Resistance to Diet-Induced Obesity in \(\mu \)-Opioid Receptor–Deficient Mice

Evidence for a “Thrifty Gene”

Antoine Tabarin,\(^1,2\) Yolanda Diz Chaves,\(^1\) Maria del Carmen Carmona,\(^3\) Bogdan Catargi,\(^1,2\) Eric P. Zorrilla,\(^2\) Amanda J. Roberts,\(^2\) Donald V. Coscina,\(^4\) Sophie Rousset,\(^3\) Anabelle Redonnet,\(^6\) Graham C. Parker,\(^4\) Koki Inoue,\(^2\) Daniel Ricquier,\(^5\) Luc Pénicaud,\(^3\) Brigitte L. Kieffer,\(^7\) and Georges F. Koob\(^2\)

Using pharmacological tools, a role for opioid receptors in the regulation of food intake has been documented. However, the involvement of specific receptor subtypes remains questionable, and little information is available regarding a role for opioid receptors in energy metabolism. Using adult male mice lacking the \(\mu \)-opioid receptor (MOR) gene \((\text{MOR}^{-/-})\), we show that the MOR is not essential for the maintenance of normal levels of ad libitum food intake but does modulate the efficiency of energy storage during high-fat diets through the regulation of energy partitioning. When fed a regular diet, \text{MOR}^{-/-} \text{mice displayed only subtle alterations in energy homeostasis, suggesting a relative overuse of fat as a fuel source in the fed state. When fed a high-fat diet, } \text{MOR}^{-/-} \text{mice were resistant to obesity and impaired glucose tolerance, despite having similar energy intake to wild-type mice. This resistance to obesity was associated with a strong induction of the expression of key mitochondrial enzymes involved in fatty acid oxidation within skeletal muscle. This metabolic role of the MOR, which is consistent with the properties of a “thrifty gene,” suggests that the MOR pathway is a potential target for pharmacological intervention in the treatment of obesity associated with the intake of fatty diets.}

Diabetes 54:3510–3516, 2005

From the \(^1\)Laboratoire Homeostasie-Allostasie-Pathologie, University of Bordeaux 2, Bordeaux, France; the \(^2\)Department of Neuropharmacology, Scripps Research Institute, La Jolla, California; \(^3\)Neurobiologie et Métabolisme Énergétique, Université Paul Sabatier, Toulouse, France; the \(^4\)Department of Psychology, Wayne State University, Detroit, Michigan; the \(^5\)Metabolisme Mitochondrial, Necker Faculty of Medicine, Paris, France; the \(^6\)Nutrition et Signalisation Cellulaire, Université Bordeaux 1, Talence, France; and the \(^7\)Institute of Genetics, Molecular and Cellular Biology, Illkirch, France.

Address correspondence and reprint requests to Dr. Antoine Tabarin, Laboratoire Homeostasie-Allostasie-Pathologie, EA 3666, Université de Bordeaux 2, 146 Rue Leo Saignat, 33076 Bordeaux, France. E-mail: antoine.tabarin@chu-bordeaux.fr.

Received for publication 10 March 2005 and accepted in revised form 6 September 2005.

Biot, brown adipose tissue; COIV, cytochrome oxidase subunit IV; CPT-1, carnitine palmitoyl acetyl transferase 1; FFA, free fatty acid; MOR, \(\mu \)-opioid receptor; PPAR-\(\alpha \), peroxisome proliferator–activated receptor-\(\alpha \); UCP, uncoupling protein.

© 2005 by the American Diabetes Association.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The endogenous opioid system encompasses cloned receptor populations (\(\mu \), \(\delta \), and \(\kappa \)) and ligands (\(\beta \)-endorphin, the enkephalins, and the dynorphins). Extensive work indicates that the opioid system plays a role in the regulation of appetite. Opioid receptors and peptides are expressed in sites of the central nervous system that play a role in regulating feeding behavior, and pharmacological experiments using opioid receptor ligands show that agonists promote eating and antagonists decrease food intake, at least in the short term (1–3). Numerous pharmacological studies indicate that opioids also play a role in modulating the rewarding effects of food (3–5). In contrast, little information suggests that opioids have a role in energy metabolism (6–8).

The need to establish the specific role of the opioid receptors in energy homeostasis has led to studies using putative specific opioid receptor ligands or, more recently, antisense probes directed against specific exons of opioid receptor genes (3,9). Pharmacological studies suggest that the \(\mu \) and \(\kappa \) pathways are part of an interconnected brain network and participate in the orexigenic effect of several peptides that regulate food intake (10–13). However, the interpretation of these data is complicated by our poor knowledge of the in vivo selectivity of ligand-receptor interactions that have been established in vitro (9,14).

Recent studies conducted in mutant mice null for the opioid receptors have complemented pharmacological approaches and clarified the role of each receptor in nociception, anxiety, and drug abuse (14). To further define the role of the \(\mu \)-opioid receptor (MOR) pathway in energy homeostasis, we characterized mice lacking the MOR gene \((\text{MOR}^{-/-})\). Our study results indicated that the MOR is not an essential regulator of energy intake but is involved in the efficiency of fat storage during high-fat diets through the regulation of fatty acid oxidation. This metabolic role of the MOR, consistent with the properties of a “thrifty gene” (15), suggests that the MOR pathway might be a target for pharmacological prevention of high-fat diet–induced obesity.

RESEARCH DESIGN AND METHODS

\(\text{MOR}^{-/-} \) mice were obtained as previously described (16). Mice were originally obtained on a hybrid 129 SVJ/C57BL/6 background and were subsequently backcrossed over 12 generations onto a C57BL/6 back-
ground. Only male mice were used in these experiments. All animal protocols complied with National Institutes of Health guidelines and were approved by the Scripps Research Institute. Mature mice were housed singly for at least 4 weeks before the studies. Aged mice were housed in groups of three to four mice per cage. The regular diet (LM-485; Teklad, Madison, WI) and low- and high-fat (12450B and D12451; Research Diets, New Brunswick, NJ) diets contained 9.5, 10, and 45% kcal as fat with an energy density of 3.75, 3.85, and 4.73 kcal/g, respectively.

Unless otherwise specified, body weight and food intake were measured weekly. Prefeeded colored food pellets were placed in cage hoppers; minimal bedding was used in the cages to allow for retrieval of food pieces for weighing. Spillage was taken into account when food intake was determined. For aged mice, food intake was measured on a per-cage basis. Body composition was evaluated by dual-energy X-ray absorptiometry (Piximus/Lunar, Lambesc, France). For carcass analysis, mice were killed by decapitation and their carcasses were immediately frozen and shipped to the University of Alabama to be analyzed, as previously described (17). Lean body mass was calculated as the percentage of body fat-free dry mass.

Uncoupling protein type 1 measurement. Interscapular brown adipose tissue (BAT) was dissected and immediately frozen until it was analyzed. After mitochondria were prepared, the mitochondrial protein content was assayed using bicinchoninic acid. Mitochondrial protein extracts were heated onto polyacrylamide gels, separated by electrophoresis, and transferred onto a nitrocellulose membrane. Western blots were hybridized with anti–UCP-1 (19) at a 1:4,000 dilution and goat anti-IgG at a 1:3,000 dilution. Direct recording of the chemiluminescence corresponding to UCP-1 was performed using the CCD camera of the GeneGnome analyzer, and quantification was achieved using the Genetool software (Ozyme, Saint-Quentin en Yvelines, France).

Statistics. Data are presented as means ± SE. Statistical analyses were performed using Statview (SAS Institute, Cary, NC) and Statistics (Statsoft, Maisons-Alfort, France). Main and interaction effects were analyzed by two-factor ANOVA for repeated or factorial measures or by using t and Mann-Whitney tests where appropriate. When justified by the ANOVA analysis, differences between individual group means were analyzed by the Newman-Keuls post hoc test. Differences were considered statistically significant at P < 0.05.

RESULTS

Adult MOR−/− mice fed a regular diet have no overt change in body weight, food intake, or energy expenditure but display subtle alterations in fuel utilization. The 16- to 28-week-old mutant and wild-type mice fed a regular diet had similar body weights (MOR−/−: 29.2 ± 0.8 g, n = 12; MOR+/+ : 28.8 ± 1.0 g, n = 13) and body composition, as determined by carcass analysis (Fig. 1A). There were no differences in 24-h food intake during 1 week of daily measurements or in 24-h locomotor activity between the genotypes (Fig. 1B and C). Energy expenditure, calculated using indirect calorimetry, was similar during the standing and active periods of the light cycle (Fig. 1D). The RQ was also similar during the dark phase. However, during the mid-light cycle, mutant mice exhibited lower RQ than wild-type mice (mean RQ: 0.72 ± 0.01 [n = 7] vs. 0.76 ± 0.01 [n = 6], respectively; P < 0.03) (Fig. 1E). Thus, in the fed/resting state and despite replenished carbohydrate stores, fat was utilized relatively more than carbohydrates as an energy substrate in MOR−/− mice. We hypothesized that this constitutive difference in fuel utilization might result in less efficient storage of fat when the mice were challenged with a high-fat diet and, conversely, greater depletion of fat stores during starvation (20,21).

Adult MOR−/− mice show reduced vulnerability to the weight-promoting effect of a high-fat diet. A separate set of 17- to 21-week-old mice raised on a regular diet (n = 10 per genotype) were switched to a high-fat diet. After being switched to a high-fat diet, the MOR−/− mice showed a dramatically reduced increase in weight and adiposity (Fig. 2A and B), despite having a food intake similar to that of MOR+/+ mice. Daily measurement of food intake demonstrated the same transient burst of hyperphagia in the mice after the switch to high-fat diet (Fig. 2C), and the cumulative caloric intake over 10 weeks was similar between the following MOR−/− and MOR+/+ mice (890.5 ± 24.4 vs. 938.5 ± 29.5 kcal), indicating a decreased food efficiency in MOR−/− mice (Fig. 2D).

Rectal temperature with a regular diet was similar between the following MOR−/− and MOR+/+ mice (37.3 ± 0.2 [n =
7] vs. 36.9 ± 0.2°C [n = 6]) and remained unchanged after 10 weeks of a high-fat diet, suggesting that the MOR deletion did not result in large changes in the metabolic rate that could account for the decreased vulnerability to diet-induced obesity in MOR−/− mice. Because the MOR is expressed in the gut, the possibility of genotype differences in fat absorption was also assessed. However, total fat excreted in stools after the high-fat diet did not differ between the MOR−/− and MOR+/+ mice, respectively) during the light and dark periods. E: RQ (15 min averages during 3 h): MOR−/− mice exhibit reduced RQ during the light period only. Repeated ANOVA, genotype effect: F1,11 = 6.39, P < 0.03.

FIG. 1. Energy homeostasis of mature MOR+/+ and MOR−/− mice on a regular diet. Shown here are body composition (A; n = 8 per genotype) as well as daily food intake (B) and 24-h locomotor activity in MOR+/+ (n = 12) and MOR−/− (n = 14) mice. D: Indirect calorimetry: the estimated energy expenditure is similar between the genotypes (n = 6 and 7 for MOR+/+ and MOR−/− mice, respectively) during the light and dark periods. E: RQ (15 min averages during 3 h): MOR−/− mice exhibit reduced RQ during the light period only. Repeated ANOVA, genotype effect: F1,11 = 6.39, P < 0.03.

FIG. 2. Energy homeostasis of mature MOR+/+ and MOR−/− mice fed a high-fat diet. A: Body weight after switching from a regular to a high-fat diet. B: Fat mass calculated by dual-energy X-ray absorptiometry before and after 10 weeks of a high-fat diet. C: Daily food intake before and after the switch to a high-fat diet (arrow). D: Food efficiency (100 × gram of body weight gained per kilocalorie consumed) with a high-fat diet. *P < 0.05, **P < 0.01.

7] vs. 36.9 ± 0.2°C [n = 6]) and remained unchanged after 10 weeks of a high-fat diet, suggesting that the MOR deletion did not result in large changes in the metabolic rate that could account for the decreased vulnerability to diet-induced obesity in MOR−/− mice. Because the MOR is expressed in the gut, the possibility of genotype differences in fat absorption was also assessed. However, total fat excreted in stools after the high-fat diet did not differ between the MOR−/− and MOR+/+ mice, respectively) during the light and dark periods. E: RQ (15 min averages during 3 h): MOR−/− mice exhibit reduced RQ during the light period only. Repeated ANOVA, genotype effect: F1,11 = 6.39, P < 0.03.

FIG. 1. Energy homeostasis of mature MOR+/+ and MOR−/− mice on a regular diet. Shown here are body composition (A; n = 8 per genotype) as well as daily food intake (B) and 24-h locomotor activity in MOR+/+ (n = 12) and MOR−/− (n = 14) mice. D: Indirect calorimetry: the estimated energy expenditure is similar between the genotypes (n = 6 and 7 for MOR+/+ and MOR−/− mice, respectively) during the light and dark periods. E: RQ (15 min averages during 3 h): MOR−/− mice exhibit reduced RQ during the light period only. Repeated ANOVA, genotype effect: F1,11 = 6.39, P < 0.03.

7] vs. 36.9 ± 0.2°C [n = 6]) and remained unchanged after 10 weeks of a high-fat diet, suggesting that the MOR deletion did not result in large changes in the metabolic rate that could account for the decreased vulnerability to diet-induced obesity in MOR−/− mice. Because the MOR is expressed in the gut, the possibility of genotype differences in fat absorption was also assessed. However, total fat excreted in stools after the high-fat diet did not differ between the MOR−/− and MOR+/+ mice, respectively) during the light and dark periods. E: RQ (15 min averages during 3 h): MOR−/− mice exhibit reduced RQ during the light period only. Repeated ANOVA, genotype effect: F1,11 = 6.39, P < 0.03.

FIG. 2. Energy homeostasis of mature MOR+/+ and MOR−/− mice fed a high-fat diet. A: Body weight after switching from a regular to a high-fat diet. B: Fat mass calculated by dual-energy X-ray absorptiometry before and after 10 weeks of a high-fat diet. C: Daily food intake before and after the switch to a high-fat diet (arrow). D: Food efficiency (100 × gram of body weight gained per kilocalorie consumed) with a high-fat diet. *P < 0.05, **P < 0.01.

7] vs. 36.9 ± 0.2°C [n = 6]) and remained unchanged after 10 weeks of a high-fat diet, suggesting that the MOR deletion did not result in large changes in the metabolic rate that could account for the decreased vulnerability to diet-induced obesity in MOR−/− mice. Because the MOR is expressed in the gut, the possibility of genotype differences in fat absorption was also assessed. However, total fat excreted in stools after the high-fat diet did not differ between the MOR−/− and MOR+/+ mice, respectively) during the light and dark periods. E: RQ (15 min averages during 3 h): MOR−/− mice exhibit reduced RQ during the light period only. Repeated ANOVA, genotype effect: F1,11 = 6.39, P < 0.03.
mained similar in \(\text{MOR}^- \) mice to that of the animals fed a low-fat diet (Fig. 4D). After 8 weeks of a high-fat diet, fasting plasma glucose levels were also increased in \(\text{MOR}^- \) mice compared with \(\text{MOR}^{++} \) mice (152.8 ± 6.6 \(n = 5 \) vs. 112.3 ± 4.4 mg/dl \(n = 9 \); \(P < 0.01 \)). Plasma insulin in \(\text{MOR}^{++} \) mice increased together with glucose levels, suggesting that glucose intolerance was due to insulin resistance. In contrast, the plasma insulin-to-glucose ratio in \(\text{MOR}^- \) mice fed a high-fat diet remained similar to that of mice on the low-fat diet (Fig. 4E). The preserved insulin sensitivity of \(\text{MOR}^- \) mice fed a high-fat diet was confirmed during an insulin-tolerance test (Fig. 4F).

After 14 weeks of a high-fat diet, body weight and plasma leptin in \(\text{MOR}^- \) mice were greater than in mice fed a low-fat diet (Fig. 4A and B) and fasting glucose levels became similar between \(\text{MOR}^{++} \) and \(\text{MOR}^- \) mice fed a high-fat diet (141.2 ± 4.6 \(n = 5 \) vs. 146.5 ± 13.6 mg/dl \(n = 9 \)). Thus, the \(\text{MOR} \) deletion delayed, but did not ultimately prevent, the development of high-fat diet-induced obesity, insulin resistance, and glucose intolerance.

Adult \(\text{MOR}^{-/} \) mice show increased gene expression of mitochondrial enzymes involved in fatty acid oxidation. To elucidate the mechanisms involved in the resistance to diet-induced obesity in \(\text{MOR}^- \) mice, we quantified gene expression of several mitochondrial enzymes in liver and skeletal muscle. \(\text{MOR}^- \) mice fed a regular diet exhibited an increased hepatic expression of COIV compared with \(\text{MOR}^{++} \) mice (1.34 ± 0.05 vs. 0.96 ± 0.08; \(P < 0.01 \); \(n = 5 \) in each group). No significant differences were found in liver PPAR-\(\alpha \) (1.00 ± 0.16 vs.}
1.05 ± 0.13) or liver CPT-1 (1.04 ± 0.13 vs. 1.02 ± 0.26) mRNA expression between MOR+/+ and MOR−/− mice (n = 5 in each group). After two weeks on a high-fat diet, COIV, PPAR-α, and liver CPT-1 mRNA increased dramatically and reached similar levels in both genotypes (diet effect, P < 0.01; data not shown).

In contrast, MOR+/+ and MOR−/− mice fed a regular diet showed equivalent expression of COIV, muscle CPT-1, and UCP-3 mRNA in skeletal muscle. After 2 weeks on high-fat diet, gene expression remained unchanged in MOR+/+ mice, whereas it was dramatically increased in muscle CPT-1 of MOR−/− mice (P < 0.03), consistent with increased fatty acid oxidation (Fig. 5A). Similar trends approaching statistical significance were noted for the upregulation of UCP-3 and COIV expression in mutant mice (P = 0.06 and 0.08, respectively) (Fig. 5B and C).

UCP-1 expression in interscapular BAT is unaffected by MOR deletion. BAT UCP-1 protein levels did not differ between MOR+/+ and MOR−/− mice fed a regular diet and increased similarly after 2 and 10 weeks of a high-fat diet (Fig. 5D).

Adult male MOR−/− mice have no associated endocrine alteration that affects energy balance. Corticosterone has a permissive effect on diet-induced obesity, and endogenous opioids are involved in the control of hypothalamic-pituitary-adrenal axis activity (23). However, baseline and stress-stimulated corticosterone concentrations did not differ between the two genotypes in this study (Fig. 5E). Similarly, plasma thyroxine levels were unaffected by MOR deletion (MOR+/+ 2.2 ± 0.1 μg/dl; MOR−/− 2.4 ± 0.2% μg/dl; n = 10 in each group).

DISCUSSION

Mice lacking the MOR have a reduced fat deposition and impairment of glucose metabolism when fed a high-fat diet. These alterations were revealed only by an adipogenic dietary challenge because deletion of the MOR had no effect on body weight, fat mass, or glucose metabolism in adult mice fed a low-fat diet. These results agree with the modest effects of long-acting opioid receptor antagonists on the body weight of rats fed a regular diet and the ability of these agents to prevent weight gain in rats fed an adipoegenic diet (6,24). However, in contrast to the findings observed with pharmacological agents, the decreased vulnerability to diet-induced obesity observed in mice selectively deficient for the MOR is attributable to changes in energy metabolism and not in caloric intake.

Pharmacological studies have consistently established that selective MOR agonists acutely promote eating, whereas selective antagonists decrease food intake, especially when elicited by food deprivation or palatable diets (rev. in 3). Contrary to these results and to the intriguing findings in hyperphagic β-END−/− phenotype (25), adult MOR−/− mice fed a regular or a high-fat diet were not hypophagic. Similar observations of quantitatively normal food intake with a regular diet have recently been described in MOR−/− mice generated by another group of researchers (26). The discrepancies between pharmacological and genetic studies may be related to the short-lived and modest intensity of opioid pharmacological stimulation of feeding (3). In addition, our knowledge of the true in vivo selectivity of ligand-receptor interactions that have been established in vitro remains poor (9,14), and the mode of action of opioid-receptor ligands also relies on the dose, the experimental paradigm (acute versus chronic treatment), and the site of administration (5,14,27). Alternatively, the feeding phenotype of MOR−/− mice might reflect the redundancy of brain orexigenic signaling (28) or compensatory brain changes in animals with MOR deleted through their lifetime. It should be noted that MOR−/− mice show no modification in the number or distribution of δ- and κ-opioid receptors or in the expression of opioid peptide precursor genes (16). However, with regard to the complexity of in vivo opioid receptor signaling, disruption of functional interactions...
between opioid receptors in knockout mice cannot be ruled out (29,30).

The reduced food efficiency that we observed in MOR\(^{-/-}\) mice fed a high-fat diet and who ate normally definitively indicates a role for this gene in regulating energy metabolism. In contrast to the extensive work on the involvement of opioids in feeding behavior, little information is available about a role of the opioid system in energy metabolism. It has been suggested that opioids favor the conservation of energy because the weight reduction induced by opioid antagonists in rats fed an adipogenic diet exceeded the degree to which caloric intake was reduced (6,24). However, controversial results on energy expenditure have been obtained with pharmacological tools (6,7). Two studies have reported that nonselective opioid antagonists induce a decrease in RQ, thereby indicating an opioid modulation of lipid oxidation, in rats fed regular and high-fat diets (7,8). However, RQ decreases with reductions in caloric intake (8), and it has not been possible thus far to separate the feeding and metabolic effects of opioids by pharmacological manipulation.

Our observations provide evidence that in the absence of any effect on food intake and energy expenditure, the MOR plays a specific role in modulating the balance between fat and carbohydrate oxidation. Indirect calorimetric data obtained with a regular diet suggest that MOR\(^{-/-}\) mice rely more on the oxidation of fatty acids and less on glycolysis during periods when they are not actively eating. This metabolic trait might be related to a constitutive increase in liver COIV expression, a key mitochondrial enzyme involved in cellular respiration (31). This fuel preference may account, at least partially, for the decreased fat deposition seen with a high-fat diet (32). In humans fed a standard diet, irrespective of their energy expenditure, a low “baseline” inherited RQ correlates with subsequent resistance to weight gain (20,21). Early metabolic adaptation to the amount of fat intake has also been shown to be a major determinant of diet-induced weight gain (33,34). We have demonstrated that after 2 weeks of a high-fat diet, the lack of MOR strongly induces the expression of key enzymes involved in fatty acid oxidation within skeletal muscle such as CPT-1, UCP-3, and COIV (35,36). These results strongly suggest that the lean phenotype of MOR\(^{-/-}\) mice could be a consequence of an increased rate of fatty acid oxidation in skeletal muscle in response to a high-fat diet. Consistent with these findings suggesting that the MOR pathway promotes fat deposition in lieu of fat oxidation, body weight changes in MOR\(^{-/-}\) mice during food deprivation mirrored those seen with an adipogenic diet, including an increased weight loss associated with reduced FFA levels. Other studies using nonselective opioid receptor antagonists suggest that opioids may impair BAT and UCP-1 activity in a way that favors fat deposition (37,38). However, we found no evidence that the MOR pathway is involved in the regulation of UCP-1 expression during high-fat feeding. The primary site of metabolic opioid actions remains to be determined. A brain site of opioid action is suspected (24,39,40). As an alternative, a direct peripheral action might be considered, although the presence of the MOR in liver and skeletal muscle remains poorly documented (41–44).

Obesity results from interactions between environmental and genetic factors that regulate energy intake, energy expenditure, and fuel partitioning. The “thriftty gene” hypothesis suggests that the evolution of the human genome favored the selection of genes promoting efficient storage of ingested energy as fat (15). This adaptation would confer metabolic advantages in historical periods of food scarcity but predisposes individuals to obesity in modern environments. Because the MOR promotes efficient storage of ingested fat, it is metabolically “thriftty.” From an evolutionary perspective, the MOR may represent a beneficial biological link between the metabolic and hedonic aspects of the regulation of energy balance. The well-established rewarding properties of opioids favor the consumption of energy-dense food (3–5), whereas the metabolic actions of MOR agonists promote the storage of ingested calories as fat. However, the present study has provided evidence that the MOR plays a crucial role in the development of obesity and glucose intolerance in a Western diet environment. Previous human trials conducted in obese patients with opioid receptor antagonists have given inconsistent results (8,45). However, in those trials, these agents were nonselective and were given to already obese people. It should be emphasized that more consistent weight-reducing effects in rats were obtained with administration of opioid-receptor antagonists before or during the dynamic phase of obesity development than in animals with preexisting dietary obesity (6,8,24). Also, individual differences in the etiology of obesity (28) may play a role in the efficacy of an opioid receptor antagonist. Again, more consistent weight-reducing effects were obtained in subjects with a putative high endogenous opioid tone, such as rats fed a cafeteria diet (6), binge-eaters (45), or obese women with polycystic ovary syndrome (46). Supporting this hypothesis, high-fat feeding increases hypothalamic MOR expression in rats (47). Therefore, the present findings obtained in mice selectively deficient for the MOR combined with data from the literature suggest that inhibition of MOR signaling may be useful in preventing the development of obesity and impaired glucose tolerance associated with chronic intake of fatty diets.

ACKNOWLEDGMENTS
This work was supported by grants from INSERM Action Thematique Concertee Nutrition, Fondation pour la Recherche Medicale, and Conseil Regional d’Aquitaine. G.F.K. was supported by National Institutes of Health Grant DA-004043 from the National Institute of Drug Abuse.

We are indebted to C. Levy and P. Costet for the breeding of mice and to E. Ravussin, H. Gin, and V. Rigalleau for helpful comments.

REFERENCES