OBJECTIVE

Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing β-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human effector cells to study type 1 diabetes.

RESEARCH DESIGN AND METHODS

We adoptively transferred HLA-A2–matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients and nondiabetic control subjects into transgenic NOD-scid/γcnull/HLA-A*0201 (NOD-scid/γcnull/A2) mice. At various times after adoptive transfer, we determined the ability of these mice to support the survival and proliferation of the human lymphoid cells. Human lymphocytes were isolated and assessed from the blood, spleen, pancreatic lymph node and islets of NOD-scid/γcnull/A2 mice after transfer.

RESULTS

Human T and B cells proliferate and survive for at least 6 weeks and were recovered from the blood, spleen, draining pancreatic lymph node, and most importantly, islets of NOD-scid/γcnull/A2 mice. Lymphocytes from type 1 diabetic patients preferentially infiltrate the islets of NOD-scid/γcnull/A2 mice. In contrast, PBMCs from nondiabetic HLA-A2–matched donors showed significantly less islet infiltration. Moreover, in mice that received PBMCs from type 1 diabetic patients, we identified epitope-specific CD8+ T cells among the islet infiltrates.

CONCLUSIONS

We show that insulitis is transferred to NOD-scid/γcnull/A2 mice that received HLA-A2–matched PBMCs from type 1 diabetic patients. In addition, many of the infiltrating CD8+ T cells are epitope-specific and produce interferon-γ after in vitro peptide stimulation. This indicates that NOD-scid/γcnull/A2 mice transferred with HLA-A2–matched PBMCs from type 1 diabetic patients may serve as a useful tool for studying epitope-specific T-cell–mediated responses in patients with type 1 diabetes.

NOD mice develop spontaneous diabetes due to autoimmune destruction of pancreatic β-cells. These mice have served as a useful tool for understanding many aspects of type 1 diabetes (1,2). For example, the identification of certain pathogenic epitopes were originally found in NOD mice and subsequently observed in the blood of type 1 diabetic patients (3). The major shortcoming of these studies is their inability to evaluate the human autoreactive effector cells directly. Researchers have identified a number of pathogenic autoreactive epitopes of CD4+ and CD8+ T cells that recognize and result in β-cell killing. Epitopes for islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), insulin, and preproinsulin have been identified in the islets of NOD mice (4). T cells specific for epitopes from these proteins and other islet proteins, including islet amyloid polypeptide (IAPP), have been found in the blood of type 1 diabetic patients (5). At the same time, however, many of the findings in NOD mice have not directly translated to human type 1 diabetes. Importantly, a large number of therapies appear to “cure” diabetes in NOD mice, but these therapies have not readily translated to humans. Anti-CD3 antibody therapy, which is extremely effective in NOD mice (6,7), is less effective in patients (8,9). These immunomodulatory therapies still leave concerns about their effects, as discussed by Santamaria (10). Other immune therapies aimed at targeting B cells, such as anti-CD20 monoclonal antibody treatment, also offer short-term CD19+ B-cell depletion and partially preserve β-cell function (11).

Development of humanized mice in which HLA-matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients are adoptively transferred into immune-deficient mice would provide a means of studying human immune cells without the restrictions inherent to human studies (12). Specifically, it would be possible to identify human autoreactive epitope-specific T cells that infiltrate the islets directly ex vivo. A small-animal model that recapitulates the clinical manifestations of type 1 diabetes would also assist in identifying novel therapeutic targets and in developing and testing novel immunotherapeutic agents. Furthermore, we would be able to investigate the mechanisms involved in disease pathogenesis of many other autoimmune diseases, especially those with disease-associated epitopes, shared between humans and mice (13,14).

During the past several years, many investigators have used human hematopoietic stem cells (HSCs) for engraftment into immunodeficient mice (1517). These studies have attempted to develop a complete human immune system in a murine host. In many cases, successful engraftment and cell differentiation was observed. Most recently, investigators showed that functional human CD4+ and CD8+ T cells developed after being transferred into immune-deficient HLA transgenic mice and that these T cells demonstrated HLA-restricted responses (18). In contrast, our goal was not to recapitulate the entire autoimmune process; rather, we sought to develop a humanized mouse model that would be useful for identifying pre-existing autoreactive diabetogenic circulating T cells from type 1 diabetic patients that are important in the direct pathogenesis of type 1 diabetes.

In NOD mice, β-cell–specific CD8+ T-cell clones are found in the peripheral blood and pancreatic islets (19). In patients with type 1 diabetes, epitope-specific T cells display T-lymphocyte cytotoxic activity toward human β-cells (20). Humans and mice also share many of the protein sequences of identified epitopes (21). Therefore, because it is likely that lymphocytes that have been exposed to islet antigens circulate within the blood of patients with type 1 diabetes, we adoptively transferred peripheral blood mononuclear cells (PBMCs) from HLA-A2–matched type 1 diabetic patients into transgenic NOD-scid/γcnull/HLA-A*0201 (NOD-scid/γcnull/A2) mice (Table 1). NOD-scid/γcnull mice provide a lymphopenic environment that supports the survival of human cells. We used mice expressing a full-length human HLA gene to allow engagement of the human CD8 expressed on the transferred cells with exogenous HLA on the mouse cells. Engagement of CD8 enhances both recognition and survival of CD8 T cells (22).

TABLE 1

Type 1 diabetic and nondiabetic haplotype-matched PBMC donors used in transfer experiments*

Patient IDAgeSexDiabetes duration (years)
Type 1 diabetes (n = 10)    
 A1 Adult 48 
 A19 Adult 41 
 A21 Adult 22 
 A25 Adult 12 
 A27 Adult 12 
 A31 Adult 25 
 A33 Adult 12 
 A37 Adult 22 
 H82 Child 
 H96 Child 13 
NDD (n = 9)    
 NDD1 Adult NA 
 NDD2 Adult NA 
 NDD3 Adult NA 
 NDD4 Adult NA 
 NDD5 Adult NA 
 NDD6 Adult NA 
 NDD7 Adult NA 
 NDD8 Adult NA 
 NDD9 Adult NA 
Patient IDAgeSexDiabetes duration (years)
Type 1 diabetes (n = 10)    
 A1 Adult 48 
 A19 Adult 41 
 A21 Adult 22 
 A25 Adult 12 
 A27 Adult 12 
 A31 Adult 25 
 A33 Adult 12 
 A37 Adult 22 
 H82 Child 
 H96 Child 13 
NDD (n = 9)    
 NDD1 Adult NA 
 NDD2 Adult NA 
 NDD3 Adult NA 
 NDD4 Adult NA 
 NDD5 Adult NA 
 NDD6 Adult NA 
 NDD7 Adult NA 
 NDD8 Adult NA 
 NDD9 Adult NA 

ID, identification; NA, not applicable.

*All PBMC donors were HLA-A2 haplotype.

After transfer of human PBMCs, we were able to show engraftment and islet cell infiltration of the PBMCs from the type 1 diabetic donors. Further, the islet-infiltrating cells were enriched in T cells that recognize diabetogenic epitopes and underwent additional expansion after transfer to a secondary recipient.

Animals.

Mice were housed in facilities approved by the Association for Assessment and Accreditation of Laboratory Animal Care at the University of North Carolina (UNC) Animal Facility and handled according to the UNC Office of Animal Care and Use. All experimentation was approved by the UNC Institutional Animal Care and Use Committee. The original breeding pairs of NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(HLA-A2.1)Enge/Sz and NOD.Cg-PrkdcscidEmv30b-Tg(HLA-A/H2D/B2M)1Dvs/DvsJ mice were previously described (23,24). Animals were housed in autoclaved microisolator cages and fed autoclaved food and chlorinated water. Mice were used at 8–14 weeks old and defined as diabetic if two consecutive weekly blood glucose measurements were 250 mg/dL.

PBMCs.

All protocols involving the collection and use of PBMCs were approved by the UNC Office of Human Research Ethics and conducted according to Institutional Review Board Approval of Human Subjects Research.

Peripheral blood from patients diagnosed with type 1 diabetes or nondiabetic donors (NDD) was collected under sterile conditions in heparinized tubes. PBMCs were isolated on Ficoll-Hypaque. After isolation and purification, cells were tested for expression of HLA-A2 by flow cytometry using fluorescein isothiocyanate–labeled BB7.2 monoclonal antibody (Abcam, Cambridge, MA). HLA-A2+ PBMCs from type 1 diabetic patients or NDDs were adoptively transferred into mice.

Isolation of human lymphocytes from mice.

NOD-scid/γcnull/A2 mice were intraperitoneally injected with 17–52 × 106 HLA-A2+ PBMCs in 400 μL of PBS from type 1 diabetic patients or NDD. Spleen, PLN, blood, and islets were removed from recipient mice 2 to 6 weeks after transfer. Islets were isolated as previously described (25). Briefly, pancreata were perfused with a 2 mg/mL solution of collagenase P (Sigma-Aldrich, St. Louis, MO), dissected, and incubated at 37°C for 20 min. Islets were purified using a Ficoll PM 400 (Sigma-Aldrich) gradient, handpicked, counted, and then cultured overnight in RPMI-1640 containing 10% FBS and 4 ng/mL recombinant human interleukin (IL)-2 (Peprotech, Rocky Hill, NJ). Infiltrating lymphocytes were collected and filtered through a 40-µm nylon filter. Each sample constituted all of the islet cells isolated from an individual mouse. Human cell populations were obtained by gating on human CD45+/mouse CD45. Cell suspensions were stained using fluorescently-labeled mouse antibodies to human surface markers: CD45 (PerCp), CD19 (PeCy7), CD8 (PB), CD3 (antigen-presenting cell [APC]), and CD4 (APC-Cy7) (ebioscience, San Diego, CA), or CD3 (PO), CD3 (PTR), and CD4 (PO) (Invitrogen, Carlsbad, CA). Samples were analyzed on a Beckman-Coulter (Dako, Glostrup, Denmark) CyAn ADP using Summit V4.3.01 software. Mice that had >2 × 106 human CD45+ cells in their spleen were included in our analysis.

Peptides and tetramers.

Peptides IGRP265–273 (VLFGLGFAI), IA-2797–805 (MVWESGCTV), IAPP5–13 (KLQVFLIVL), and insulinB10–18 (HLVEALYLV) were purchased from GenScript (Piscataway, NJ) at >90% purity, dissolved in DMSO, and stored at −20°C. A2/IGRP, A2/IA-2, A2/IAPP, and A2/insulin tetramers were assembled with these peptides as described (26). Briefly, HLA-A2 and human β2-microglobulin were produced in Escherichia coli and refolded with peptide in vitro. Refolded peptide major histocompatibility complex (MHC) monomer was purified by high-performance liquid chromatography, biotinylated using Biotin Protein Ligase, and assembled into tetramers by conjugation with UltraAvidin-PE (Leinco, St. Louis, MO).

Interferon-γ production assay.

Cells (2–3 × 106) were incubated overnight in complete RPMI-1640 containing 10% FBS and 4 ng/mL recombinant human IL-2 (Peprotech). After 24 h, the cells were incubated with IGRP, IA-2, IAPP, and insulin peptide pool or individually at 40 µg/mL of each peptide. A2/IGRP, A2/IA-2, A2/IAPP, and A2/insulin PE-conjugated tetramers (2.5 μL each) along with anti-CD28 (1 μg/mL) was added. Cells were incubated at 37°C, 5% CO2 for 2 h. Brefeldin A was added to inhibit protein secretion, followed by an additional 4-h incubation, placed on ice, stained with fluorescently labeled surface antibodies, fixed, permeabilized, and stained with human anti-interferon (IFN)-γ monoclonal antibody (ebioscience).

PBMCs from NDD and type 1 diabetic patients engraft in NOD-scid/γcnull/A2 mice.

Previous studies using human HSCs have shown NOD-scid/γcnull mice support growth, survival, and differentiation of CD34+ HSC (17). HLA-A2*0201 is the most commonly expressed HLA class I allele in Europeans (45%) and is permissive for the development of type 1 diabetes in humans and transgenic mice. Therefore, we evaluated the ability of HLA-A2–matched PBMCs from NDD and type 1 diabetic patients to successfully engraft in NOD-scid/γcnull/A2 mice. Flow cytometry analyses confirmed the presence of human CD45+ cells in the spleen of mice receiving PBMCs from NDD or type 1 diabetic patients (Fig. 1A–C). Human CD45+ cells were also found in the blood and PLN of NOD-scid/γcnull/A2 mice (Fig. 1D and F), albeit at lower levels. The number of human CD45+ cells in both groups of mice that received NDD or type 1 diabetic PBMCs appear to be similar in the spleen (P = 0.206, Fig. 1G) and PLN (P = 0.3177, Fig. 1H). Therefore, we determined that both NDD and type 1 diabetic patient PBMCs survive and home to the spleen (primary site of engraftment) and PLN of NOD-scid/γcnull/A2 mice after transfer. Our data are consistent with previously reported findings that the primary site of engraftment by human cells in NOD-scid/γcnull mice is the spleen (27). Interestingly, the level of engraftment appears to increase markedly in mice receiving >20 × 106 PBMCs from patients with type 1 diabetes. Successful engraftment was defined as recovering ≥2 × 106 human CD45+ cells from the spleen of mice that received PBMCs. In our studies, transfer of ∼30 × 106 PBMCs allows for successful engraftment. This demonstrates the ability of NOD-scid/A2/γcnull mice to support survival of PBMCs from patients with type 1 diabetes after transfer.

FIG. 1.

Human cells from type 1 diabetic (T1D) patients and NDDs engraft in NOD-scid/γcnull/A2 mice. Representative histograms of NOD-scid/γcnull/A2 splenocytes after intraperitoneal injection of PBMCs from type 1 diabetic patients (A), NDDs (B), or scid (C). Cells were gated on human CD45+. At 2 to 6 weeks after transfer, summary of the percentages of human CD45+ cells in the blood (NDDs, n = 9; type 1 diabetes, n = 10) (D), spleen (NDD, n = 9; type 1 diabetes, n = 10) (E), and draining PLN (NDD, n = 8; type 1 diabetes, n = 10) (F) were determined by flow cytometry. The number of human CD45+ cells in the spleen (NDD, n = 9; type 1 diabetes, n = 10) (G) and draining PLN (NDD, n = 8; type 1 diabetes, n = 10) (H) was also evaluated. (A high-quality color representation of this figure is available in the online issue.)

FIG. 1.

Human cells from type 1 diabetic (T1D) patients and NDDs engraft in NOD-scid/γcnull/A2 mice. Representative histograms of NOD-scid/γcnull/A2 splenocytes after intraperitoneal injection of PBMCs from type 1 diabetic patients (A), NDDs (B), or scid (C). Cells were gated on human CD45+. At 2 to 6 weeks after transfer, summary of the percentages of human CD45+ cells in the blood (NDDs, n = 9; type 1 diabetes, n = 10) (D), spleen (NDD, n = 9; type 1 diabetes, n = 10) (E), and draining PLN (NDD, n = 8; type 1 diabetes, n = 10) (F) were determined by flow cytometry. The number of human CD45+ cells in the spleen (NDD, n = 9; type 1 diabetes, n = 10) (G) and draining PLN (NDD, n = 8; type 1 diabetes, n = 10) (H) was also evaluated. (A high-quality color representation of this figure is available in the online issue.)

Close modal

PBMCs from type 1 diabetic donors proliferate in NOD-scid/γcnull/A2 mice.

To evaluate proliferation potential of type 1 diabetic PBMCs in NOD-scidnull/A2 mice, we labeled PBMCs with carboxyfluorescein succinimidyl ester (CFSE) and confirmed the presence of human CD45+ cells in the peripheral blood, spleen, PLN, and islets of mice after transfer. Human CD45+ cells reconstituted in all compartments tested. Most of the human CD45+ cells in the peripheral blood, spleen, PLN, and islets of NOD-scid/γcnull/A2 mice were CFSE low, implying that many of cells underwent at least five rounds of cell division (Fig. 2A–L).

FIG. 2.

Proliferation of human lymphocytes from type 1 diabetic patients in NOD-scid/γcnull/A2 mice is shown 2 weeks after transfer. PBMCs from patients with type 1 diabetes were labeled with CFSE and transferred intraperitoneally into 8- to 14-week-old NOD-scidnull/A2 mice. At 2, 3, and 6 weeks after transfer of PBMCs, the proliferation of CD4+ (top row), CD8+ (middle row), and CD19+ (bottom row) cells was determined by CFSE dye dilution in cells from the blood (A, E, and I), spleen (B, F, and J), draining PLN (C, G, and J), and islets (D, H, and L) using flow cytometry. (A high-quality color representation of this figure is available in the online issue.)

FIG. 2.

Proliferation of human lymphocytes from type 1 diabetic patients in NOD-scid/γcnull/A2 mice is shown 2 weeks after transfer. PBMCs from patients with type 1 diabetes were labeled with CFSE and transferred intraperitoneally into 8- to 14-week-old NOD-scidnull/A2 mice. At 2, 3, and 6 weeks after transfer of PBMCs, the proliferation of CD4+ (top row), CD8+ (middle row), and CD19+ (bottom row) cells was determined by CFSE dye dilution in cells from the blood (A, E, and I), spleen (B, F, and J), draining PLN (C, G, and J), and islets (D, H, and L) using flow cytometry. (A high-quality color representation of this figure is available in the online issue.)

Close modal

Human T and B cells are present in the spleen and PLN of NOD-scid/γcnull/A2 mice after transfer.

Human cells were observed in the spleen and PLN after adoptive transfer in NOD-scid/γcnull/A2 mice. CD3+ T cells and CD19+ B cells were observed in the spleen and PLN (Fig. 3). In fact, the predominant human lymphocyte subset in the spleen and PLN of mice was CD3+ T cells. CD3+ T cells in the spleen of mice receiving NDD or type 1 diabetic PBMCs were 97 ± 1.8% and 82 ± 17.4%, respectively, of the human CD45+ cell population (Supplementary Fig. 1A). The level of CD3+ T cells in the spleen and PLN was similar in mice receiving cells from NDDs or type 1 diabetic patients (Fig. 3A and B). The number of CD19+ B cells in the spleen and PLN was also similar in both groups of mice.

FIG. 3.

Human T and B cells were recovered from the spleen and draining PLN of NOD-scid/γcnull/A2 mice after transfer. Beginning at 2 weeks after transfer, flow cytometry was used to determine the number of human CD3+ T cells and CD19+ B cells in the spleen (A) and PLN (B) of mice that received PBMCs from type 1 diabetic (T1D) patients or NDDs. Cells were gated on human CD45+ lymphocytes. The number of CD3+CD4+ T cells and CD3+CD8+ T cells were calculated in the spleen (C) and draining PLN (D).

FIG. 3.

Human T and B cells were recovered from the spleen and draining PLN of NOD-scid/γcnull/A2 mice after transfer. Beginning at 2 weeks after transfer, flow cytometry was used to determine the number of human CD3+ T cells and CD19+ B cells in the spleen (A) and PLN (B) of mice that received PBMCs from type 1 diabetic (T1D) patients or NDDs. Cells were gated on human CD45+ lymphocytes. The number of CD3+CD4+ T cells and CD3+CD8+ T cells were calculated in the spleen (C) and draining PLN (D).

Close modal

We compared the level of CD4+ and CD8+ T cells in the spleen and PLN after transfer. Cells were gated from hCD45+/CD3+ populations. The number (Fig. 3C and D) and percentage (Supplementary Fig. 1C and D) of CD4+ and CD8+ T cells in the spleen and PLN was similar between both groups. In addition, both groups of mice had similar CD4/CD8 ratios in the spleen (Supplementary Fig. 1E) and PLN (Supplementary Fig. 1F) after transfer.

PBMCs from type 1 diabetic donors infiltrate the islets of NOD-scid/γcnull/A2 mice at a higher frequency than PBMCs from NDD.

We determined the level of islet infiltration in NOD-scid/γcnull/A2 mice receiving PBMCs from NDD or type 1 diabetic patients. We isolated islets from individual mice after engraftment and determined the presence of cellular infiltrates. The total number of human CD45+ cells was significantly higher in mice that received type 1 diabetic PBMCs (P = 0.0006, Fig. 4A). Among these infiltrates, although not widely appreciated, B cells are found in the islets of both diabetic mice (25) and humans (28). The level of CD3+ T cells was significantly higher in mice that received type 1 diabetic PBMCs (P = 0.0238, Fig. 4B), whereas the level of CD19+ B cells was similar (P = 0.1310, Fig. 4B). The percentage of CD3+ T cells and CD19+ B cells was similar between the two groups (Supplementary Fig. 1G).

FIG. 4.

Human T and B cells from patients with type 1 diabetes (T1D) infiltrate the islets of NOD-scid/γcnull/A2 mice after transfer. The total number (top) of CD45+ (A) and CD3+ (B) T and CD19+ B cells as well as the number of CD45+ (C), CD3+ (D), CD19+ (E), CD4+ (F), and CD8+ (G) cells per islet (bottom) was determined from the islets of individual mice at 2 to 6 weeks after transfer. Islets from individual mice were isolated as described in the 5research design and methods (NDDs, n = 7; type 1 diabetes, n = 6). *P < 0.05 and **P < 0.001, one-tailed nonparametric Mann-Whitney test.

FIG. 4.

Human T and B cells from patients with type 1 diabetes (T1D) infiltrate the islets of NOD-scid/γcnull/A2 mice after transfer. The total number (top) of CD45+ (A) and CD3+ (B) T and CD19+ B cells as well as the number of CD45+ (C), CD3+ (D), CD19+ (E), CD4+ (F), and CD8+ (G) cells per islet (bottom) was determined from the islets of individual mice at 2 to 6 weeks after transfer. Islets from individual mice were isolated as described in the 5research design and methods (NDDs, n = 7; type 1 diabetes, n = 6). *P < 0.05 and **P < 0.001, one-tailed nonparametric Mann-Whitney test.

Close modal

On a per-islet basis, the number of human CD45+ cells (P = 0.0006, Fig. 4C) and CD3+ T cells (P = 0.0175, Fig. 4D) was also increased. The level of CD19+ B cells (P = 0.0256, Fig. 4E) was also significantly increased. This suggests that although the percentages of infiltrating lymphocytes are similar, the actual numbers of T and B cells are increased in mice that received PBMCs from type 1 diabetic patients.

Human CD4 and CD8 T cells are present in the islets of NOD-scid/γcnull/A2 mice after transfer.

We determined whether CD4+ and CD8+ T cells were present in the islets of mice after transfer because both are required for the development of type 1 diabetes in mice and the issue cannot be tested in humans. The number of CD4+ T cells per islet was significantly higher in mice that received type 1 diabetic PBMCs compared with NDD PBMCs (P = 0.0175, Fig. 4F). Although the level was not statistically significant, CD8+ T cells were also increased in mice that received type 1 diabetic PBMCs (P = 0.1820, Fig. 4G). This shows that a higher number of CD4+ and CD8+ T cells from the PBMCs of type 1 diabetic patients infiltrate the islets of NOD-scid/γcnull/A2 mice compared with NDDs. Interestingly, the CD4/CD8 ratio was higher in mice that received PBMCs from type 1 diabetic patients (Supplementary Fig. 1I).

IGRP, IAPP, insulin, and IA-2–specific CD8+ T cells can be found in NOD-scid/γcnull/A2 mice transferred with PBMCs from type 1 diabetic patients.

The significant advantage of this transfer model is the potential to identify antigen-specific CD8+ T cells, which are important for the development of diabetes in patients with type 1 diabetes. To understand the specificity of T cells in the islets of NOD-scid/γcnull/A2 mice transferred with PBMCs from type 1 diabetic patients, we used IGRP, IAPP, insulin, and IA-2/A2 tetramers to identify epitope-specific T cells. Lymphocytes from the spleen and islets of NOD-scid/γcnull/A2 mice were incubated with pooled HLA-A2 tetramers individually loaded with IGRP, IAPP, insulin, and IA-2 peptides after transfer to maximize our sensitivity of detection. Figure 5A shows the number of tetramer+ CD8+ T cells in the islets and spleen. In fact, the level of CD8+/tetramer+ T cells was significantly higher in the islets (17–80%) compared with the spleen (5–24%) of mice engrafted with type 1 diabetic PBMCs. These results demonstrate that A2-epitope–specific CD8+ T cells primarily infiltrate the islets of mice that received type 1 diabetic PBMCs. Unfortunately, the sample size was not sufficient to examine the cells recovered from the islets for individual A2-tetramer specificity.

FIG. 5.

A2-epitope–specific CD8+ T cells from type 1 diabetic patients in NOD-scid/γcnull/A2 mice. A: Percentages of CD8+/tetramer+ T cells in the spleen and islets of NOD-scidnull/A2 mice engrafted with PBMCs from type 1 diabetic patients (n = 6). B: In vitro stimulation with A2 tetramers and peptides induced the production of IFN-γ from epitope-specific CD8+ T cells from the spleens and islets of NOD-scid/γcnull/A2 mice that received type 1 diabetic patient PBMCs (n = 5). Percentages (C) and numbers (D) of CD8+/tetramer+ T cells in the spleen of mouse 1 and mouse 2 compared with the amount in the peripheral blood of a type 1 diabetic patient. D: The percentages are shown of CD8+/tetramer+ T cells in the islets of mouse 2.

FIG. 5.

A2-epitope–specific CD8+ T cells from type 1 diabetic patients in NOD-scid/γcnull/A2 mice. A: Percentages of CD8+/tetramer+ T cells in the spleen and islets of NOD-scidnull/A2 mice engrafted with PBMCs from type 1 diabetic patients (n = 6). B: In vitro stimulation with A2 tetramers and peptides induced the production of IFN-γ from epitope-specific CD8+ T cells from the spleens and islets of NOD-scid/γcnull/A2 mice that received type 1 diabetic patient PBMCs (n = 5). Percentages (C) and numbers (D) of CD8+/tetramer+ T cells in the spleen of mouse 1 and mouse 2 compared with the amount in the peripheral blood of a type 1 diabetic patient. D: The percentages are shown of CD8+/tetramer+ T cells in the islets of mouse 2.

Close modal

In vitro stimulation with A2-tetramer and peptide-induced IFN-γ production by antigen-specific human CD8+ T cells from NOD-scid/γcnull/A2 mice after transfer.

To determine if epitope-specific human CD8+ T cells from the spleen and islets of mice after transfer are functionally active, cells were incubated with pooled A2 tetramers and their respective peptides and assessed for IFN-γ production after short-term stimulation. Figure 5A shows that CD8+/tetramer+ T cells are present in the spleen (12%) and islets (15%). In addition, these epitope-specific cells from the spleen and islets produce IFN-γ after peptide stimulation (Fig. 5B). These results demonstrate that the islets of NOD-scid/γcnull/A2 mice contained functional, human, epitope-specific CD8+ T cells that are capable of producing IFN-γ after restimulation. Although overt diabetes did not develop in any the mice transferred with PBMCs from patients with type 1 diabetes, we did observe by histology islet infiltration (Supplementary Fig. 2A) and elevated blood glucose levels up to 235 mg/dL (Supplementary Fig. 2D). Mice that received NDD or type 1 diabetic PBMCs displayed no clinical signs of graft-versus-host disease, as determined by histologic analysis of the liver and kidney (data not shown).

IGRP, IAPP, insulin, and IA-2–specific CD8 T cells survive after second passage into NOD-scid/γcnull/A2 mice.

To determine whether epitope-specific T cells can continue to expand from one mouse to the next, we isolated splenocytes from a NOD-scidnull/A2 mouse that received 20 × 106 type 1 diabetic PBMCs (mouse 1) and transferred 18 × 106 splenocytes intraperitoneally into a second NOD-scidnull/A2 mouse (mouse 2). We compared the level of CD8+/tetramer+ T cells isolated from a patient with type 1 diabetes (A21) to 1) observe the level of epitope-specific CD8+ T cells after each transfer and 2) determine if they expanded. The number and percentage of CD8+/tetramer+ T cells increased from 3 × 103 to 7 × 105 cells and in percentage from 0.06 to 6.85% (Fig. 5C and D), in the spleen of the mouse transferred with type 1 diabetic PBMCs. In fact, these antigen-specific CD8+ T cells were not only in the spleen but also in the islets of mouse 2 (Fig. 5D), demonstrating the selective expansion of epitope-specific cells.

NOD-scid/γcnull/A2 mice have been widely used to study human immunology because these mice serve as a host for human immune cells (13). In addition, immune-deficient mice are being used to study various human diseases, including graft-versus-host disease after the injection of MHC-mismatched human PBMCs (29) and also islet transplantation rejection by mismatching MHC class I molecules of donor PBMCs to recipient islet MHC class I molecules (12,30).

Our goal is to study human autoimmunity, specifically type 1 diabetes, using a humanized mouse model by transferring HLA-A2 matched PBMCs from type 1 diabetic patients and NDDs into NOD-scid/γcnull/A2 mice. We observed proliferation and survival of T cells (CD3+, CD4+, and CD8+) and B cells for at least 6 weeks in these mice. Similar levels of T cells in the spleen and PLN were found in mice engrafted with PBMCs from type 1 diabetic patients and NDDs; however, more B cells were found in the spleen and PLN in mice that received PBMCs from type 1 diabetic patients. This demonstrates the ability of human immune cell subsets to engraft secondary lymphoid organs after transfer. Moreover, the higher levels of B cells in the PLN and spleen may reflect what occurs in the PLN and spleen of type 1 diabetic patients. NOD-scid mice that express a chimeric A2/Kb gene and were wild-type at the IL2r-γ chain locus were poorly engrafted (data not shown).

Through this model we have revealed an increased level of islet infiltration in mice that received type 1 diabetic PBMCs compared with NDD PBMCs. Previous studies using NOD-scid mice and HLA-A1+ PBMCs from type 1 diabetic patients have demonstrated the presence of islet-reactive T cells in pancreatic tissue (31), but these T-cell clones were not capable of intraislet infiltration. We have shown here that T and B cells preferentially infiltrate the islets of NOD-scid/γcnull/A2 mice that received type 1 diabetic PBMCs and that a significant number of CD8+ T cells from the islets and spleen are specific for IGRP, IA-2, IAP, and insulin (known diabetogenic epitopes). These cells were found at a higher frequency in the islets compared with the spleen, indicating the islets are a preferred site of autoreactive T-cell expansion and accumulation. Therefore, the extravasation and accumulation of human autoreactive islet-specific T cells from circulation into the islets suggest that PBMCs from type 1 diabetic patients are capable of infiltrating the target organs necessary for the induction of diabetes.

Circulating cytotoxic T lymphocytes isolated from HLA-A2+ type 1 diabetic patients have been shown to kill β-cells through recognition of a glucose-regulated preproinsulin epitope (18). In our model, higher frequencies of diabetogenic epitope-specific CD8+ T cells from type 1 diabetic patients infiltrate the islets of NOD-scid/γcnull/A2 mice. Furthermore, these antigen specific cells are capable of producing IFN-γ after peptide stimulation.

Until now, no reported studies have demonstrated islet infiltration of NOD-scid/γcnull/A2 mice by antigen-specific T cells using HLA-A2–matched PBMCs from type 1 diabetic patients. This may be the result of poor engraftment in previous models that is often associated with natural killer cell activity or the lack of human costimulatory molecules such as human MHC molecules (32,33). We identified an engraftment threshold and determined that 20–30 × 106 PBMCs is ideal for maximum engraftment in NOD-scid/γcnull/A2 mice. This signifies a size limitation for transferring human cells into mice, which is similar to previous findings using NOD-scid/γcnull mice (34).

Although many genetic loci contribute to the development of diabetes, initial genome scans attribute particular MHC class I and II alleles as major contributors to the development of autoreactive T-cell responses in both humans and NOD mice (35,36). The process of developing diabetes is accelerated in NOD HLA-A2.1 MHC class I transgenic mice and is mediated by pathogenic A2-restricted T-cell responses (37). In humans, two islet-associated epitopes, IA-2 and GAD65, have been identified as being recognized by HLA-A2–restricted CD8+ T cells, thus indicating that CD8+ T cells that are HLA-A2 restricted may contribute to β-cell death. Although it is not clear whether CD8+ T cells are involved during the early phases of type 1 diabetes, we do know that they are involved in the development of diabetes because diabetes does not develop in NOD mice lacking MHC class I. The importance of IGRP, IAPP, IA-2, and insulin-specific CD8+ T cells is still unknown in humans. However, GAD65 and IA-2 are major islet antigens targeted in human type 1 diabetes. The presence of an enriched population of epitope-specific CD8+ T cells in the islets after transfer may indicate the expansion of epitope-specific immunodominant T cells from patients with type 1 diabetes in these humanized mice.

Overt diabetes has not yet developed in any of the NOD-scid/γcnull/A2 mice that received PBMCs from HLA-A2+ type 1 diabetic patients, although one of the nine recipients of type 1 diabetes HLA-A2+ PBMCs did show elevated blood glucose levels up to 235 mg/dL. It is likely that in addition to the HLA-A2 molecule, this mouse model may be improved by the addition of human MHC class II molecules or other costimulatory molecules that would allow interaction of the donor cells with mouse cells in the spleen and lymph node and perhaps provide a better environment for engraftment in these tissues. In the current model, CD4+ T cells can interact with engrafted donor APCs via human class II only, whereas the CD8+ T cells can receive stimulation from both donor and recipient (NOD-scid/γcnull/A2 mouse) cells.

It is difficult to isolate large numbers of diabetogenic CD8+ T cells directly from the peripheral blood of patients with type 1 diabetes. Therefore, one of the advantages of this model is the 1,000-fold increase in epitope-specific CD8+ T cells observed in mice engrafted with type 1 diabetic PBMCs. Presumably, this will allow more studies of human diabetogenic T cells; for example, we can test the cross-reactivity of diabetogenic T cells to common pathogens. This model also allows us to identify, directly from type 1 diabetic patients, islet epitope-specific CD8+ T cells. The four epitopes tested here comprised 63–88% of the islet-infiltrating CD8+ T cells in three of six mice that received type 1 diabetic PBMCs. In the islets of the remaining mice engrafted with type 1 diabetic PBMCs, these epitopes were recognized by 19–27% of CD8+ T cell infiltrates. In the future, we plan to use larger pools of peptides derived from islet antigens, and this may lead to the identification of other islet-infiltrating T cells.

This model of autoimmunity may also be useful in predicting islet cell transplantation by analyzing the level of pre-existing diabetogenic T cells in candidate patients with type 1 diabetes. Therefore, with future developments of this model, researchers may investigate more directly the mechanisms underlying T cell responses. We can gain valuable insight into the pathogenesis of various autoimmune diseases and predict immunotherapeutic responses.

F.W.-L. is currently affiliated with the Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

J.A.F. is currently affiliated with the Department of Immunobiology, University of Arizona, Tucson, Arizona.

This work was partially supported by NC TraCS grant 50KR10963, National Institutes of Health Grant 5-R01-AI-52435-07, Juvenile Diabetes Research Foundation grants 1-2008-24 and 7-2008-848, and the Beta Cell Biology Consortium. F.W.-L. was supported by a mentor-based minority postdoctoral fellowship from the American Diabetes Association grant 7-09-MI-03.

No potential conflicts of interest relevant to this article were reported.

F.W.-L. and E.F.Y. researched data, contributed to discussion, wrote the manuscript, and reviewed and edited the manuscript. G.T. researched data. E.F. provided patient samples and reviewed the manuscript. A.A. and S.P. provided patient samples, contributed to discussion, and reviewed and edited the manuscript. J.L., W.B., J.B., and A.S.C. provided patient samples and reviewed the manuscript. L.D.S. contributed to discussion and reviewed and edited the manuscript. J.A.F. contributed to discussion, wrote the manuscript, and reviewed and edited the manuscript.

The authors thank Eric Scott, Lucinda Hensley, and Shaun Steele of the University of North Carolina at Chapel Hill, Department of Microbiology and Immunology, for providing technical assistance, and Dr. Charles Jennette of the University of North Carolina at Chapel Hill, Department of Medicine, for providing renal histologic interpretations.

1
Tochino
Y
.
The NOD mouse as a model of type I diabetes
.
Crit Rev Immunol
1987
;
8
:
49
81
[PubMed]
2
Anderson
MS
,
Bluestone
JA
.
The NOD mouse: a model of immune dysregulation
.
Annu Rev Immunol
2005
;
23
:
447
485
[PubMed]
3
Mallone
R
,
Martinuzzi
E
,
Blancou
P
, et al
.
CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes
.
Diabetes
2007
;
56
:
613
621
[PubMed]
4
Lieberman
SM
,
Evans
AM
,
Han
B
, et al
.
Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes
.
Proc Natl Acad Sci USA
2003
;
100
:
8384
8388
[PubMed]
5
Di Lorenzo
TP
,
Peakman
M
,
Roep
BO
.
Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes
.
Clin Exp Immunol
2007
;
148
:
1
16
[PubMed]
6
Herold
KC
,
Bluestone
JA
,
Montag
AG
, et al
.
Prevention of autoimmune diabetes with nonactivating anti-CD3 monoclonal antibody
.
Diabetes
1992
;
41
:
385
391
[PubMed]
7
Chatenoud
L
,
Thervet
E
,
Primo
J
,
Bach
JF
.
Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice
.
Proc Natl Acad Sci USA
1994
;
91
:
123
127
[PubMed]
8
Herold
KC
,
Hagopian
W
,
Auger
JA
, et al
.
Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus
.
N Engl J Med
2002
;
346
:
1692
1698
[PubMed]
9
Keymeulen
B
,
Vandemeulebroucke
E
,
Ziegler
AG
, et al
.
Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes
.
N Engl J Med
2005
;
352
:
2598
2608
[PubMed]
10
Santamaria
P
.
The long and winding road to understanding and conquering type 1 diabetes
.
Immunity
2010
;
32
:
437
445
[PubMed]
11
Pescovitz
MD
,
Greenbaum
CJ
,
Krause-Steinrauf
H
, et al
;
Type 1 Diabetes TrialNet Anti-CD20 Study Group
.
Rituximab, B-lymphocyte depletion, and preservation of beta-cell function
.
N Engl J Med
2009
;
361
:
2143
2152
[PubMed]
12
King
M
,
Pearson
T
,
Rossini
AA
,
Shultz
LD
,
Greiner
DL
.
Humanized mice for the study of type 1 diabetes and beta cell function
.
Ann N Y Acad Sci
2008
;
1150
:
46
53
[PubMed]
13
Shultz
LD
,
Ishikawa
F
,
Greiner
DL
.
Humanized mice in translational biomedical research
.
Nat Rev Immunol
2007
;
7
:
118
130
[PubMed]
14
Shultz
LD
,
Pearson
T
,
King
M
, et al
.
Humanized NOD/LtSz-scid IL2 receptor common gamma chain knockout mice in diabetes research
.
Ann N Y Acad Sci
2007
;
1103
:
77
89
[PubMed]
15
Friese
MA
,
Jensen
LT
,
Willcox
N
,
Fugger
L
.
Humanized mouse models for organ-specific autoimmune diseases
.
Curr Opin Immunol
2006
;
18
:
704
709
[PubMed]
16
Hofer
U
,
Baenziger
S
,
Heikenwalder
M
, et al
.
RAG2-/- gamma(c)-/- mice transplanted with CD34+ cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus
.
J Virol
2008
;
82
:
12145
12153
[PubMed]
17
Ito
M
,
Hiramatsu
H
,
Kobayashi
K
, et al
.
NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells
.
Blood
2002
;
100
:
3175
3182
[PubMed]
18
Shultz
LD
,
Saito
Y
,
Najima
Y
, et al
.
Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice
.
Proc Natl Acad Sci USA
2010
;
107
:
13022
13027
[PubMed]
19
Wong
CP
,
Stevens
R
,
Long
B
, et al
.
Identical beta cell-specific CD8(+) T cell clonotypes typically reside in both peripheral blood lymphocyte and pancreatic islets
.
J Immunol
2007
;
178
:
1388
1395
[PubMed]
20
Skowera
A
,
Ellis
RJ
,
Varela-Calviño
R
, et al
.
CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope
.
J Clin Invest
2008
;
118
:
3390
3402
[PubMed]
21
Enée
E
,
Martinuzzi
E
,
Blancou
P
,
Bach
JM
,
Mallone
R
,
van Endert
P
.
Equivalent specificity of peripheral blood and islet-infiltrating CD8+ T lymphocytes in spontaneously diabetic HLA-A2 transgenic NOD mice
.
J Immunol
2008
;
180
:
5430
5438
[PubMed]
22
Kerry
SE
,
Maile
R
,
Collins
EJ
,
Frelinger
JA
.
Memory CD8 T cells require CD8 coreceptor engagement for calcium mobilization and proliferation, but not cytokine production
.
Immunology
2005
;
114
:
44
52
[PubMed]
23
Strowig
T
,
Gurer
C
,
Ploss
A
, et al
.
Priming of protective T cell responses against virus-induced tumors in mice with human immune system components
.
J Exp Med
2009
;
206
:
1423
1434
[PubMed]
24
Takaki
T
,
Marron
MP
,
Mathews
CE
, et al
.
HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes
.
J Immunol
2006
;
176
:
3257
3265
[PubMed]
25
Young
EF
,
Hess
PR
,
Arnold
LW
,
Tisch
R
,
Frelinger
JA
.
Islet lymphocyte subsets in male and female NOD mice are qualitatively similar but quantitatively distinct
.
Autoimmunity
2009
;
42
:
678
691
[PubMed]
26
Vincent
BG
,
Young
EF
,
Buntzman
AS
, et al
.
Toxin-coupled MHC class I tetramers can specifically ablate autoreactive CD8+ T cells and delay diabetes in nonobese diabetic mice
.
J Immunol
2010
;
184
:
4196
4204
[PubMed]
27
Shultz
LD
,
Lyons
BL
,
Burzenski
LM
, et al
.
Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells
.
J Immunol
2005
;
174
:
6477
6489
[PubMed]
28
Willcox
A
,
Richardson
SJ
,
Bone
AJ
,
Foulis
AK
,
Morgan
NG
.
Analysis of islet inflammation in human type 1 diabetes
.
Clin Exp Immunol
2009
;
155
:
173
181
[PubMed]
29
King
MA
,
Covassin
L
,
Brehm
MA
, et al
.
Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex
.
Clin Exp Immunol
2009
;
157
:
104
118
[PubMed]
30
King
M
,
Pearson
T
,
Shultz
LD
, et al
.
Development of new-generation HU-PBMC-NOD/SCID mice to study human islet alloreactivity
.
Ann N Y Acad Sci
2007
;
1103
:
90
93
[PubMed]
31
van Halteren
AG
,
Kardol
MJ
,
Mulder
A
,
Roep
BO
.
Homing of human autoreactive T cells into pancreatic tissue of NOD-scid mice
.
Diabetologia
2005
;
48
:
75
82
[PubMed]
32
Macchiarini
F
,
Manz
MG
,
Palucka
AK
,
Shultz
LD
.
Humanized mice: are we there yet?
J Exp Med
2005
;
202
:
1307
1311
[PubMed]
33
Nervi
B
,
Rettig
MP
,
Ritchey
JK
, et al
.
Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID beta2mnull mice
.
Exp Hematol
2007
;
35
:
1823
1838
[PubMed]
34
King
M
,
Pearson
T
,
Shultz
LD
, et al
.
A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene
.
Clin Immunol
2008
;
126
:
303
314
[PubMed]
35
Serreze
DV
,
Leiter
EH
.
Genes and cellular requirements for autoimmune diabetes susceptibility in nonobese diabetic mice
.
Curr Dir Autoimmun
2001
;
4
:
31
67
[PubMed]
36
Todd
JA
,
Wicker
LS
.
Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models
.
Immunity
2001
;
15
:
387
395
[PubMed]
37
Marron
MP
,
Graser
RT
,
Chapman
HD
,
Serreze
DV
.
Functional evidence for the mediation of diabetogenic T cell responses by HLA-A2.1 MHC class I molecules through transgenic expression in NOD mice
.
Proc Natl Acad Sci USA
2002
;
99
:
13753
13758
[PubMed]
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

Supplementary data