficial actions similar to those of native amylin (40). Pramlintide has been tested in several clinical studies, all aimed at restoring amylin in absolute or relatively deficient diabetic patients. Like insulin, pramlintide needs to be administered subcutaneously, but pramlintide precipitates above pH 5.5. Therefore, it is not currently suitable for coformulation with insulin. The rationale for replacing amylin in diabetes is that in humans it appears mainly to exert its effects in the postprandial state by 1) inhibiting the excessive glucagon secretion (three decades ago Unger [41] suggested that “glucagon suppression could be a potentially useful adjunct to conventional antihyperglycemic agents in the management of diabetic hyperglycemia”) and 2) delaying gastric emptying. The importance of postprandial blood glucose control as a specific target of therapy influencing overall glycemic control and perhaps long-term complications in diabetes is currently debated (42). Moreover, the effects of amylin analogs as a satiety factor cannot be emphasized enough in obese diabetic patients.

PRAMLIITIDE STUDIES IN DIABETIC INDIVIDUALS

Acute studies. The first pramlintide study in type 1 diabetic patients explored the effect of an intravenous pramlintide infusion during a Sustacal meal (43) and convincingly demonstrated that the analog was capable of reducing the glycemic response to this challenge, possibly at least partly due to delaying gastric emptying (44). A similar observation was also made in insulin-treated type 2 diabetic patients (45). There is no evidence of an effect of pramlintide administration on insulin sensitivity in either peripheral tissues or the liver in type 1 diabetic patients (46), which reiterates the observations made in healthy individuals using native amylin (34) and which is further supported indirectly using an amylin antagonist (47) in obese type 2 diabetic and nondiabetic individuals. The latter study also demonstrated that the amylin antagonist was able to increase insulin secretion in lean and obese individuals, suggesting a possible physiological role of amylin to restrain insulin secretion. Finally, it should be noted that recovery from hypoglycemia induced by a hyperinsulinemic-hypoglycemic clamp, as well as the glucagon response to it, was not affected by pramlintide (46).

Short-term studies (1–4 weeks). Two-week administration of pramlintide thrice daily to type 1 diabetic subjects has been demonstrated to blunt the glycemic response to a Sustacal meal in a dose-dependent manner (48). Regarding overall glycemic control, 4 weeks of pramlintide treatment as an adjunct to insulin in type 1 diabetes significantly reduced 24-h plasma glucose (49) and serum fructosamine (50,51). The improved glycemic control during pramlintide treatment was not associated with increase in severe hypoglycemic episodes.

Animal models have demonstrated that coadministration of insulin and amylin is necessary to fully restore liver glycogen (52). A study examining endogenous glucose release during glucagon challenges in type 1 diabetic individuals following 4 weeks of pramlintide administration (53) found no perceptible differences between pramlintide and placebo. However, it should be noted that the
study design did not allow conclusions regarding liver glycogen content. Other studies have explored the effect of pramlintide administration on overall and postprandial glycemic control and, in particular, postprandial glucagon secretion in patients with type 1 diabetes. Nyholm et al. (51) demonstrated that pramlintide administration at a dose of 30 μg thrice daily in type 1 diabetic patients reduced circulating concentrations of glucose and insulin as assessed by a daytime profile. Recently, Levetan et al. (54) utilizing a continuous glucose monitoring system (CGMS) have shown that addition of pramlintide to insulin for 4 weeks in type 1 diabetic subjects who were intensively treated with insulin pumps and had fair glycemic control, as assessed by HbA1c values, were also capable of further improving the glycemic control. This interesting study with a 24-h sensor period demonstrated not only reduced daytime glucose excursions in spite of reduced insulin dosage, but also a greater number of glucose readings during nighttime within the euglycemic target. Furthermore, the authors found reduced postprandial triglyceride excursions, probably mainly due to the delay in gastric emptying. Taking the presumed importance of postprandial dyslipidemia and cardiovascular disease into account, further investigations, including longer-term studies, are obviously needed. Given the increasing use of rapid-acting insulin analogs in the treatment of diabetes, it should also be emphasized that pramlintide administered at or just before a meal reduces the postprandial glucose excursion markedly in type 1 diabetic subjects treated with insulin lispro (55).

Nyholm et al. (51) observed that pramlintide treatment led to reduced concentrations of glucagon (~25%) after a carbohydrate-rich breakfast meal. The reduction in postprandial glucagon concentrations has been confirmed by Fineman et al. (56) and, moreover, was present in type 2 diabetic patients (57) (Fig. 1). An even more pronounced reduction in postprandial glucagon was present in intensively treated type 1 diabetic subjects on insulin pumps (54). This glucagonostatic property of pramlintide has indirectly been corroborated by the finding of enhanced glucagon secretion in diabetic individuals following administration of a selective amylin antagonist (47) and by demonstrating an inverse correlation between amylin and glucagon secretion (58).

While the significance of reduced postprandial glucagon secretion for glycemic control cannot be challenged in either type 1 or type 2 diabetes (59–61), it is still not known how amylin agonists modulate postprandial glucagon secretion and, in particular, whether there is a direct effect on the pancreatic α-cell (20). Improved glycemic control (60) and delayed gastric emptying, the latter of which postpones the appearance of nutrients stimulating glucagon release, probably both contribute. However, changes in other substrates, hormones, and peptides currently not well defined may also participate, and furthermore, the autonomic nervous system may be involved. A recent study seems to rule out the contribution of GLP-1 (62).

Long-term studies (26–52 weeks). Several long-term randomized, double-blind, placebo-controlled multicenter trials using pramlintide for 26–52 weeks have been conducted. This review will only concentrate on the studies published at the time of writing (data based on abstracts are not included).

In a 52-week study that included 480 type 1 diabetic patients, the addition of pramlintide (q.i.d.) to the insulin therapy significantly reduced HbA1c (63) (Fig. 2). The reduction was most pronounced during the initial 13 weeks (0.67%), but the difference from placebo was sustained though less pronounced by week 52, as 25% reached the American Diabetes Association (ADA) glycemic target of HbA1c <7%. Of note, the number of severe hypoglycemic events was not increased in the pramlintide group.
After 52 weeks, all subjects were invited to participate in an open-label extension. As can be seen in Fig. 2, the reduction in HbA1c was maintained in those who agreed to continue the treatment.

A study of similar duration (52 weeks) was performed in 656 insulin-treated type 2 diabetic individuals (64). However, pramlintide in this design was dosed twice a day and in two different doses (90 and 120 μg). In the 120-μg group, HbA1c was reduced by 0.62% after 52 weeks (Fig. 3). Once again, no increased incidence of hypoglycemia was observed, but as in the aforementioned study there was a transient mild-to-moderate nausea in the pramlintide group. Notably, in these type 2 diabetic patients who were characterized by an initial body weight of ~97 kg, the pramlintide group exhibited a weight loss of 1.4 kg versus a weight gain of 0.7 kg in the placebo group. The latter has been confirmed in a recent post hoc analysis based on two large studies (>1,100 patients) among the subgroup of patients with an HbA1c at the entry between 7.0 and 8.5% (65). The weight loss seemed to be even more pronounced and the percentage of patients reaching the ADA targets in terms of HbA1c was several times higher in the pramlintide group. Recently, Hollander et al. (66) demonstrated in the same population that this weight reduction was most pronounced in the very obese group of type 2 diabetic subjects and that the number of patients experiencing a weight reduction of >5% after 26 weeks was threefold higher in the pramlintide group compared with the placebo- and insulin-treated groups. Interestingly, the insulin- and metformin-treated patients were very positive responders. The daily insulin dose was significantly reduced in the pramlintide group, and it cannot be excluded that this contributed to the weight loss, although it should be emphasized that HbA1c was improved (~0.6%).

CONCLUSION AND PERSPECTIVES
Several prospective intervention studies have taught us that near-normal glycemia is, in addition to several other pharmaceutical intervention strategies, crucial in minimizing late complications in diabetes. However, the DCCT clearly demonstrated that one of the hindrances is an increased risk of severe hypoglycemic episodes. The UK-PDS confirmed that the natural history of type 2 diabetes in terms of β-cell function and insulin resistance is complex, and that none of the used treatment regimens
(metformin, sulfonylurea, and insulin) were outstanding in controlling glucose homeostasis. Moreover, sulfonylurea and insulin were hampered by inducing significant weight gain. During the last decade, new antidiabetic compounds have been introduced on the market (e.g., short-acting and long-acting insulin analogs, thiazolidinediones, and prandial glucose regulators), but we need long-term data to ascertain the efficacy of these compounds.

The worldwide epidemic of type 2 diabetes is of great concern. The pharmaceutical industry is attempting to improve the current treatment concepts, as well as to search for new drugs (rev. in 67) to treat β-cell and α-cell dysfunction, insulin insensitivity, obesity, and so forth. What will probably be on the market within the next few years to primarily lower glycaemia and to potentially reduce other features of the metabolic syndrome are new peroxisome proliferators–activated receptor (PPAR) agonists, agents focusing on the GLP-1 concept, and the amylin replacement concept.

One of the novel drugs is pramlintide, a synthetic amylin analog that can be used as a potential adjunctive therapy in patients with type 1 and type 2 diabetes. The rationale for amylin replacement has been defined during the past few years. Several large-scale phase III studies involving more than 3,000 diabetic individuals have demonstrated a beneficial effect of amylin replacement on the HbA1c level in both type 1 and 2 diabetes without an increased number of hypoglycemic events and weight gain. In fact, a significant and sustained weight reduction for 1 year has been observed in type 2 diabetic patients. Pramlintide has been shown primarily to reduce prandial glucose excursions, which have been suggested to play a role in the development of cardiovascular complications, although this still needs to be proven. However, it would be important to further characterize responders to amylin analogs versus nonresponders, in terms of both reduction in HbA1c and weight loss, in order to delineate the group of patients who will profit from treatment. Whether amylin agonists given at bedtime to type 2 diabetic patients could induce “β-cell rest,” analogous to somatostatin and potassium channel openers, also remains to be determined. Pramlintide is currently under evaluation for approval as an adjunctive therapy for insulin-treated diabetic patients. In the future, insight into the human genome will hopefully help us tailor the pharmacological treatment in diabetes. In the meantime, all antidiabetic compounds that prove to be efficient and safe should be greeted with open arms.

ACKNOWLEDGMENTS

The secretarial assistance from Ms. Linda Edge Svendsen is greatly appreciated.

REFERENCES


10. Jung CB, Porksen N, Sturis J, Hansen AP, Veldhuis JD, Pincus S, Fineman M, Schmitz O: High-frequency oscillations in circulating amylin concentra-

11. Nyholm B, Fineman MS, Koda JF, Schmitz O: Plasma amylin immunore-

25. Gedulin BR, Young AA: Hypoglycemia overrides amylin-mediated regula-

autodiagnostic localization of amylin binding sites in rat brain. Neuro-
science 62:553–567, 1994
31. Rogers RC, McTigue DM, Herrmann GE: Vagal control of digestion: modula-
tion by central neural and peripheral endocrine factors. Neurosci
to establish islet amyloid polypeptide (amylin) as a circulating beta cell
SR: Very high concentrations of islet amyloid polypeptide are necessary to
alter the insulin response to intravenous glucose in man. J Clin Endocrinol
Metab 74:1032–1055, 1992
34. Wilding JP, Khandan-Nia N, Bennet WM, Gilbey SG, Beacham J, Ghatei
MA, Bloom SR: Lack of acute effect of amylin (islet associated polypep-
tide) on insulin sensitivity during hyperinsulinaemic euglycaemic clamp in
35. Zierath JR, Gaubuska D, Engstrom A, Johnson KH, Betsholtz C, Westmark
P, Wallberg-Henriksson H: Human islet amyloid polypeptide at pharmaco-
logical levels inhibits insulin and phorbol ester-stimulated glucose trans-
36. Goldsby CS, Cooper GJ, Goldie KN, Muller SA, Saafi EL, Grijutters WT,
Misur MP, Engel A, Aebi U, Kistler J: Polymorphic fibrillar assembly of
37. Westmark P, Engstrom U, Johnson KH, Westmark GT, Betsholtz C: Islet
amyloid polypeptide: pinpointing amino acid residues linked to amyloid
fibril formation. Proc Natl Acad Sci USA 87:5036–5040, 1990
38. Jaikaran ET, Higham CE, Serpell LC, Zurdo J, Gross M, Clark A, Fraser PE:
Identification of a novel human islet amyloid polypeptide beta-sheet domain
39. Colburn WA, Gottlieb AB, Koda J, Koltermann OG: Pharmacokinetics and
pharmacodynamics of AC137 (25:28 tripro-amylin, human) after intra-
venous bolus and infusion doses in patients with insulin-dependent diabetes.
40. Young AA, Vine W, Gedulin B: Preclinical pharmacology of pramlintide in
the rat: comparison with human and rat amylin. Drug Des Res 37:231–248,
1996
41. Sakurai H, Dobbs RE, Unger RH: The role of glucagon in the pathogenesis
of the endogenous hyperglycemia of diabetes mellitus. Metabolism 24:
1287–1297, 1975
42. American Diabetes Association: Postprandial blood glucose. Diabetes
Care 24 (Suppl. 1):775–778, 2001
43. Koltermann OG, Gottlieb A, Moyses C, Colburn W: Reduction of postpran-
dial hyperglycemia in subjects with IDDM by intravenous infusion of
AC137, a human amylin analogue. Diabetes Care 18:1179–1182, 1995
44. Kong MF, King P, Macdonald IA, Stubbs TA, Perkins AC, Blackshaw PE,
Moyses C, Tattersall RB: Infusion of pramlintide, a human amylin ana-
logue, delays gastric emptying in men with IDDM. Diabetologia 40:82–88,
1997
45. Thompson RG, Gottlieb A, Organ K, Koda J, Kisicki J, Koltermann OG:
Pramlintide: a human amylin analogue reduced postprandial plasma
glucose, insulin, and C-peptide concentrations in patients with type 2
C, Alberti KG, Schmitz O: Acute effects of the human amylin analog AC137
on basal and insulin-stimulated euglycemic and hypoglycemic fuel metab-
olism in patients with insulin-dependent diabetes mellitus. J Clin Endo-
crinol Metab 81:1083–1089, 1996
47. Mather KJ, Paradisi G, Leaming R, Hook G, Steinberg HO, Fineberg N,
Koltermann O, Schnitz O: The amylin analog pramlintide improves glycemic
control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 48:935–941, 1999
48. Young AA, Crocker LB, Wolfe-Lopez D, Cooper GJ: Daily amylin replace-
ment reverses hepatic glycogen depletion in insulin-treated streptozotocin
49. Orskov L, Nyholm B, Yde HK, Gravholt CH, Moller N, Schnitz O: Effects of
the amylin analogue pramlintide on hepatic glucagon responses and inter-
mediary metabolism in type 1 diabetic subjects. Diabet Med 16:867–
874, 1999
Koltermann OG, Chandran M, Muddaraj SR, Henry RR: Impact of pramlintide
on glucose fluctuations and postprandial glucose, glucagon, and triglycer-
ide excursions among patients with type 1 diabetes intensively treated
with insulin pumps. Diabetes Care 26:1–8, 2003
Ruggles JA, Koltermann OG, Maggs DG: Pramlintide reduces postprandial
glucose excursions when added to regular insulin or insulin lispro in subjects
with type 1 diabetes: a dose-ranging study. Diabetes Care 26:3074–
3079, 2003
52. Fineman MS, Koda JE, Shen LZ, Strobel SA, Maggs DG, Weyer C, Koltermann
OG: The human amylin analog, pramlintide, corrects postpran-
dial hyperglycaemia in patients with type 1 diabetes. Metabolism 51:
630–641, 2002
amylin analog, pramlintide, reduces postprandial hyperglycaemia in patients
with type 2 diabetes mellitus. Horm Metab Res 34:504–508, 2002
relation between amylin and glucagon secretion in healthy and diabetic
55. Dinneen S, Alzaid A, Turk D, Rizza R: Failure of glucagon suppression
contributes to postprandial hyperglycaemia in IDDM. Diabetologia 38:357–
343, 1995
56. Dinneen S, Gerich J, Rizza R: Carbohydrate metabolism in non-insulin-
57. Baran AD, Schaeffer L, Shragg P, Koltermann OG: Role of hyperglycemia
in maintenance of increased rates of hepatic glucose output in type II
58. Ahren B, Adner N, Svardberg J, Petrella J, Holst JJ, Gutnick MK: Anti-
diabetogenic effect of the human amylin analogue, pramlintide, in type 1
diabetes is not mediated by GLP-1. Diabet Med 19:790–792, 2002
59. Whitehouse F, Kruger DF, Fineman M, Shen L, Ruggles JA, Maggs DG,
Weyer C, Koltermann OG: A randomized study and open-label extension
evaluating the long-term efficacy of pramlintide as an adjunct to insulin
60. Houlder PA, Levy P, Fineman MS, Maggs DG, Shen LZ, Strobel SA, Weyer
C, Koltermann OG: Pramlintide as an adjunct to insulin therapy improves
long-term glycemic and weight control in patients with type 2 diabetes: a
1-year randomized controlled trial. Diabetes Care 26:784–790, 2003
O, Weyer C: Addition of pramlintide to insulin therapy lowers HbA1c in
conjunction with weight loss in patients with type 2 diabetes approaching
62. Houlder P, Maggs DG, Ruggles JA, Fineman M, Shen L, Koltermann OG,
Weyer C: Effect of pramlintide on weight in overweight and obese
63. Mellor DE: New drug targets for type 2 diabetes and the metabolic

S238