Adiponectin-induced eNOS activation and Nitric Oxide Production are Mediated by APPL1 in Endothelial Cells

Received for publication 12 November 2006 and accepted in revised form 29 January 2007.

Kenneth K Y Cheng¹,², Karen S L Lam¹,², Yu Wang³, Huang Yu⁴, David Carling⁵, Donghai Wu⁶, Chiwai Wong⁶, and Aimin Xu¹,²

¹Department of Medicine and ²Research Center of Heart, Brain Hormone and Healthy aging, University of Hong Kong, China
³Genome Research Center and Department of Biochemistry, University of Hong Kong, China
⁴Department of Physiology, Chinese University of Hong Kong
⁵Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College, UK.
⁶Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, China

Address correspondence to Aimin Xu, PhD, Department of Medicine, University of Hong Kong, L8-43, New Laboratory Block, 21 Sassoon Road, Hong Kong. Email: amxu@hkucc.hku.hk

Running title: Regulation of eNOS by APPL1

Abbreviations: AMPK, AMP-activated protein kinase; APPL1, Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding (PTB) domain and a leucine zipper motif; eNOS, endothelial nitric oxide synthase; HSP90, heat shock protein 90; HUVECs, human umbilical vein endothelial cells; PI3K, phosphoinositide-3-kinase; SMA, small mesenteric arteries.

Additional information can be found in an online appendix at http://dx.doi/10.2337/db06-1580.
Adiponectin protects the vascular system partly through stimulation of endothelial nitric oxide (NO) production and endothelium-dependent vasodilation. The present study investigated the role of the two recently identified adiponectin receptors (AdipoR1 and AdipoR2) and their downstream effectors in mediating the endothelium actions of adiponectin. In human umbilical vein endothelial cells (HUVECs), adiponectin-induced phosphorylation of eNOS at Ser\(^{1177}\) and NO production were abrogated when expression of adipoR1 and adipoR2 was simultaneously suppressed. The proteomic analysis demonstrated that the cytoplasmic tails of both adipoR1 and adipoR2 interacted with APPL1, an adaptor protein that contains pleckstrin homology domain, phosphotyrosine-binding domain and a leucine zipper motif. Suppression of APPL1 expression by RNAi significantly attenuated adiponectin-induced phosphorylation of AMP-activated protein kinase (AMPK) at Thr\(^{172}\) and eNOS at Ser\(^{1177}\), and the complex formation between eNOS and heat shock protein (HSP) 90, resulting in a marked reduction of NO production. Adenovirus-mediated overexpression of a constitutively active version of AMPK reversed these changes. In db/db diabetic mice, both APPL1 expression and adiponectin-induced vasodilation were significantly decreased compared with those in their lean littermates. Taken together, these results suggest that APPL1 acts as a common downstream effector of adipoR1 and adipoR2 mediating adiponectin-evoked endothelial NO production and endothelium-dependent vasodilation.
INTRODUCTION

Endothelial dysfunction, characterized by decreased production and/or bioactivity of NO and impaired endothelium-dependent vasodilation, is a key mediator that links obesity, diabetes and cardiovascular diseases (1). Dysfunction of the endothelium in conduit arteries is a well-established antecedent of hypertension and atherosclerosis, while dysfunction of peripheral vascular endothelium at arteriolar and capillary level contributes to the pathogenesis of insulin resistance and the metabolic syndrome (2). On the other hand, insulin resistance aggravates endothelial dysfunction. Therapeutic interventions in animal models and humans have demonstrated that improving endothelial function ameliorates insulin resistance, while increasing insulin sensitivity alleviates endothelial dysfunction (3).

Adiponectin, an insulin-sensitizing adipokine secreted predominantly from adipocytes, possesses potent protective effects against endothelial dysfunctions (4). Unlike most adipokines, plasma levels of adiponectin are decreased in obese individuals and patients with insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. An independent association between serum levels of adiponectin and endothelium-dependent vasodilation has been repeatedly documented (5-7). Hypoadiponectinemia has been closely linked to the impairment in endothelium-dependent vasodilation in both normal subjects and patients with hypertension and T2DM. Consistent with these clinical findings, adiponectin-deficient mice exhibit reduced endothelium-dependent vasodilation on an atherogenic diet (6), increased neointimal hyperplasia after acute vascular injury (8; 9), and elevated blood pressure compared with their wild-type littermates (10). On the other hand, both adenovirus-mediated overexpression of full-length adiponectin and transgenic overexpression of globular adiponectin result in a marked alleviation of atherosclerotic lesion in apoE-deficient mice (11), and also cause a significant amelioration in endothelial dysfunction and hypertension (10) in obese mice.

The endothelium-protective functions of adiponectin are mediated, at least in part, by its ability to increase the production of nitric oxide (NO), a vasodilator synthesized by the endothelial NO synthase (eNOS) from the precursor L-arginine (4; 7; 12). NO protects the vascular system by enhancing vasodilation and inhibiting platelet aggregation, monocyte adhesion and smooth muscle cell proliferation (13). Recent studies from several independent laboratories have demonstrated that adiponectin stimulates endothelial NO production and augments endothelium-dependent vasodilation (7; 12; 14-16). In endothelial cells, adiponectin enhances eNOS activity by inducing eNOS phosphorylation at Ser\(^{1177}\) and the complex formation between eNOS and heat shock protein (HSP) 90, through activation of AMP-activated protein kinase (AMPK) (12; 15; 16).

Two putative adiponectin receptors, adipoR1 and adipoR2, have recently been cloned (17). These two receptors contain seven transmembrane domains, but are structurally and functionally distinct from classical G-protein coupled receptors (GPCRs). Both adipoR1 and adipoR2 have an inverted membrane topology with a cytoplasmic NH\(_2\) terminus and a short extracellular COOH terminus of ~25 amino acids (18). We have recently demonstrated that both adipoR1 and adipoR2 are expressed in endothelial cells (7). Nevertheless, whether the endothelial...
actions of adiponectin are mediated by these two receptors remain to be determined.

In this study, we investigated the role of adipoR1 and adipoR2 in adiponectin-elicited signaling pathway that leads to the increased NO production in human umbilical vein endothelial cells (HUVECs). Our results demonstrated that simultaneous downregulation of both receptors resulted in a marked attenuation of adiponectin-induced eNOS activation and NO production. Furthermore, we found that APPL1, an intracellular protein that contains an NH2-terminal BAR domain, pleckstrin homology (PH) domain, and a COOH-terminal phosphotyrosine-binding domain (PDB) (19), acts as a signaling adaptor mediating adiponectin-evoked NO production by interacting with the cytoplasmic tails of adipoR1 and adipoR2 in endothelial cells.

RESEACH DESIGN AND METHODS

Materials. Anti-phospho-AMPKα (Thr172) and anti-total AMPKα antibodies were obtained from Cell Signalling Technology Inc. (Beverly, MA, U.S.A). Anti-GFP and anti-actin antibodies were from Santa Cruz Biotechnology (California, U.S.A.). pEGFP-C3 vector, anti-Phospho-eNOS (Ser1177), anti-eNOS antibodies and endothelial cell growth supplement (ECGS) were obtained from BD Transduction Laboratories (Jose, CA). Anti-FLAG M2 antibody was from Sigma Aldrich (St. Louis, MO). Recombinant murine globular and full-length adiponectin was produced from either HEK293 cells and E.Coli as we previously described (20-22). The endotoxin was removed by the Detoxi-gel Endotoxin-removal kit (Pierce). Anti-adipoR1 and anti-adipoR2 antibodies were from Abcam (Cambridge, MA) and Alpha Diagnostics (San Antonio, CA) respectively. Anti human APPL1 antibody was produced by immunization of New Zealand female rabbits with the recombinant full-length human APPL1 produced from E.Coli, using the protocol as we previously described (20). The antibody was affinity purified with the sepharose 4B beads coupled with the recombinant human APPL1.

Cell culture, transfection and adenoviral infection. HUVECs at passages 4-8 were cultured on gelatin-coated flasks in M199 supplemented with 15 % FBS, 0.1 mg/ml heparin and 0.03 mg/ml ECGS. Human embryonic kidney (HEK) 293 cells were maintained in DMEM containing 10% new calf serum. For plasmid transfection, HUVECs (3x10⁶ cells) were trypsinized and resuspended in 400 µl M199 with 20µg plasmid DNA on ice for 10 minutes, and were then transferred into a 0.4-cm electroporation cuvette and electroporated at 1000 µF and 200 V using a Bio-Rad Gene Pulser instrument. After electroporation, the cells were incubated at room temperature for 10 minutes and seeded into the culture dishes.

Recombinant adenoviruses for expression of a constitutively active (CA) or dominant negative (DN) version of AMPKα were kindly provided by Dr. D Carling (23). CA-AMPKα is the truncated form of AMPK catalytic subunit α1 with threonine 172 being replaced by aspartic acid, while DN-AMPKα carries a single mutation (aspartate 157 replaced by alanine). Recombinant adenovirus encoding luciferase was described previously (24). HUVEC were infected with these adenoviruses at 50 p.f.u/cell.

Stealth RNA preparation and transfection. Duplex stealth RNAi for AdipoR1, adipoR2, APPL1 and scrambled RNAi were purchased from Invitrogen and were listed in table 1 (published as online-only appendix). These oligonucleotides were transfected into HUVECs using Oligofectamine according to the manufacturer’s instructions (Invitrogen).
Total RNA was extracted from cells using RNA extraction kit (Viogene) and was reverse-transcribed using ImProm-II Reverse Transcription System (Promega, Madison, USA). The relative mRNA abundance of adipor1, adipor2, APPL-1 and human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were analysed by real time quantitative PCR using the fluorescent Taq Man 5′-nuclease assay on an Applied Biosystems Prism 7000 sequence detection system.

Construction of expression vectors. cDNA encoding the full-length and truncated versions of human APPL-1, adipor1 and adipor2 were cloned from the HUVEC cDNA library using the primers listed in table 2 (published as online-only appendix). The amplified cDNA fragments were subcloned into pcDNA 3.1(+) or pEGFP-C3 to generate various vectors for mammalian expression of FLAG- or GFP-tagged proteins. The cDNA fragments encoding the NH2-termini of human adipor1 (from a.a. 1-134) and adipor2 (from a.a. 1-145) were also subcloned into pGEX4T-1 to produce vectors GST-adipor1-C and GST-adipor2-C for prokaryotic expression of these two proteins with GST tagged at their NH2-termini respectively. These two GST-tagged fusion proteins were expressed in BL21 bacterial cells and affinity-purified with glutathione sepharose 4B beads.

Co-immunoprecipitation and Western blot analysis. Cells transiently transfected with various expression vectors were solubilized in a lysis buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, plus the complete protease inhibitor cocktail. Cell lysates were clarified by centrifugation at 12,000 rpm at 4°C for 15 minutes, and were then pre-incubated with 50 µl protein A/G beads at 4°C for 1 hour to remove non-specific bindings. The remaining supernatant was incubated with various antibodies at 4 °C overnight, and the immuno-complexes were precipitated by adding 50 µl of protein A/G beads at 4 °C for 2 hr. The beads were washed with 1 ml lysis buffer for 4 times, and the immuno-complexes bound to the beads were eluted by boiling in 100 µl SDS-PAGE loading buffer. The eluted samples were resolved by SDS-PAGE, transferred onto PVDF membrane, and probed with various primary antibodies as indicated. The proteins were visualized using the chemiluminescence detection.

GST fusion protein pull-down. HEK293 cells were transiently transfected with plasmids encoding FLAG-tagged full-length, NH2-terminus or COOH-terminus of APPL1. At 48 hr after transfection, cells were solubilized in a lysis buffer and cell lysates were clarified by centrifugation. 10 µg GST-tagged cytoplasmic tail of adipor1 or adipor2 was immobilized onto glutathione sepharose 4B beads by incubation at 4°C for 2 hr. The beads were reacted with cell lysates at 4°C overnight. After extensive washing with the lysis buffer, the bounded proteins were eluted with 5 mM reduced glutathione, separated by SDS-PAGE and visualized by silver staining. The proteins selectively bound to the carboxyl termini of adipor1 and adipor2 were subjected to tandem mass spectrometry analysis to identify the nature of the protein, as we recently described (25; 26). Alternatively, proteins separated by SDS-PAGE were transferred onto a nylon membrane, and probed with the anti-FLAG monoclonal antibody.
Measurement of NO production. Monolayer cells were grown in 6-well dishes until 90% confluence, and then starved in a serum-free medium for 4 hr. The cells were treated with various concentrations of adiponectin and the supernatant were collected at different time interval. NO release was determined by measurement of nitrite (NO_2^-) and nitrate (NO_3^-) levels using a Sievers Nitric oxide analyzer (Boulder, USA). The cells were collected for determination of protein concentrations using a BCA method (Pierce). NO levels were calculated as pmol NO per minute per mg protein, and were expressed as fold over the control conditions.

Vessel preparation and isometric tension measurement. Male C57BL/KsJ db/db diabetic mice aged 20-22 weeks and their lean littermates were used for this study. The mice sacrificed by an overdose of pentobarbitone (60 mg kg\(^{-1}\), i.p.). The superior mesenteric arteries were dissected out under the microscope. Each artery was cut into several rings of ~2 mm length in a cold Krebs-Ringer bicarbonate solution of the following composition (mmol/L): NaCl 120, NaHCO_3 25, KCl 4.8, NaH_2PO_4 1.2, MgSO_4 1.2, dextrose 11.0, CaCl_2 1.8, aerated with 95% O\(_2\) and 5% CO\(_2\). The rings were suspended between two tungsten wires in a Myograph System (Danish Myo Technology A/S, Denmark) for the recording of changes in isometric tension as described (15; 27). Each ring was stretched in a stepwise manner to an optimal tension that was determined in a length-active tension relationship experiments. After equilibration for 60 min, the rings were then pre-contracted with a sub-maximal concentration of phenylephrine (PE). After a stable contraction was achieved, the rings were exposed to cumulative concentrations of adiponectin to evaluate endothelium-dependent vasodilation. \(\text{N}^0\)-nitro-L-arginine methyl ester (L-NAME, 100 \(\mu\)M), an inhibitor of NO synthesis, was used to confirm NO-mediated vasodilation.

Statistical analysis. The results are expressed as means ± standard deviations (SD). Differences between groups were determined by Student's t test or one-way analysis of variance. \(p < 0.05\) was considered statistically significant.

RESULTS

Adiponectin-induced eNOS phosphorylation at ser\(^{1177}\) and NO production are mediated through adipoR1 and adipoR2 in endothelial cells. Our previous study demonstrated that both adipoR1 and adipoR2 are expressed in human endothelial cells (7). Here, we investigated whether the endothelial actions of adiponectin are mediated by these two receptors. Quantitative real time PCR analysis revealed that the mRNA abundance of adipoR1 is 1.7 folds higher than that of adipoR2 in human umbilical vein endothelial cells (HUVECs). The mRNA expression of adipoR1 and adipoR2 was suppressed by 68% and 75% respectively at 48 hr after transfection with the duplex stealth RNAi against both genes (Figure 1A). Western blot analysis showed that the protein levels of adipoR1 and adipoR2 were also decreased by RNAi specific to these two genes (Figure 1B).

Consistent with previous findings (12; 14-16), treatment with both full-length adiponectin (Figure 1C & 1D) and globular adiponectin (on-line supplementary Figure 1) significantly induced eNOS phosphorylation at serine1177 and NO production in HUVECs. The potency of full-length adiponectin produced from E. Coli and mammalian cells is similar (data not shown), suggesting that the posttranslational modifications and the formation of high
order oligomeric structure is not required for this action. Down-regulation of either adipR1 or adipR2 alone had no significant effects on adiponectin-induced eNOS phosphorylation at serine\(^{1177}\) and NO production. On the other hand, the effect of adiponectin was markedly attenuated when expression of adipR1 and adipR2 was simultaneously suppressed.

Both adipR1 and adipR2 interact with APPL1 in HUVECs. To identify the proximal down-stream effectors of these two receptors, we expressed GST-tagged cytoplasmic tails of adipR1 (GST-adipR1-C) and adipR2 (GST-adipR2-C) for pull-down purification of their potential interaction proteins in HUVECs. Tandem mass spectrometry-based analysis identified several candidate proteins that are potentially associated with the cytoplasmic tails of adipR1 and/or adipR2, including phosphatase 2A, Rabenosyn-5, striatin, GRS (regulator of G-protein signaling 4) and APPL1. Among these candidates, APPL1, a ~80 kDa adaptor protein that has previously been shown to interact with several membrane receptors and signalling molecules (19; 28-30), bound to both GST-adipR1-C and GST-adipR2-C, but not GST alone. During the course of this study, APPL1 was also reported to interact with adipR1 and adipR2 in C2C12 myotubes in a yeast two-hybrid screening (31).

To confirm the interaction between adipR1/adipR2 and APPL1, we co-expressed FLAG-tagged adipR1 or adipR2 and GFP-tagged APPL1 in HUVECs. Co-immunoprecipitation experiment showed that both adipR1 and adipR2 were physically associated with APPL1 (Figure 2). Adiponectin moderately increased the interactions between APPL1 and both adiponectin receptors. Furthermore, the interaction between APPL1 and the two receptors was reproducibly observed when FLAG-tagged adipR1 and adipR2 was immunoprecipitated with an anti-FLAG monoclonal antibody (data not shown).

Further analysis revealed that adipR1 and adipR2 were bound by the carboxyl fragment that contains a PTB domain, but not by the NH2-terminal region that includes the BAR and PH domains (Figure 3). Taken together, these results suggest an interaction between the cytoplasmic tail of the two adiponectin receptors and the carboxyl terminus of APPL1 in HUVECs.

Suppression of APPL1 expression by RNAi attenuates adiponectin-induced phosphorylation of AMPK\(\alpha\) at Thr\(^{177}\) and of eNOS at Ser\(^{1177}\), and NO production in HUVECs. Previous studies have shown that adiponectin stimulates NO production through activation of the AMPK/eNOS signaling cascade (12; 16). We next investigated the role of APPL1 in this signaling pathway in HUVECs. 48 hr after transfection of cells with the duplex stealth RNAi against APPL1, its mRNA expression was decreased by ~76%. Western blot analysis confirmed that the protein concentration of APPL1 was also markedly reduced (Figure 4A). Suppression of APPL1 expression resulted in a significant attenuation in adiponectin-evoked phosphorylation of AMPK at Thr\(^{172}\) and eNOS at ser\(^{1177}\), and production of NO (Figure 4B & 4C).

Association of HSP90 with eNOS is an important step for maximal activation of eNOS activity (13). Adiponectin has been shown to enhance the complex formation between these two proteins in endothelial cells (15), although the underlying mechanisms remain to be determined. We next investigated the role of APPL1 in regulating the complex formation between eNOS and HSP90 in HUVECs. Co-
immunoprecipitation analysis showed that treatment with adiponectin augmented the binding of HSP90 to eNOS (Figure 5). On the other hand, adiponectin-evoked complex formation between HSP90 and eNOS was largely abrogated when expression of APPL1 was suppressed.

Constitutive activation of AMPK is sufficient to mimic the effects of adiponectin in eNOS activation and NO production. It is now known that adiponectin exerts many biological actions through activation of AMPK, such as enhancing lipid β-oxidation and insulin sensitivity in skeletal muscle (32), inhibiting gluconeogenesis in liver (17) and protecting acute cardiac injury (33). AMPK activation can stimulate eNOS activity by enhancing its association with HSP90 (34) as well as inducing its phosphorylation at Ser1177 (35; 36). We next investigated the role of AMPK in adiponectin-induced eNOS activation and its relationship with APPL1 in HUVECs. Consistent with the two previous reports (12; 16), adenovirus-mediated overexpression of a dominant negative version of AMPK (23) completely blocked adiponectin-evoked association of eNOS with HSP90 as well as phosphorylation of eNOS at Ser1177 (Figure 6). On the other hand, overexpression of a constitutively active version of AMPK alone is sufficient to mimic the effects of adiponectin to induce eNOS-HSP90 complex formation and eNOS phosphorylation at Ser1177, even when APPL1 expression was suppressed. Our co-immunoprecipitation experiment showed that there was no direct interaction between APPL1 and HSP90 or eNOS. Taken together, these results suggest that APPL1 mediates adiponectin-induced association of eNOS and HSP90 via an indirect mechanism, possibly through activation of AMPK in endothelial cells.

APPL1 expression and adiponectin-evoked vasodilation are decreased in small mesenteric arteries (SMA) of db/db diabetic mice. To explore the pathophysiological relevance of the above in vitro findings, we next compared APPL1 mRNA expression in several tissues in C57BL/KsJ db/+ lean mice and db/db diabetic mice, an established animal model with endothelial dysfunction (27; 37). db/db diabetic mice showed significantly increased body weight (52.4 ± 3.3 vs 29.1 ± 1.6 g, p<0.01) and higher plasma levels of blood glucose (483.6 ± 24.7 vs 197.2 ± 11.5 mg/dl, p<0.01), triglycerides (238.9 ± 15.2 vs 92.5 ± 6.8 mg/dl, p<0.01), insulin (14.3 ± 1.3 vs 1.2 ± 0.1 ng/ml, p<0.01) and cholesterol (164.8 ± 9.2 vs 81.7 ± 7.3 mg/dl, p<0.01) compared with their lean littermates. The mRNA expression level of APPL1 in SMA of db/db diabetic mice was significantly decreased (Fig 7A). On the other hand, the expression levels of APPL1 in liver, kidney and adipose tissues were comparable between db/db diabetic mice and their lean littermates (data not shown).

In agreement with a previous report (15), our results also showed that adiponectin dose-dependently induced vasodilation of SMA (Fig 7B). Adiponectin at the concentrations of 5 µg/ml and 10 µg/ml elicited 27.7% and 42.6% vasorelaxation of SMA derived from the lean mice. The relaxation effect of adiponectin was endothelium-dependent and abolished by treatment with L-NAME (100 µM), suggesting a primary role of NO in adiponectin-induced vasodilation. Notably, adiponectin produced significantly less relaxations in db/db diabetic mice than in their lean littermates. Taken together, these results suggest that the decreased APPL1 expression in SMA may be closely related to the impaired vasodilation in db/db diabetic mice.
DISCUSSION

In this study, we provided first direct evidence showing that adipor1 and adipor2, the two putative adiponectin receptors, are involved in mediating adiponectin-evoked eNOS activation and NO production in endothelial cells. This conclusion is supported by our finding that adiponectin-induced eNOS phosphorylation at Ser1177 and NO production in HUVECs were abolished by simultaneous suppression of adipor1 and adipor2 (Fig 1). Suppression of each receptor alone had no obvious effect, suggesting that adipor1 and adipor2 may compensate for each other’s function in HUVECs. Alternatively, the incomplete suppression of these two receptors in our experiments might also account for the lack of obvious effect following suppression of each individual receptor. Due to the relatively low transfection efficiency in HUVECs, expression of adipor1 and adipor2 was only suppressed by 68% and 75% respectively following transfection with RNAi against their respective gene. It is still possible that complete ablation of either adipor1 or adipor2 individually is sufficient to blunt adiponectin-mediated eNOS phosphorylation and NO production. Further study on endothelial cells derived from adipor1 or adipor2 knockout mice should help clarify the role of each receptor in adiponectin-induced NO production.

We identified APPL1 as an intermediate adaptor linking adiponectin receptors and the downstream signaling events that lead to the increased NO production. APPL1 (also called DIP13α) was originally cloned in two-hybrid screens as an interacting partner of Akt2 (19) and the tumor suppressor DCC (deleted in colon cancer) (28). This protein contains multiple regulatory motifs that are involved in various signaling pathways. APPL1 is physically associated with several membrane receptors (such as follicle-stimulating hormone receptor (30) and androgen receptor (29)) and the small GTPase Rab5 (38). In response to extracellular stimuli such as EGF and oxidative stress, APPL1 dissociates with Rab5 and translocates from membranes to the nucleus where it interacts with the nucleosome remodeling and histone deacetylase multiple protein complex NuRD/MeCP1, which in turn regulates chromatin structure and gene regulation (38). In addition, the interaction between APPL1 and neurotrophin receptor TrkA is required for nerve growth factor-mediated signal transduction in neuronal cells (39). During the course of our study, Mao et al reported the interaction between the two adiponectin receptors and APPL1 in C2C12 myotubes in a yeast two-hybrid screen. In myotubes, APPL1 acts as a key mediator involved in adiponectin-evoked AMPK activation, lipid oxidation, membrane translocation of GLUT4 and glucose uptake (31). In agreement with this finding, our proteomics-based analysis also demonstrated the interaction between the cytoplasmic tails of adipor1/adipor2 and APPL1 in endothelial cells. Furthermore, we showed that suppression of APPL1 expression by RNAi led to the abrogation of adiponectin-evoked eNOS activation and NO production, suggesting a critical role of this adaptor protein in mediating the vasodilating effects of adiponectin.

Growing evidence suggests that AMPK, a central regulator of cellular energy metabolism, plays a key role in modulating vascular reactivity. AMPK stimulates eNOS activity by phosphorylating eNOS at ser1177 and promoting its association with HSP90. Several vaso-protective agents, such as the anti-diabetic drug metformin (40), 17β-estradiol (34), high-density lipoprotein and apolipoprotein AI (41), have recently been
shown to activate AMPK in endothelial cells. Consistent with the previously reported findings (12; 16), our result also demonstrated that AMPK is the principal kinase responsible for adiponectin-evoked eNOS phosphorylation at ser1177, eNOS association with HSP90 and NO production in HUVECs (Fig. 6). In addition, we found that APPL1 acts as an intermediate adaptor that links adiponectin receptors with AMPK activation. This notion is supported by our finding that adiponectin-induced AMPK phosphorylation at Thr172 was abrogated by RNAi-mediated down-regulation of APPL1 expression, while over-expression of the constitutively active form of AMPK alone was sufficient to stimulate eNOS activation and NO production, even when APPL1 expression was suppressed (Figure 5).

The precise mechanism by which the binding of APPL1 leads to the activation of AMPK remains to be defined. Recent studies have implicated the potential involvement of APPL1 in the regulation of phosphoinositide-3-kinase (PI3K) activity. APPL1 can directly interact with the regulatory subunit of PI3K (P85), and this interaction might be involved in androgen receptor-mediated activation of Akt (29). The selective PI3K inhibitors could abrogate adiponectin-evoked phosphorylation of AMPK at Thr172 and of eNOS at Ser1177, and NO production in endothelial cells (12; 15), suggesting that the activation of AMPK/eNOS by adiponectin is mediated by PI3K. A more recent study revealed that the anti-diabetic drug metformin-induced activation of the AMPK/eNOS pathway is also dependent on PI3K (40). Whether PI3K is the downstream target of APPL1 is currently under investigation in our laboratory.

Endothelial dysfunction is a pathological condition closely associated with obesity and diabetes. Several factors, such as glucotoxicity, lipotoxicity, inflammation and hypoadiponectinemia have been proposed to play an etiological role in obesity and diabetes-associated endothelial dysfunction (2; 4). Nevertheless, the cellular mechanisms underlying this disorder remain poorly understood. In this study, we showed that adiponectin-mediated vasodilation in SMA of db/db diabetic mice was impaired comparing with their lean littermates, suggesting that reduced function of adiponectin may contribute to endothelial dysfunction observed in db/db diabetic mice (27). Notably, the impaired vasodilation in response to adiponectin is associated with a decreased APPL1 expression in diabetic arteries (Figure 7). This novel finding raises the possibility that the decreased APPL1 expression might be causally associated with impaired vasodilation and endothelial dysfunction in diabetes. However, our present study can not explain why APPL1 expression is selectively decreased in small mesenteric arteries of db/db diabetic mice. Our in vitro data showed that neither acute nor long-term treatment of HUVECs with high concentrations of glucose and/or insulin had any effect on APPL1 expression (Cheng K and Xu A, unpublished observation), suggesting that hyperinsulinemia and hyperglycemia may not be the direct contributor to the decreased APPL1 expression in SMAs of db/db diabetic mice. Further studies are warranted to investigate the detailed molecular events that control APPL1 gene expression under various pathophysiological conditions.

In summary, the present study provide novel evidence demonstrating that APPL1 acts as an immediate downstream effector of adiponectin receptors to mediate adiponectin-induced phosphorylation of AMPK at Thr172 and eNOS at Ser1177, and association of eNOS with HSP90, which collectively lead to enhanced NO production in endothelial cells. Whether APPL1 is also involved in other endothelial actions of
adiponectin, such as protection of apoptosis (42), modulation of cytokine production (43) and alleviation of oxidative stress (44), warrants further investigation in the future studies.

ACKNOWLEDGEMENTS:

This work was supported by the Hong Kong Research Grant Council (HKU 7486/04M to A Xu and RGC7404/04 to K Lam) and the National 973 program of China (2006CB03908 to A Xu and 2004CB720102 to D Wu).
REFERENCES

30. Nechamen CA, Thomas RM, Cohen BD, Acevedo G, Poulikakos PI, Testa JR, Dias JA: Human follicle-stimulating hormone (FSH) receptor interacts with the adaptor protein APPL1 in
35. Mount PF, Kemp BE, Power DA: Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. *J Mol Cell Cardiol* July 12, Epub ahead of print, 2006
FIGURE LEGENDS

Figure 1: Role of adipR1 and adipR2 in adiponectin-induced eNOS phosphorylation at Ser1177 and NO production in HUVECs. Cells were transfected with target specific RNAi duplexes for adipR1, adipR2 or scrambled RNAi as control.

A, Real time PCR to quantify the relative mRNA abundance of adipR1 and adipR2 at 48 hr after transfection.

B, Western blot analysis to detect the protein levels of adipR1, adipR2 and actin (as control) in cells transfected with RNAi.

C, Cells transfected with various RNAi duplexes were treated with adiponectin for 15 min, 50 µg of proteins from cell lysates was separated by SDS-PAGE, transferred onto nylon membrane, and probed with anti phosph-eNOS (Ser1177) or anti total eNOS antibody.

D, NO release in the conditioned medium was measured at 60 min after adiponectin treatment. The data were expressed as fold over the control cells treated without adiponectin (n=5-6). ADN: adiponectin.
Figure 2. Both adipor1 and adipor2 are physically associated with APPL1 in HUVECs. Cells were co-transfected with vectors for GFP-tagged APPL1 and FLAG-tagged adipor1 (A) or adipor2 (B). At 42 h after transfection, cells were serum starved for 6 h and then treated with adiponectin (10 µg/ml) for 15 min. Cell lysates were subjected to immunoprecipitation using anti-GFP monoclonal antibody or non-immune mouse IgG as control, and the proteins bound to the antibodies were eluted, separated by SDS-PAGE, and detected with either anti-FLAG or anti-GFP antibody.

<table>
<thead>
<tr>
<th>Adiponectin</th>
<th>-</th>
<th>+</th>
<th>-</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>AdipoR1</td>
<td>APPL1</td>
<td>AdipoR1</td>
<td>APPL1</td>
</tr>
<tr>
<td>IP</td>
<td>nonimmune</td>
<td>anti-GFP</td>
<td>nonimmune</td>
<td>anti-GFP</td>
</tr>
</tbody>
</table>

Figure 3. The carboxyl domain, but not the amino terminal region of APPL1, interacts with the cytoplasmic tails of adipor1 and adipor2. A. Schematic presentation of the domain organization of wild-type and truncated APPL1 used in this study. B. SDS-PAGE analysis of GST and GST-tagged cytoplasmic tail of adipor1 (GST-adipoR1-C) and adipor2 (GST-adipoR2-C) expressed in E.coli. C. HEK293 cells were transfected with the expression vectors encoding FLAG-tagged full length APPL1, APPL1-N or APPL1-C as in panel A for 48 h. Equal amount of cell lysates were incubated with glutathione sepharose beads coupled with 10 µg of GST-adipoR1-C, GST-adipoR2-C or GST for 2 h. After extensive washing, proteins bound to the beads were eluted with reduced glutathione, separated by SDS-PAGE, and detected with an anti-FLAG monoclonal antibody.

A

<table>
<thead>
<tr>
<th>APPL1</th>
<th>FLAG</th>
<th>Bar domain</th>
<th>PH domain</th>
<th>PTB domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-151</td>
<td>152-191</td>
<td>192-217</td>
</tr>
<tr>
<td>APPL1-N</td>
<td>S</td>
<td>182-226</td>
<td>218-337</td>
<td>407-636</td>
</tr>
</tbody>
</table>

B

C

- pull down

<table>
<thead>
<tr>
<th>GST-adipoR1-C</th>
<th>GST-adipoR2-C</th>
<th>GST</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPL1 (bound)</td>
<td>APPL1 (input)</td>
<td></td>
</tr>
<tr>
<td>APPL1-N (bound)</td>
<td>APPL1-N (input)</td>
<td></td>
</tr>
<tr>
<td>APPL1-C (bound)</td>
<td>APPL1-C (input)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4. APPL1 is required for adiponectin-evoked phosphorylation of AMPK at Thr^{172} and eNOS at Ser^{1177}, and NO production in HUVEC cells. Cells were transfected with the target specific RNAi duplexes for APPL1 or scrambled RNAi as control. A, Western blot analysis to detect the protein levels of APPL1 and actin at 48 hr after transfection. B, At 42 hr after transfection, cells were starved in a serum-free medium for 6 hr, and then stimulated with adiponectin (10 µg/ml) for various time periods as indicated. 50 µg of proteins from cell lysates were separated by SDS-PAGE, and probed with various antibodies as indicated. C, NO production at 60 min after stimulation with adiponectin was measured as in Figure 1 (n=5).
Figure 5. Down-regulation of APPL1 expression attenuates adiponectin-evoked association of HSP90 with eNOS in HUVECs. Cells were transfected with RNAi duplexes as in Figure 4. The suppression efficiency of RNAi against APPL1 was confirmed by both real time PCR and Western blot. 42 hr after transfection, cells were starved in serum-free medium for another 6 hr, stimulated with adiponectin (10 µg/ml), and then dissolved in a lysis buffer as described in Methods. Cell lysates were subjected to immunoprecipitation using anti-eNOS antibody. The immunoprecipitated complexes were separated by SDS-PAGE, and probed with the anti-HSP90 or eNOS antibody as indicated.

<table>
<thead>
<tr>
<th>RNAi</th>
<th>Scrambled</th>
<th>APPL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (min)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>HSP90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eNOS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Role of AMPK in adiponectin-induced eNOS phosphorylation at Ser1177, association of eNOS with HSP90, and NO production in HUVECs. A, Cells were transfected with the RNAi duplexes as indicated and was then infected with recombinant adenovirus for expression of luciferase (luc), dominant-negative (DN)-AMPK and constitutively active (CA)-AMPK (50 p.f.u/cell). The suppression efficiency of siRNA against APPL1 was confirmed by both real time PCR and Western blot. 42 hr after transfection, cells were starved in serum-free medium for 6 hr, and then treated with 10 µg/ml adiponectin for 15 min. Total cell lysates were separated by SDS-PAGE, and probed with anti-eNOS and anti phospho-eNOS antibody, or were subjected to immunoprecipitation using anti-eNOS antibody. The immunoprecipitated complexes were separated by SDS-PAGE and probed with anti-HSP90 or anti-eNOS antibody. B, NO released into conditioned medium was detected as in Figure 1 (n=4-6).
Figure 7. APPL1 expression (A) and adiponectin-mediated vasodilation (B) in SMA are decreased in db/db diabetic mice. SMA was isolated from male db/db obese/diabetic mice and their lean littermates. APPL1 mRNA expression in SMA was determined by real time PCR and normalized against 18S RNA. Adiponectin-induced relaxations are shown as a percentage of the maximum contraction to PE. * p<0.01 vs lean control (n=5-6).