DELETION OF STAT-1 IN PANCREATIC ISLETS PROTECTS AGAINST STREPTOZOTOCIN-INDUCED DIABETES AND EARLY GRAFT FAILURE BUT NOT AGAINST LATE REJECTION

Received for publication 15 January 2007 and accepted in revised form 22 April 2007.

Additional information for this article can be viewed in an online appendix at http://diabetes.diabetesjournals.org.

Hanne I. Callewaert¹,☯(MSc), Conny A. Gysemans¹(PhD), Laurence Ladrière² (PhD), Wannes D’Hertog¹ (MSc), Julianna Hagenbrock¹ (BSc), Lutgart Overbergh¹ (PhD), Decio L. Eizirik² (MD, PhD) and Chantal Mathieu¹ (MD, PhD).

¹Laboratory of Experimental Medicine and Endocrinology (LEGENDO), Campus Gasthuisberg O&N, Catholic University of Leuven, Leuven (KUL), Belgium
²Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
☯These authors contributed equally to this work

Corresponding author:
Prof. Dr. Chantal Mathieu
LEGENDO, Campus Gasthuisberg O&N1
Herestraat 49, bus 902
B-3000 Leuven
BELGIUM
E-mail: chantal.mathieu@uz.kuleuven.ac.be

Running title: Role of STAT-1 in β-cells
Word count: 1998
Number of Tables: 2
Number of Figures: 2
Online Appendix Figures: 2

Abbreviations
CsA, cyclosporine A; IL-1ra, interleukin 1 receptor antagonist; MLDSD, multiple low-dose streptozotocin-induced diabetes; NF-κB, nuclear factor-κB; PNF, primary islet non-function; STAT-1, signal transducer and activator of transcription-1
ABSTRACT
Objective: Exposure of β-cells to inflammatory cytokines leads to apoptotic cell death through activation of gene networks under control of specific transcription factors, like interferon (IFN)-γ-induced signal transducer and activator of transcription (STAT)-1. We previously demonstrated that β-cells lacking STAT-1 are resistant to cytokine-induced cell death in vitro. The aim of this study was to investigate the effect of STAT-1 elimination on immune-mediated β-cell destruction in vivo.
Research Design and Methods: Multiple low-dose streptozotocin (MLDS) was given to C57BL/6 mice after syngeneic STAT-1−/− or wild-type islet transplantation. STAT-1−/− and wild-type islets were also transplanted in alloxan-diabetic BALB/c and spontaneously diabetic NOD mice. Additionally, mice were treated with IL-1-blockade (IL-1 receptor antagonist, IL-1ra) and low-dose T-cell suppression (cyclosporine A, CsA).
Results: When exposed to MLDS in an immune-competent host, STAT-1−/− islets were more resistant to destruction than wild-type islets (28% versus 100% diabetes incidence, p≤0.05). STAT-1 deletion also protected allogeneic islet grafts against primary non-function in autoimmune NOD mice (0% versus 17% using wild-type islets). However, no difference in survival time was observed. Treating recipients additionally with IL-1ra and CsA prolonged graft survival in chemically-diabetic BALB/c mice, but again no difference was seen between STAT-1−/− or C57BL/6 grafts.
Conclusions: These data indicate that STAT-1 is a key player in immune-mediated early β-cell dysfunction and death. Considering the many effector mechanisms contributing to β-cell death following islet transplantation, however, multiple combined interventions will be needed for prolongation of β-cell survival in the autoimmune context of type 1 diabetes.
INTRODUCTION

ß-cell loss during islet isolation procedures and early after implantation is partly responsible for the present need for multiple donors in islet transplantation (1). Engineering ß-cells to become resistant to this early cell loss may have an immediate impact on the outcome of islet transplants. ß-cells under immune assault mostly die via apoptosis (2), a complex process mainly driven by local production of pro-inflammatory cytokines including IL-1ß, TNF-α, and IFN-γ. ß-cells are also destroyed by direct action of cytotoxic T-cells, e.g. via Fas- and perforin-mediated mechanisms (2-4).

Insight in the intracellular signaling cascades induced by inflammatory cytokines in pancreatic ß-cells is growing, especially through micro-array studies demonstrating that IFN-γ, together with IL-1ß, alters gene expression of more than 700 transcripts in FACS-purified rat ß-cells or in insulin-producing cells (2;5). IL-1ß exerts its effects mainly through the NF-κB pathway, while IFN-γ acts mostly via activation of the transcription factor STAT-1 (6). Our group has previously shown that absence of STAT-1 in ß-cells (from STAT-1−/− mice) prevented IL-1ß plus IFN-γ-induced ß-cell death in vitro. In addition, STAT-1−/− mice are resistant against multiple low-dose streptozotocin-induced diabetes (MLDSD) (7). A major drawback of these findings was that in this in vivo system not only ß-cells lacked STAT-1, but also the immune system was STAT-1 deficient, making it difficult to determine at which level the STAT-1 disruption was responsible for protection. The present experiments were designed to elucidate whether disruption of the STAT-1 signaling pathway in the ß-cells itself improves their resistance against immune destruction in vivo. First, we studied a model of MLDSD after syngeneic islet transplantation, reflecting resistance of the STAT-1−/− islets against an immune attack in a fully immune-competent host. Secondly, we investigated whether lack of STAT-1 increased the short-term survival of islet transplants in alloxan-diabetic BALB/c mice and spontaneously diabetic NOD mice. In addition, we investigated whether blocking multiple pathways involved in ß-cell destruction enhanced long-term survival of allogeneic islet grafts. Therefore, STAT-1−/− islets were transplanted in hosts treated with IL-1 receptor antagonist (IL-1ra) and a subtherapeutical dose of cyclosporine (CsA) (8-10).

RESEARCH DESIGN AND METHODS

Animals

STAT-1 knock-out (−/−) mice (C57BL/6 background) were a kind gift of Dr. David Levy (New York University School of Medicine, NY). Eight-week-old wild-type and BALB/c mice were produced from stocks purchased from Harlan Nederland (Horst, The Netherlands). Non-obese diabetic (NOD) mice, inbred in our animal facility (Proefdierencentrum “Leuven”, Belgium) since 1989, were used as diabetes-prone animals and diabetes was defined and detected as described (11). STAT-1−/− mice were kept under specific pathogen free (SPF) conditions. Experiments were conducted with approval of the Animal Ethics Committee of KULeuven.

Islet isolation, transplantation and evaluation of graft function

Freshly isolated STAT-1−/− or wild-type islets (n=500), were isolated and transplanted under the kidney capsule of recipients as described (11). Alloxan-diabetes was induced and graft function was evaluated as described (11). Graft destruction was defined as return to hyperglycemia (blood glucose >200 mg/dL on two consecutive days after initial normoglycemia). Recipients were killed the day of graft rejection or in a separate experiment for gene analysis in grafts 8 hours post-transplantation.

Real-time PCR

Islet grafts, retrieved 8 hours post-transplantation, were used for RNA extraction using SV Total RNA Isolation kit (Promega Benelux, Leiden, The Netherlands). cDNA was created and quantitative PCR analysis was performed as described (7). Primer and probe sequences for the determination of mouse cDNAs for house-keeping gene ß-actin, IL-1ß, IL-15, IFN-γ, iNOS, MCP-1, IP-10 and MIP-3α were as described (7).

MLDSD after syngeneic islet transplantation

Freshly dissolved streptozotocin (50 mg/kg) (Sigma, St. Louis, MO) was injected for 5 consecutive days intraperitoneally into male wild-type mice that had received an islet
transplantation with 500 STAT-1−/− or wild-type islets (after being rendered diabetic by alloxan) and had been normoglycemic for at least 14 days. Graft function was followed for 40 days after the last streptozotocin injection. At that time point, grafts were removed, embedded in paraffin and used for hematoxylin/eosin and insulin staining using a guinea pig anti-insulin antibody (Dakocytomation, Glostrup, Denmark) as described (12). After two additional days, pancreases were removed for histology and insulin content determination (12).

Treatment regimens
As recommended by Ulrich Feige (Amgen, CA), human recombinant IL-1ra (Kineret®) was delivered by a subcutaneously implanted in vitro-primed osmotic pump as described at a dose of 100 mg/kg/day for 15 days starting one day pre-transplantation (10).

A subtherapeutic dose of 7.5 mg/kg CsA (Sandimmune®, Novartis, Switzerland) was administered daily by gavage starting one day pre-transplantation for the duration of normoglycemia.

Statistical analysis
NCSS 2000 (Kaysville, Utah) software was used for statistical analysis. Data are expressed as mean±SEM. Log-Rank test was performed for graft survival. Χ² test was used for the incidence of MLDSD. The Student’s t-test and ANOVA were used for multiple comparisons, whenever appropriate. Significance was defined at the 0.05 level.

RESULTS
Resistance of STAT-1−/− islets against MLDSD in an immune-competent host
STAT-1−/− or wild-type islets were transplanted under the kidney capsule of alloxan-diabetic syngeneic C57BL/6 recipients. Normoglycemia was rapidly reached by STAT-1−/− (n=7) and wild-type islets (n=7) (3.9 ± 2.9 versus 4.3 ± 2.8 days, respectively, p=NS). After 2-3 weeks of normoglycemia, MLDSD was induced. At the start of the MLDS treatment, no differences in blood glucose were present between mice transplanted with either STAT-1−/− or wild-type islets (132 ± 32 versus 121 ± 20 mg/dL, respectively, p=NS). However, 10 days after the last injection with streptozotocin there were clear differences in blood glucose levels (159 ± 32 versus 250 ± 45 mg/dL in STAT-1−/− versus wild-type islet recipients, p<0.05). This difference was maintained until the end of the study, 40 days after the last streptozotocin injection (182 ± 55 versus 305 ± 80 mg/dL in STAT-1−/− versus wild-type islet recipients, p=0.07). After 40 days, 100% of wild-type islet recipients had become diabetic compared to 28% in STAT-1−/− islet recipients (p<0.05) (Figure 1). Maintenance of normoglycemia in mice transplanted with STAT-1−/− islets was not due to regeneration of recipients’ pancreases, demonstrated by low insulin content in pancreases (data not shown). Moreover, clear insulin positivity was seen in removed grafts (Online Appendix Figure 1). In separate mice where no MLDSD was induced, STAT-1−/− and wild-type islets maintained normoglycemia for >30 days (Figure 1).

Survival and gene expression of STAT-1−/− and wild-type islets transplanted in alloxan-diabetic BALB/c and spontaneously diabetic NOD mice
Absence of STAT-1 in islet cells did not prolong graft survival in chemically-diabetic recipients compared to islets from wild-type mice (Table 1).

Wild-type islet transplantations in spontaneously diabetic NOD mice, where also autoimmune recurrence occurs, failed to normalize glycemia in 2/12 mice, representing 17% of primary islet non-function (PNF). No PNF was observed in transplantations with STAT-1−/− islets. However, islets of STAT-1−/− and wild-type mice were rejected at the same time (Table 2).

mRNA analysis of STAT-1−/− and wild-type islet grafts 8 hours after transplantation revealed analogous levels of inflammatory cytokines in both recipients, illustrating comparable immune responses to the grafts (data not shown). As shown in figure 2 (BALB/c recipients) and online appendix figure 2 (NOD recipients), MCP-1, IL-15, IP-10 and iNOS genes were strongly upregulated in islet allografts of wild-type mice. Induction of IL-15, IP-10 and iNOS mRNA, was markedly suppressed in STAT-1−/− grafts (p<0.05).

Blocking of STAT-1 and IL-1β pathway in combination with low-dose cyclosporine
Here, we used STAT-1−/− mice to determine the contribution of this transcription factor to immune-mediated β-cell death in vivo (18). We previously showed that both islets and FACS-purified β-cells lacking STAT-1 are completely protected against IFN-γ or IL-1β. Indeed, inflammatory cytokines probably contribute to β-cell death in type 1 diabetes (13). This form of β-cell destruction may be particularly relevant when viral triggers are involved, and transcription factors such as STAT-1 may be crucial messengers in this phenomenon (19).

The absence of prolongation of graft survival by blocking STAT-1 in β-cells indicates that the early beneficial effects of STAT-1 deletion are not sufficient to prevent late and more complex phenomena involved in islet graft destruction. Even additional blocking of IL-1β signaling by IL-1ra and partial blocking of T-cell activation by CsA could not prevent islet graft destruction.
Other mediators such as Fas/Fas ligand and perforin/granzyme probably contribute to late islet graft loss (4;21;22). In fact, recent data involving islet-specific CD8+ T-cells from T-cell receptor transgenic NOD8.3 mice indicate that both Fas and perforin are implicated in β-cell killing (23).

In conclusion, the present findings point to the very diverse mechanisms that contribute to β-cell destruction in vivo. Cytokine-mediated mechanisms clearly contribute to β-cell death, and interfering with cytokine signaling cascades may help to make stronger β-cells. Our data suggest, however, that in order to prevent late β-cell loss, long-term integrated approaches targeting both β-cells and different players in the immune system will be necessary.

ACKNOWLEDGMENTS

The authors thank W. Cockx, J. Depovere, J. Laureys and D. Valckx for their excellent technical support.

This work was supported by grants of the Flemish Research Foundation [Fonds Voor Wetenschappelijk Onderzoek (FWO) Vlaanderen G.0084.02, G.0233.04, G.0552.06, an aspirant doctoral scholarship for Hanne Callewaert, a postdoctoral fellowship for Conny Gysemans and a clinical fellowship for Chantal Mathieu], of the Belgium Program on Interuniversity Poles of Attraction initiated by the Belgian State (IAP P5/17), of the Katholieke Universiteit Leuven (GOA 2004/10 and EF-05-011), of the European Union Project SAVEBETA (contract n° 036903 in the Framework Programme 6 of the European Community), of the Belgian Research Foundation [Fonds National de la Recherche Scientifique (FNRS)], and of the “Communauté française de Belgique - Actions de Recherche Concertées” (ARC).
REFERENCES

TABLE 1
Survival of wild-type C57BL/6 or STAT-1−/− islets after transplantation in alloxan-diabetic BALB/c mice

<table>
<thead>
<tr>
<th>Treatment regimen</th>
<th>N° of mice</th>
<th>survival of islets (days)</th>
<th>MST</th>
<th>P vs no treatment</th>
<th>N° of mice</th>
<th>survival of islets (days)</th>
<th>MST</th>
<th>P vs no treatment</th>
<th>P vs wild-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>no treatment</td>
<td>15</td>
<td>6,11,11,11,12,12,13,13</td>
<td>12.7 ± 2.5</td>
<td></td>
<td>5</td>
<td>11,12,13,13,13</td>
<td>12.4 ± 0.9</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>,13,14,14,14,15,15,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1ra</td>
<td>2</td>
<td>10,14</td>
<td>12.0 ± 2.8</td>
<td>NS</td>
<td>2</td>
<td>10,14</td>
<td>12.0 ± 2.8</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>CsA</td>
<td>7</td>
<td>10,10,10,11,12,12,13</td>
<td>11.1 ± 1.2</td>
<td>NS</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>IL-1ra+CsA</td>
<td>7</td>
<td>12,14,14,15,15,16,21</td>
<td>15.3 ± 2.8</td>
<td>P < 0.05</td>
<td>6</td>
<td>10,12,14,17,17,23</td>
<td>15.5 ± 4.6</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

MST: Mean survival time; ND: not done
TABLE 2
Survival of wild-type C57BL/6 or STAT-1−/− islets after transplantation in spontaneously diabetic NOD mice

<table>
<thead>
<tr>
<th>Treatment regimen</th>
<th>N° of mice</th>
<th>survival of islets (days)</th>
<th>MST (days)</th>
<th>P vs no treatment</th>
<th>N° of mice</th>
<th>survival of islets (days)</th>
<th>MST (days)</th>
<th>P vs no treatment</th>
<th>P vs wild-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>no treatment</td>
<td>12</td>
<td>0,0,2,5,5,11,11,12,13,15,17</td>
<td>10.0 ± 4.8</td>
<td></td>
<td>4</td>
<td>[6]*,10,10,13</td>
<td>11.0 ± 1.7</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>IL-1ra</td>
<td>6</td>
<td>0,5,8,12,12,15</td>
<td>10.4 ± 3.9</td>
<td>NS</td>
<td>2</td>
<td>10,12</td>
<td>11.0 ± 1.4</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>CsA</td>
<td>7</td>
<td>8,8,8,10,10,11,18</td>
<td>10.4 ± 3.6</td>
<td>NS</td>
<td>3</td>
<td>5, 13, 14</td>
<td>10.7 ± 4.9</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>IL-1ra+CsA</td>
<td>7</td>
<td>5,10,11,11,12,16,20</td>
<td>12.1 ± 4.7</td>
<td>NS</td>
<td>6</td>
<td>10,11,11,12,12,13</td>
<td>11.5 ± 1.0</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

MST: mean survival time; *: died with functioning graft
FIGURE LEGENDS

Figure 1: Cumulative diabetes incidence after MLDS treatment performed after syngeneic islet transplantation of STAT-1−/− and wild-type control islets.
MLDSD in wild-type mice transplanted with wild-type islets (n=7) (black circles) and in wild-type mice transplanted with STAT-1−/− islets (n=7) (white circles) (*, p<0.05). Follow-up of control mice, not receiving MLDS, showed no rejection of the syngeneic graft [wild-type mice transplanted with wild-type islets: black triangles (n=2); wild-type mice transplanted with STAT-1−/− islets: white squares (n=2)].

Figure 2: Gene expression in STAT-1−/− and wild-type islet grafts retrieved from chemically-diabetic BALB/c mice.
Real-time quantitative PCR analysis of intra-graft IL-15, iNOS, IP-10, MCP-1 and MIP-3α expression in STAT-1−/− islet grafts (hatched bars), wild-type islet grafts (striped bars) and control kidney (white bars) retrieved from alloxan-diabetic BALB/c mice 8 hours post-transplantation. mRNA levels, expressed as ratio between gene of interest and housekeeping gene ß-actin, are means ± SEM from 2-4 experiments (*, p<0.05, wild-type versus STAT-1−/−).

Online Appendix Figure 1: Histology and immunohistochemistry from grafts at the end of MLDS study.
Grafts were retrieved 45 days after start of MLDS treatment in wild-type mice transplanted with syngeneic STAT-1−/− islets. Panel A (H&E staining) and panel B (immunostaining for insulin in red) show a well preserved graft with positive insulin staining.

Online Appendix Figure 2: Gene expression in STAT-1−/− and wild-type islet grafts retrieved from spontaneously diabetic NOD mice.
Real-time quantitative PCR analysis of intra-graft IL-15, iNOS, IP-10, MCP-1 and MIP-3α expression in STAT-1−/− islet grafts (hatched bars), wild-type islet grafts (striped bars) and control kidney (white bars) retrieved from spontaneously diabetic NOD mice 8 hours post-transplantation. mRNA levels, expressed as ratio between gene of interest and housekeeping gene ß-actin, are means ± SEM from 3-5 experiments (*, p<0.05, wild-type versus STAT-1−/−).
Figure 1
Figure 2