Androgen Receptor Null Male Mice Develop Late-Onset Obesity Caused by Decreased Energy Expenditure and Lipolytic Activity but Show Normal Insulin Sensitivity With High Adiponectin Secretion

WuQiang Fan,1 Toshihiko Yanase,1 Masatoshi Nomura,1 Taijiro Okabe,1 Kiminobu Goto,1 Takashi Sato,2 Hirotaka Kawano,2 Shigeaki Kato,2 and Hajime Nawata1

Abstract

Androgen receptor (AR) null male mice (AR^{−/−}) revealed late-onset obesity, which was confirmed by computed tomography–based body composition analysis. AR^{−/−} mice were euphagic compared with the wild-type male (AR^{+/+}) controls, but they were also less dynamic and consumed less oxygen. Transcript profiling indicated that AR^{−/−} mice had lower transcripts for the thermogenic uncoupling protein 1, which was subsequently found to be ligand-dependently activated by AR. We also found enhanced secretion of adiponectin, which is insulin sensitizing, from adipose tissue and a relatively lower expression of peroxisome proliferator–activated receptor-γ in white adipose tissue in comparison to AR^{+/+} mice. Both factors might explain why the overall insulin sensitivity of AR^{−/−} mice remained intact, despite their apparent obesity. The results revealed that AR plays important roles in male metabolism by affecting the energy balance, and it is negative to both adiposity and insulin sensitivity. Diabetes 54:1000–1008, 2005

T

he etiology of obesity is extremely heterogeneous, in that it is the final result of interactions among genetic, environmental, and psychosocial factors. The androgen receptor (AR) gene may be one of these genetic factors. AR gene repeat variation was shown to be strongly associated with central obesity indexes in older adults (1). Testosterone is an important factor for determining body composition in males. Abdominal obesity is inversely correlated with serum testosterone levels in men but not in women (2). Steady increases in body fat mass accompany the age-dependent decrease in serum testosterone levels in men (3,4), leading to greater morbidity (5). Pathologically hypogonadal men also have a significantly higher fat mass (3,6), which is reversed by testosterone administration (7,8), whereas suppression of serum testosterone in healthy young men increased the percent fat mass and decreased lipid oxidation rates and resting energy expenditure (9).

We generated an AR null (ARKO) mouse line, using a Cre-loxP system (10–12), and found that male ARKO mice (AR^{−/−}) developed late-onset obesity, whereas neither heterozygous nor homozygous female ARKO mice were affected (10), suggesting a male-specific AR effect on adiposity.

Herein we report the underlying mechanism of late-onset obesity in AR^{−/−} mice. Despite a lack of hyperphagia, AR^{−/−} mice had lower spontaneous activity and a decreased overall oxygen consumption ratio. We also observed a concomitant decrease in expression of the thermogenic uncoupling protein 1 (UCP-1). In addition, a unique lack of insulin resistance in AR^{−/−} mice, despite the obese phenotype, suggests it was related to an enhanced secretion of adiponectin from adipose tissue.

RESEARCH DESIGN AND METHODS

An ARKO mutant mouse line was established and maintained as described previously (10–12). Heterozygous females were bred to wild-type males (C57BL/6N(Crl); Charles River Japan, Tokyo, Japan) to produce ARKO male mice (AR^{−/−}) and heterozygous females. Their diet (CLEA rodent diet CE-2; Kyudo, Tosu, Saga, Japan) had the following composition: 54.4% carbohydrate, 24.4% protein, 4.4% fat, and 342.2 kcal/100 g. Mice were weighed weekly, and food consumption was measured by weighing the remaining food every 3 days. All animal protocols were approved by the animal care and use committee of Kyushu University.

Body fat composition analysis. For computed tomography (CT) analysis of body fat composition, mice were anesthetized with intraperitoneal injections of pentobarbital sodium (Nembutal; Dainippon Pharmaceutical, Osaka, Japan) and then scanned using a LaTheta (LCT-100M) experimental animal CT system (Aloka, Tokyo, Japan). Contiguous 2-mm slice images between L2 and L4 were used for quantitative assessment using LaTheta software (version 1.00). Visceral fat, subcutaneous fat, and muscle were distinguished and evaluated quantitatively.

Spontaneous activity. Spontaneous physical activity was measured using a Letica infrared system (Panlab, Barcelona, Spain). The mice were placed in a 45 × 45 cm² infrared frame in which 16 × 16 intercepting infrared light beams formed a double grid of infrared cells. The position of the mice within the infrared frame was traced in a real-time manner. An additional upper infrared frame was applied to detect rearing (mouse standing up on its hind legs). Parameters such as distance traveled, speed, rearing number, and duration were analyzed using the Acti-Track program. By setting two speed thresholds.
Glucose tolerance and insulin challenge tests. Oxymax Windows software (version 1.0).

of 2.00 and 5.00 cm/s, the movements were subclassified into resting (slower than 2.00 cm/s), moving slowly (between 2.00 and 5.00 cm/s), and moving fast (faster than 5.00 cm/s). The mice were placed into the frame 5 h before commencing recording to allow familiarization with the surroundings. Recording was started 2 h after the lights were switched off and lasted for 8 h; mice were assessed individually.

Oxygen consumption measurements. Mice were fed regular chow, maintained at a constant room temperature (21–23°C), and subjected to oxygen consumption measurements at ~22 weeks of age using a computer-controlled open-circuit indirect calorimeter (Oxymax; Columbus Instruments, Columbus, OH). Mice were housed individually in metabolic chambers (10 × 20 cm²) and had free access to food and water. After a 1-h adaptation to the chamber, VO₂ was assessed at 4-min intervals for 24 h. All sample data were analyzed using Oxymax Windows software (version 1.0).

Glucose tolerance and insulin challenge tests. For the intraperitoneal glucose tolerance test, mice were fasted overnight and then injected with 2 g D-glucose/kg body wt i.p. Tail blood glucose levels were monitored before and t 15, 30, 60, 90, and 120 min after injection using blood glucose meters (Matsushita Kotobuki Electronics Industries, Ehime, Japan). For the insulin challenge test, mice were fasted overnight and then injected with 0.7 units regular insulin/kg body wt i.p. Tail blood glucose levels were monitored before and at 15, 30, 60, 90, and 120 min after injection using blood glucose meters (Matsushita Kotobuki Electronics Industries, Ehime, Japan). For the insulin challenge test, mice were fasted overnight and then injected with 0.7 units regular insulin/kg body wt i.p. Tail blood glucose levels were measured at the same time points as above.

Histology. Mice were killed at 45 weeks old after an overnight fast, and blood was collected by cardiac puncture. Subcutaneous white adipose tissue (WAT), interscapular brown adipose tissue (BAT), liver, and kidneys were removed and immersion-fixed in 4% paraformaldehyde. After dehydration, tissue samples were paraffin-embedded in a random orientation, sliced into 10-μm sections, and stained with hematoxylin and eosin.

Blood chemicals. Blood was collected at the time of death, and the isolated serum was aliquoted and stored at −20°C until use. All blood chemistry items were measured by SRL (Tokyo, Japan). Plasma full-length adiponectin levels were measured using an enzyme-linked immunosorbent assay system as previously described (13).

Real-time PCR. Total RNA was isolated from 100 mg of intraperitoneal WAT by using an RNeasy Lipid Tissue Mini Kit (Qiagen, Valencia, CA). To remove any possible DNA contamination, on-column digestion of DNA was performed with an RNase-free DNase set (Qiagen). Then, 3 μg of total RNA was subjected to reverse transcription using SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA) primed by random primers. cDNA was then subjected to real-time PCR analysis to quantify various transcripts, using a LightCycler (Roche Diagnostics, Mannheim, Germany) according to the manufacturer’s instructions, as we previously described (14). The forward/reverse primer sequences for each target transcript are shown in Table 1.

RESULTS

We previously reported that up to 10 weeks old, ARL⁻/⁻ Y mice had growth retardation compared with the male wild-type (ARX⁺/+) mice, but over the next couple of weeks, their body weight caught up with and then exceeded that of ARX⁻/⁻ mice and eventually developed into overt obesity (10). These phenomena were not observed in ARKO Y mice. In the present study, we performed objective CT-based body composition analysis for mice at 40 weeks of age. Figure 1A shows the CT-estimated weights of the adipose tissue and muscle in the area assayed (L2–L4). Although the muscle amount was unchanged, the visceral and subcutaneous fat and total fat of ARL⁻/⁻ Y mice were significantly heavier than those of ARX⁻/⁻ mice. Figure 1B shows representative CT images at the L3 level of ARX⁻/⁻ (left) and ARL⁻/⁻ (right) mice. ARL⁻/⁻ mice had increased fat in both visceral and subcutaneous areas. Thus, increased adiposity, rather than a linear increase in body growth, accounted for the elevated body weight of ARL⁻/⁻ Y mice.

The body weight of ARL⁻/⁻ Y mice at 45 weeks of age was significantly higher than that of ARX⁻/⁻ mice (Fig. 2A), and, consistent with the CT data, perirenal fat pads of ARL⁻/⁻ Y mice were clearly larger than those of ARX⁻/⁻ mice (data not shown). Despite elevated body weight, the kidneys of

Table 1

<table>
<thead>
<tr>
<th>Target</th>
<th>Forward</th>
<th>Reverse</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCP-2</td>
<td>AACCTTCCCGTGACAC</td>
<td>CCACTGGACCTTATAT</td>
<td>91</td>
</tr>
<tr>
<td>β-Actin</td>
<td>CCTACTGTGGCTTCA</td>
<td>CACCAGCACCTTATAT</td>
<td>142</td>
</tr>
<tr>
<td>Acetyl CoA carboxylation</td>
<td>GGAGCGAAGAAGAAAGGCA</td>
<td>GAAGCTTTCCTAGTTT</td>
<td>246</td>
</tr>
<tr>
<td>Fatty acid synthase</td>
<td>TCTCAACCTGACCTTGAC</td>
<td>CTTTGAGATGCAAGCTGACG</td>
<td>218</td>
</tr>
<tr>
<td>PPAR-γ coactivator 1</td>
<td>CAGGTTGTGGATGACACT</td>
<td>TCTGTTCTAGGGTTCGTT</td>
<td>225</td>
</tr>
<tr>
<td>Sterol regulatory element-binding protein 1c</td>
<td>CCTGTTGCAAAAGATCGGC</td>
<td>GGTGCTCTAGGGGATGCGTGTAGTGT</td>
<td>395</td>
</tr>
<tr>
<td>Leptin</td>
<td>TTCCAGAATGTCAGGAGTAC</td>
<td>CACATTTTGGGAAGGCAGG</td>
<td>212</td>
</tr>
<tr>
<td>Carnitine palmitoyl transferase I</td>
<td>ATTCGTGGGCGGCTTTAGTTT</td>
<td>TTGCTGGAGTGCTAGTGT</td>
<td>305</td>
</tr>
<tr>
<td>Long-chain acyl-CoA dehydrogenase</td>
<td>GTCCTGCTCTCCCGATGGTT</td>
<td>ATGTTTCTCGGATGTTGATG</td>
<td>258</td>
</tr>
<tr>
<td>UCP-1</td>
<td>CACCTTCCCGTGACAC</td>
<td>CCACTGGACCTTATAT</td>
<td>91</td>
</tr>
<tr>
<td>Muscle-type phosphofructokinase</td>
<td>AGATGTTGTGCTAAAGCCTAGT</td>
<td>TTTGAGATGCAAGCTGACG</td>
<td>218</td>
</tr>
<tr>
<td>Muscle-type pyruvate kinase</td>
<td>CATCGTTGGTGGATGACACT</td>
<td>CATGTGGTTGGATGACACT</td>
<td>225</td>
</tr>
<tr>
<td>Hexokinase I</td>
<td>CGGTTGGCAGAAAGATCGGC</td>
<td>CGTCCTTAGGCGTTCGTT</td>
<td>243</td>
</tr>
<tr>
<td>Hexokinase II</td>
<td>TCTCACTGAGAGCTGACT</td>
<td>CGTCCTAGGCGTTCGTT</td>
<td>272</td>
</tr>
<tr>
<td>AR</td>
<td>CAGCATTATTTGCTGATGAGT</td>
<td>GGGGACTTGCCACAGAATG</td>
<td>274</td>
</tr>
<tr>
<td>UCP-1 promoter</td>
<td>TCCATTTGGCTCTCCACCATGAG</td>
<td>AGGCGTATGAGTCGCAAAGACAA</td>
<td>3,850</td>
</tr>
</tbody>
</table>
AR^{L−/−} mice were significantly smaller than those of AR^{XY} mice (Fig. 2B), supporting previous studies demonstrating smaller kidneys in orchidectomized mice (16,17).

In comparison to AR^{XY} mice, subcutaneous WAT from AR^{L−/−} mice was hypertrophic (Figs. 2C and D). The interscapular BAT in AR^{L−/−} mice was relatively enlarged and pale (Fig. 2E), and it contained higher lipid content (Figs. 2F and G). A considerable number of cells in AR^{L−/−} BAT were large and contained unilocular lipid deposits that morphologically mimicked WAT adipocytes (data not shown). Leptin transcript, which is normally restricted to WAT, was elevated in AR^{L−/−} WAT, as expected (Fig. 2H). However, it was also elevated in AR^{L−/−} BAT (Fig. 2I), suggesting that BAT from AR^{L−/−} mice has characteristics of both BAT and WAT. Thus the BAT of AR^{L−/−} mice is similar to that from mice in which the genes encoding all three β-adrenergic receptors have been inactivated (18). Despite the apparent obesity, AR^{L−/−} mice manifested no change was found for hexokinase II. Muscle-type phosphofructokinase tended, albeit not statistically significantly, to
be higher, whereas increase in muscle-type pyruvate kinase (including muscle-type pyruvate kinase-1 and -2) reached statistical significance. These data suggest glucose uptake and oxidation in muscle might be activated in ARL mice.

The concept of energy balance, which comprises both energy intake (feeding) and energy expenditure (physical activity, basal metabolism, and adaptive thermogenesis), is the key to understanding obesity (24). We first found that ad libitum food intake was unchanged between ARL-γ/γ and ARX/Y mice; that is, ARL-γ/γ mice were euglycemic, as already reported (10). Next, we measured spontaneous physical activity for mice at around 8, 20, and 40 weeks of age (Table 2). During the 8-h monitoring period while the lights were off, the 20-week-old ARL mice at around 8, 20, and 40 weeks of age (Table 2). During the 8-h monitoring period while the lights were off, the 20-week-old ARL mice (n = 6). The subcutaneous WAT of ARX/Y (C) and ARL-γ/γ mice (D), respectively (magnification 100×); it was hypertrophic in ARL-γ/γ compared with in ARX/Y mice. E–G: Interscapular BAT in ARX/Y (F) and ARL-γ/γ mice (G); it was enlarged and pale in ARL-γ/γ compared with in ARX/Y mice (magnification 100× in F and G). H and I: Leptin transcript levels in WAT (H) and BAT (I) in ARX/Y and ARL-γ/γ mice. The transcript levels in ARX/Y were set at 100. J: Serum E2 levels in ARL-γ/γ and ARX/Y mice. *P < 0.01 compared with ARL-γ/γ mice, n = 6.

FIG. 2. General characteristics of late-onset obesity in ARL-γ/γ mice. A: Body weights of 45-week-old ARL-γ/γ and ARX/Y mice (n = 6). B: Kidney weights of 45-week-old ARL-γ/γ and ARX/Y mice (n = 6). C and D: The subcutaneous WAT of ARX/Y and ARL-γ/γ mice (n = 6). E–G: Interscapular BAT in ARX/Y (F) and ARL-γ/γ mice (G); it was enlarged and pale in ARL-γ/γ compared with in ARX/Y mice (magnification 100× in F and G). H and I: Leptin transcript levels in WAT (H) and BAT (I) in ARX/Y and ARL-γ/γ mice. The transcript levels in ARX/Y were set at 100. J: Serum E2 levels in ARL-γ/γ and ARX/Y mice. *P < 0.01 compared with ARL-γ/γ mice, n = 6.

Both serum thyrotropin (6.67 ± 3.67 ng/ml in ARL-γ/γ mice vs. 8.22 ± 2.05 ng/ml in ARX/Y mice, n = 6, P > 0.05) and 3,5,3’-triodothyronine (0.58 ± 0.18 ng/ml in ARX/Y mice versus 0.50 ± 0.11 ng/ml in ARX/Y mice, n = 6, P > 0.05) were unchanged. The rectal temperatures of both groups of mice at 22 weeks of age at room temperature were similar (37.97 ± 0.46°C in ARL-γ/γ mice vs. 38.40 ± 0.43°C in ARX/Y mice, P > 0.05). We next compared the overall oxygen consumption ratio by indirect calorimetry. To minimize interference effects of the activity differences between the two groups of mice on the VO₂ results, we housed the mice for calorimetry in chambers of 10 cm², which were less than one-tenth the size of the infrared frames (45 × 45 cm²) used to monitor the spontaneous activities. Figure 4A shows representative oxygen consumption (VO₂) curves of one pair of ARL-γ/γ and ARX/Y mice. It is apparent that besides the average level, both peaks and troughs of the curves, which represent periods of movement and resting, respectively, are generally lower in ARL-γ/γ mice. Figure 4B summarizes the average mean VO₂; ARL-γ/γ mice consumed ~30% less oxygen than ARX/Y mice. These data collectively indicate that ARL-γ/γ mice had a positive energy balance, which favors the onset of obesity (25). To analyze the molecular mechanisms of the increased adiposity, we applied real-time PCR to determine the transcript levels of various genes involved in thermoregulation and lipid metabolism in WAT and BAT.

In the WAT of ARL-γ/γ mice, the expression level of the most important thermogenetic molecule, UCP-1 (26), was less than one-tenth of that in ARX/Y mice (Fig. 5A). AR is possibly a novel positive regulator of the UCP-1 gene.
because we revealed three steroid receptor response elements (TGTTCT) on a UCP-1 promoter sequence (up to −7,645 bp, GenBank accession no. U63418), and a 3.85-kb UCP-1 promoter, which contains the last consensus sequence, positively responded to AR in NIH-3T3-L1 adipocytes in a dihydrotestosterone-dependent manner (Fig. 5B). A decrease in UCP-1 transcript was also observed in the BAT of AR^{−/−} mice (Fig. 5C), although it was less predominant than that in WAT; however, this is explained by the sevenfold higher expression of AR transcript in male WAT than BAT (Fig. 5D). The downregulation of UCP-1 might explain, to some extent, the lower VO₂ in
AR^{L−/−} mice. In addition, another thermogenic factor, PPAR-γ coactivator 1 (27), was also significantly decreased in both the WAT and BAT of AR^{L−/−} mice (Fig. 5E and F).

Hormone-sensitive lipase catalyzes the rate-limiting step of lipolysis in adipose tissue. The transcript level of hormone-sensitive lipase was significantly decreased in AR^{L−/−} WAT (Fig. 6A), whereas those for de novo lipid synthesis indicators, such as fatty acid synthase (Fig. 6F) and acetyl-CoA carboxylase (Fig. 6C) as well as the lipogenic transcriptional factor sterol regulatory element–binding protein-1c (Fig. 6D), were not significantly changed in both WAT and BAT (data not shown). Transcripts encoding lipoprotein lipase, the key enzyme involved in lipogenesis from circulating plasma triglyceride, were found significantly decreased in AR^{L−/−} WAT (Fig. 6E). The fatty acid β-oxidation markers carnitine palmitoyl transferase 1 (Fig. 6F) and long-chain acyl-CoA dehydrogenase (Fig. 6G) in AR^{L−/−} WAT showed lower trends, but they were not statistically significant. In total, decreased lipolysis rather than increased lipid synthesis might account for the increased adiposity in AR^{L−/−} mice.

DISCUSSION

Our AR null mice have neither detectable AR transcript nor protein, thus theoretically abolishing any effect of the androgens-AR system. Mirroring the increased fat mass observed in hypogonadal men, AR^{L−/−} mice have increased body weight, which is largely attributable to expanded adiposity, as indicated by both CT-based body composition analysis and anatomy. Body weights of ARKO female mice were unchanged (10), suggesting AR’s effect on adiposity is specific to males. Dysfunction of the estrogen–estrogen receptor system was reported to be associated with obesity in male subjects based on the finding from both estrogen receptor-α–knockout (19) and aromatase knockout mice (20). Although we may be unable to completely exclude a possibly mixed effect on the AR^{L−/−} obese phenotype from the estrogen–estrogen receptor system, in which the function is theoretically impaired because of the shortage of the substrate for androgen-estrogen conversion in AR^{L−/−} mice, the possibility might be minor because we noticed that serum estrogen levels in AR^{L−/−} mice at both 8 weeks (12) and 40 weeks of age remain intact compared with AR^{XY} mice, suggesting AR^{L−/−} mice are not in short supply of estrogen. In addition, supplementation of the nonaromatizable androgen dihydrotestosterone corrected fat mass increase in castrated AR^{XY} mice but not in AR^{L−/−} mice (10), confirming that androgen actions mediated via AR has a distinct and independent adiposity-lowering effect in male subjects. Thus, our ARKO mice represent a powerful model for studying the role of the androgen-AR system in male adiposity regulation.

The direct molecular mechanism accounting for hypertrrophic adipocytes and expanded WAT of AR^{L−/−} mice might rely on the altered lipid homeostasis characterized by decreased lipolysis but not increased lipogenesis. Transcripts for hormone-sensitive lipase are strikingly decreased, whereas those for lipogenic genes (fatty acid synthase, acetyl-CoA carboxylase, sterol regulatory element–binding protein-1c, and lipoprotein lipase) are not increased (unchanged or decreased). The results are consistent with previous suggestions that androgens are lipolytic (28,29) and are very different from those of aromatase knockout mice, in which lipogenesis was found enhanced.

TABLE 2

Spontaneous activity at various life stages

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Body weight (g)</th>
<th>Distance (cm)</th>
<th>Speed composition</th>
<th>Rearing <i>V</i> (n)</th>
<th>Rearing <i>V</i> duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>% RT</td>
<td>% MS</td>
<td>% MF<sup>a</sup></td>
</tr>
<tr>
<td>8 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR<sup>XY</sup></td>
<td>23 ± 0.69</td>
<td>98,816.3 ± 10,951.0</td>
<td>60.4</td>
<td>23.9</td>
<td>15.7</td>
</tr>
<tr>
<td>AR<sup>L−/−</sup></td>
<td>21 ± 1.34</td>
<td>66,394.8 ± 14,616.7<sup>*</sup></td>
<td>72.8</td>
<td>17.8</td>
<td>9.48</td>
</tr>
<tr>
<td>20 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR<sup>XY</sup></td>
<td>31.90 ± 4.96</td>
<td>99,770.8 ± 27,281.6</td>
<td>65.8</td>
<td>20.9</td>
<td>13.3</td>
</tr>
<tr>
<td>AR<sup>L−/−</sup></td>
<td>41.07 ± 3.18<sup>*</sup></td>
<td>60,608.8 ± 11,802.8<sup>*</sup></td>
<td>72.9</td>
<td>19.7</td>
<td>7.5</td>
</tr>
<tr>
<td>40 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR<sup>XY</sup></td>
<td>35.46 ± 2.91</td>
<td>78,210.5 ± 23,996.3</td>
<td>67.4</td>
<td>21.4</td>
<td>11.2</td>
</tr>
<tr>
<td>AR<sup>L−/−</sup></td>
<td>56.50 ± 7.83<sup>*</sup></td>
<td>41,480.6 ± 7,164.4<sup>*</sup></td>
<td>81.8</td>
<td>13.9</td>
<td>4.2</td>
</tr>
</tbody>
</table>

^a<i>P</i> < 0.01 compared with AR^{XY} (wild-type controls), <i>n</i> = 6. <i>V</i>, rearing; mouse stands up on its hind legs. RT, resting; speed <2.00 cm/s; MS, moving slowly; speed between 2.00 and 5.00 cm/s; MF, moving fast: speed >5.00 cm/s.
(high lipoprotein lipase), but lipolysis was normal (30), suggesting estrogen is antilipogeneic.

Besides its negative role on adiposity, the androgen-AR system seems also to be negative to insulin sensitivity. Previous studies suggested androgen impairs insulin sensitivity in both humans and rodents (31,32). In our study, despite the obvious obese appearance, AR⁻/⁻ mice reacted to both insulin and glucose challenges in manners that were indistinguishable from those of wild-type controls, indicating that the overall insulin sensitivity remained intact. This discordance between obesity and intact insulin-glucose homeostasis is unique to AR⁻/⁻ mice, and it is very different from estrogen receptor-α knockout (19) or aromatase knockout (20) mice, which are accompanied by glucose intolerance and insulin resistance. One possible mechanism for the discordance might be hyperadiponectinemia. Adiponectin, originating from adipose tissue specifically, functions as an important insulin sensitizer (13,33) and correlates negatively with fat mass in that its plasma levels or adipose tissue mRNA levels decrease among obese subjects and recover after weight loss (34). The significant reduction of adiponectin transcripts in the WAT of obese AR⁻/⁻ mice matches this conventional concept and thus suggests that downregula-
tion happens at the transcriptional level. However, despite the lower mRNA level in WAT tissue, the serum protein level was surprisingly elevated, even after adjustment of WAT mass, indicating that the secretion process of adiponectin protein from WAT is relatively enhanced by AR inactivation. This supports a previous suggestion that testosterone inhibits adiponectin secretion from adipocytes (35,36). Thus, the androgen-AR system is an inhibitory player in the adiponectin secretion mechanism, which is largely unclarified. The inhibitory effect may also help explain the severe insulin resistance and hyperadiponectinemia observed in diseases with androgen excess, such as polycystic ovary syndrome, in which an AR blocker was found able to improve metabolic abnormalities and dysadipocytokininemia (37). Besides hyperadiponectinemia, the low expression of PPAR-γ in AR^{L−/−} WAT may also contribute to the unexpectedly normal insulin sensitivity because an intermediate level of PPAR-γ expression in WAT is the best condition for insulin sensitivity, as suggested by the finding that heterozygous PPAR-γ^{-/-} mice were protected from developing insulin resistance compared with wild-type mice (23).

The molecular events behind the intact glucose homeostasis, glucose uptake, and oxidation were found enhanced in skeletal muscle by AR inactivation, mirroring the clinical picture of polycystic ovary syndrome patients, where androgen excess is related with insulin resistance (32) and impaired glucose uptake (38). However, at this moment, we’re not sure whether the enhanced glucose uptake and oxidation is caused directly by androgen-AR system inactivation or is secondary to hyperadiponectinemia or low PPAR-γ expression.

Body weight and the storage of energy as triglycerides in adipose tissue are homeostatically regulated by the long-term balance between energy intake and expenditure; obesity only develops if energy intake chronically exceeds the total energy expenditure (24). Although it doesn’t affect appetite, AR inactivation causes an intrinsic decrease of spontaneous physical activity in male mice as well as overall oxygen consumption (V_{O2}). Thus, androgen-AR system inactivation in male mice causes a chronic positive energy balance, which favors acceleration of fat mass and obesity.

In agreement with the lower V_{O2}, both the thermogenic UCP-1 and PPAR-γ coactivator 1 transcripts were decreased in the adipose tissues of AR^{L−/−} mice. UCP-1, which uncouples energy substrate oxidation from mitochondrial ATP production and hence results in a loss of potential energy as heat, is one of the most important molecules responsible for adaptive thermogenesis (26). To our knowledge, this is the first time it has been shown that AR, upon its ligand binding, directly activates UCP-1 transcription, presumably by binding to the steroid response elements on the promoter.

Although AR directly regulates factors in the peripheral tissues involved in energy homeostasis, like UCP-1, it also very likely affects the mechanism exerted by the central nervous system because AR was found densely expressed in various hypothalamic nuclei, including the ventromedial hypothalamus and dorsomedial hypothalamus and the arcuate nucleus (39). The androgen-activating 5α-reductase is also expressed in the hypothalamus (40). The physiological role of the androgen-AR system in the hypothalamus is largely unknown. It is highly possible that the receptor may be involved in regulating the leptin-regulated melanocortin circuit because AR activation in the hypothalamus increases the inhibitory neuropeptide somatostatin (41,42), which may in turn inhibit the anorexigenic melanocytostimulating hormone or cocaine- and amphetamine-regulated transcript. The altered energy balance in AR^{L−/−} characterized by lower V_{O2} and lower physical activity warrants further study of the intra–central nervous system role of AR, which is now ongoing.

In summary, the androgen-AR system is correlated with male adiposity, and inactivation of the system causes late-onset obesity in male mice because of altered energy balance, since the AR^{L−/−} mice were euphagic but less physically dynamic and less oxygen-consuming compared with AR^{X/Y} mice. The mechanism of decreased energy expenditure might reside in both the central nervous system and peripheral tissues. Besides its negative role in adiposity, the androgen-AR system also plays a negative role in insulin sensitivity, at least in part through inhibiting the release of adiponectin from adipose tissue.

Acknowledgments

This work was supported in part by a grant for the 21st Century COE Program from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

References

