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Diabetic retinopathy (DR) is the most common complication
of diabetes and a leading cause of vision loss worldwide (1).
Unfortunately, there are no treatments targeting early
stages of the disease prior to the onset of sight-threatening
vascular defects such as macular edema or neovasculari-
zation. A better understanding of the etiology of DR is
needed to identify therapeutic targets to halt early disease
progression. To this end, numerous studies demonstrated
that a low-grade inflammation occurs in retinas of diabetic
animal models and suggest that inflammation contributes
a role in DR progression. Various mechanisms leading to
retinal inflammation in DR have been described, with the
majority of studies implicating retinal Müller glial cells and
microglia as the initiators of retinal inflammation (for review,
see ref. 2). However, seldom does a study make a strong
connection between these two cell types. In this issue of Di-
abetes, Portillo et al. (3) describe a mechanism in which retinal
inflammation in diabetic mice is dependent upon expression
of the cluster of differentiation gene 40 (CD40) receptor by
Müller cells (Fig. 1). The study suggests that CD40 activation
induces Müller cells to release ATP, leading to activation of
P2X7 purinergic receptors on retinal microglia and their sub-
sequent expression of inflammatory cytokines. Importantly,
the requirement of Müller cell–specific CD40 expression to
recapitulate the appearance of acellular capillaries in diabetic
retinas also suggests that inflammation is necessary for the
loss of vascular cells associated with DR pathology.

CD40 is mainly known as an immune costimulatory
molecule, and interactions between CD40 and its major
ligand (CD40L) play key roles in immunological licensing
of antigen-presenting cells by CD4+ T cells and for B-cell
activation, proliferation, class switching, and immunoglo-
bin production (4). In a previous study Portillo et al. (5)
found that germline deletion of the CD40 gene blocked
intracellular adhesion molecule 1 expression, leukostasis,
and the appearance of acellular capillaries in the retinas of

diabetic mice. These authors also found that in the retina
Müller glial cells express CD40, as do endothelial cells,
microglia, and retinal ganglion cells (RGC) (6). Since CD40 was
deleted in all cells of the germline knockout mice, including
circulating immune cells, the mechanism and cell type in
which CD40 contributed to DR pathology were unclear. In
the current study CD40 was “added back” to the knockout
mice in such a way that it was expressed exclusively by
Müller cells, which was sufficient to restore the diabetes-
induced inflammation and vascular pathology.

Müller cell–targeted transgenic add-back of CD40 rep-
resents an elegant means of testing the hypothesis that
CD40 expression by this cell type is sufficient for low-grade
retinal inflammation in this diabetic model. However, the
choice of targeting these glial cells is not obvious. Müller
cells span radially across retina layers providing structural,
metabolic, and neurotrophic support necessary for homeo-
stasis (7). CD40 is an immune costimulatory molecule, and
a role for CD40–CD40L interaction in Müller cell patho-
physiology is unprecedented. Furthermore, one might have
expected leukostasis and capillary dropout in the diabetic
retina to be dependent on CD40 expression on endothelial
cells, since the interaction of luminal CD40 with CD40L on
activated platelets causes endothelial activation and adhesion
molecule upregulation leading to leukocyte adherence (8,9).

Importantly, Portillo et al. (3) provide compelling evi-
dence that Müller cells initiate retinal inflammation in the
diabetic retina and signal to microglia to elicit their partic-
ipation. The study concludes that diabetes triggers retinal
neuroinflammation directly through CD40 stimulation on
Müller cells and indirectly through ATP release by Müller
cells, leading to stimulation of P2X7 purinergic receptors on
microglia/macrophages. One might have expected inflam-
matory responses to be dependent on direct CD40 stimu-
lation on microglia. Microglia represent the major resident
innate immune cells of the retina and other neuronal
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tissues and are uniquely equipped to mount inflammatory
responses to infection and tissue damage. In the retina, the
conventional view is that microglia are the first responders,
initiating an inflammatory response that leads to Müller
cell reactive gliosis (10). Furthermore, in the brain, CD40 is
mainly found on microglia, where CD40 deficiency or neu-
tralization of CD40L inhibits microglial activation, alleviates
brain pathology, and improves cognitive performance in
mouse models of Alzheimer disease (11).

The ATP-mediated mechanism described by Portillo
et al. (3) may have implications for other aspects of DR
pathology as well. Several purinergic receptors, including
P2X7, play key roles in retinal physiology and pathophysiol-
ogy, including modulation of retinal neurotransmission, con-
trol of vascular tone, and Müller cell swelling and gliosis, as
well as RGC apoptosis (12). Diabetes was found to increase
the susceptibility of retinal microvessels to transmembrane
pore formation in response to P2X7 activation, suggesting
that extracellular ATP may cause mural cell loss in DR (13).
In addition, P2X7 and P2X4 receptor antagonists inhibited
the induction of endothelial cell inflammation and perme-
ability by high glucose (14). Release of ATP by Müller cells
could also contribute to the death of RGC observed in DR, as
evidence suggests that the release of ATP by gliotic Müller
cells induces RGC apoptosis through P2X7 activation (15,16).

Finally, the current study suggests the possibility that
CD40–CD40L and ATP–P2X7 interactions represent prom-
ising new therapeutic targets for prevention of DR progres-
sion. Although the study did not establish the source of
CD40L in diabetic retinas, plasma levels of soluble CD40L
were significantly increased in the diabetic mice, suggesting

a systemic influence (platelet activation, perhaps) on DR
pathology in this model. Plasma levels of soluble CD40L are
also elevated in patients with type 1 and type 2 diabetes
(17,18). Several systemic treatments targeting the CD40–
CD40L system have been developed to treat cancer, inflam-
mation, and autoimmune disease (4). Although clinical trials
of monoclonal antibodies blocking CD40L failed due to
occurrence of thromboembolisms (19), such a complication
is unlikely with intravitreal applications of these biologics.
Also, development of blood-brain-barrier–penetrant P2X7
antagonists for treatment of neuroinflammation has been
under way for some time (20). Although the role for this
receptor in normal retinal function suggests caution, it is
possible that inhibition of P2X7 on retinal microglia could
modulate their function to prevent neuroinflammation
from progressing toward sight-threatening DR.
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links macroglial and microglial inflammatory responses in DR.
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