IN THIS ISSUE

3519 In This Issue of Diabetes

PERSPECTIVES IN DIABETES

3521 Diabetic Cardiomyopathy: The Case for a Role of Fructose in Disease Etiology
L.M.D. Delbridge, V.L. Benson, R.H. Ritchie, and K.M. Mellor

COMMENTARIES

3529 Hyperpolarized 13C Magnetic Resonance Treatment Response Monitoring: A New Paradigm for Multiorgan Metabolic Assessment of Pharmacological Interventions?
C. Laustsen

3532 CIN85: Implications for the Development of Proteinuria in Diabetic Nephropathy
K. Nagai and T. Doi

3535 Targeting CITED2 for Angiogenesis in Obesity and Insulin Resistance
G. Jia and J.R. Sowers

3537 Does Citrulline Sit at the Nexus of Metformin’s Pleiotropic Effects on Metabolism and Metabolic Salutatory Effects in Individuals With Type 2 Diabetes?
B.A. Irving and G. Spielmann

3541 Type 2 Diabetes Genes Gleaned by Making a β-Cell Screen Routine
B.F. Voight and S.F.A. Grant

TECHNOLOGICAL ADVANCES

3544 Assessment of Metformin-Induced Changes in Cardiac and Hepatic Redox State Using Hyperpolarized [1-13C]Pyruvate

METABOLISM

3552 Mfn1 Deficiency in the Liver Protects Against Diet-Induced Insulin Resistance and Enhances the Hypoglycemic Effect of Metformin

3561 Ubiquitin Ligase COP1 Controls Hepatic Fat Metabolism by Targeting ATGL for Degradation
M. Ghosh, S. Niyogi, M. Bhattacharyya, M. Adak, D.K. Nayak, S. Chakrabarti, and P. Chakrabarti

3573 Ionizing Radiation Potentiates High-Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells

3585 Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism

3598 Growth Hormone Control of Hepatic Lipid Metabolism

3610 Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

OBESITY STUDIES

3621 Obesogenic and Diabetogenic Effects of High-Calorie Nutrition Require Adipocyte BK Channels

3636 Increased Interleukin-32 Levels in Obesity Promote Adipose Inflammation and Extracellular Matrix Remodeling: Effect of Weight Loss
V. Catalán, J. Gómez-Ambrosi, A. Rodríguez, B. Ramírez, V. Valenti, R. Moncada, M.F. Landecho, C. Silva, J. Salvador, and G. Frühbeck

3649 HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance
Biopatterned CTLA4/Fc Matrices Facilitate Local Immunomodulation, Engraftment, and Glucose Homeostasis After Pancreatic Islet Transplantation
W. Zhang, V.S. Gorantla, P.G. Campbell, Y. Li, Y. Yang, C. Komatsu, L.E. Weiss, X.X. Zheng, and M.G. Solari

Interaction of PPAR and Toll-Like Receptor 4 Activation Contributes to Diabetic Advanced Glycation End Products Predict Loss of Insulin Sensitivity
Yamamoto, First Department of Internal Medicine, University of Toyama, Toyama, Japan. Their article, “Interaction of PPAR and Toll-Like Receptor 4 Activation Contributes to Diabetic Advanced Glycation End Products Predict Loss of Insulin Sensitivity,” appears in this issue of Diabetes (p. 3649).

CIN85 Deficiency Prevents Nephrin Endocytosis and Proteinuria in Diabetes

Insulin Downregulates the Transcriptional Coregulator CITED2, an Inhibitor of Proangiogenic Function in Endothelial Cells

Activation of the Pro-Oxidant PKCδII-P66Shc Signaling Pathway Contributes to Pericyte Dysfunction in Skeletal Muscles of Patients With Diabetes With Critical Limb Ischemia

Persistent Insulin Resistance in Podocytes Caused by Epigenetic Changes of Shp-1 in Diabetes
F. Lizotte, B. Denhez, A. Guay, N. Gévy, A.M. Côté, and P. Geraudes

Topical Prostaglandin E Analog Restores Defective Dendritic Cell–Mediated Th17 Host Defense Against Methicillin-Resistant Staphylococcus Aureus in the Skin of Diabetic Mice

Interaction of PPARα With the Canonic Wnt Pathway in the Regulation of Renal Fibrosis
R. Cheng, L. Ding, X. He, Y. Takahashi, and J.-x. Ma

Advanced Glycation End Products Predict Loss of Renal Function and Correlate With Lesions of Diabetic Kidney Disease in American Indians With Type 2 Diabetes

Toll-Like Receptor 4 Activation Contributes to Diabetic Bladder Dysfunction in a Murine Model of Type 1 Diabetes
T. Szaa, C.F. Wenceslau, B. Burgess, K.P. Nunes, and R.C. Webb

On the cover: Immunofluorescence microscopic photographs of the epididymal white adipose tissue (eWAT) of myeloid-specific HIF-1α knockout mice (left) and wild-type mice (right). Immunofluorescence of eWAT was performed with anti-CD3 antibody (green), anti-CD13 antibody (red), and DAPI (blue) for endothelial cells, pericytes, and nucleus in eWAT, respectively. Scale bar, 50 μm. Image courtesy of Akiko Takikawa and Seiji Yamamoto, First Department of Internal Medicine, University of Toyama, Toyama, Japan. Their article, “HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance,” appears in this issue of Diabetes (p. 3649).