A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: results from the EUGENE2 study

Harald Staiger1*, Alena Stančáková2*, Jone Zilinskaite2, Markku Vänttinen2, Torben Hansen3, Maria Adelaide Marini4, Ann Hammarstedt5, Per-Anders Jansson5, Giorgio Sesti6, Ulf Smith5, Oluf Pedersen3, Markku Laakso5, Norbert Stefan1, Andreas Fritsche1, Hans-Ulrich Häring1

1 Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Tübingen University Hospital, Tübingen, Germany
2 Department of Medicine, University of Kuopio and Kuopio University Hospital, Kuopio, Finland
3 Steno Diabetes Center, Copenhagen, Denmark
4 Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
5 The Lundberg Laboratory for Diabetes Research, Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
6 Department of Experimental and Clinical Medicine, Polyclinic Mater Domini, University Magna Graecia of Catanzaro, Catanzaro, Italy

*both authors contributed equally to the paper

Corresponding author:
Hans-Ulrich Häring, MD
Internal Medicine IV
Medical Clinic Tübingen
Otfried-Müller-Str. 10
D-72076 Tübingen
Germany
hans-ulrich.haering@med.uni-tuebingen.de

Received for publication 19 June 2007 and accepted in revised form 16 November 2007.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org.

Copyright American Diabetes Association, Inc., 2007
OBJECTIVE

In recent genome-wide association studies, two single nucleotide polymorphisms (SNPs) near the HHEX locus were shown to be more frequent in type 2 diabetic patients than in controls. Based on HHEX’s function during embryonic development of the ventral pancreas in mice, we asked whether these SNPs affect β-cell function in humans.

RESEARCH DESIGN AND METHODS: Eight hundred forty-four non-diabetic subjects, collected from five European clinical centres, were genotyped for the HHEX SNPs rs1111875 and rs7923837 and thoroughly characterized by an oral glucose tolerance test (OGTT). To assess glucose-stimulated insulin release, a subgroup of 758 subjects underwent an intravenous glucose tolerance test (IVGTT).

RESULTS: SNPs rs1111875 and rs7923837 were not associated with anthropometric data (age, weight, height, BMI, body fat, waist and hip circumference). After adjustment for centre, family relationship, gender, age, and BMI, both SNPs were also not associated with glucose and insulin concentrations in the fasting state and during the OGTT or with measures of insulin sensitivity. Furthermore, HHEX SNP rs1111875 was not associated with insulin release during the IVGTT. By contrast, the minor A-allele of HHEX SNP rs7923837 was significantly associated with higher IVGTT-derived first-phase insulin release before and after appropriate adjustment (p = 0.013 and p = 0.014, respectively).

CONCLUSIONS: A common genetic variation in the 3’-flanking region of the HHEX locus, i.e. SNP rs7923837, is associated with altered glucose-stimulated insulin release. This SNP’s major allele represents a risk allele for β-cell dysfunction and, thus, might confer increased susceptibility of β-cells towards adverse environmental factors.
Type 2 diabetes mellitus (T2DM) is the most prevalent metabolic disease of the western industrialized world. It is generally agreed that T2DM is caused by environmental factors, such as high-caloric diet and reduced physical activity, and a polygenic background that confers increased susceptibility towards these environmental challenges [1].

To identify the genes involved in the pathogenesis of T2DM, genome-wide association studies in several cohorts based on large-scale single nucleotide polymorphism (SNP) analysis of genomic variation were recently published [2-7]. These studies revealed ten potential T2DM candidate genes. Three formerly characterized genes with known effects on insulin sensitivity or insulin secretion, respectively, i.e. **PPARG**, **KCNJ11**, and **TCF7L2**, could be confirmed. However, the role of the other seven candidate genes in the development of prediabetes phenotypes, such as insulin resistance and β-cell dysfunction, is not well established. Two of the T2DM candidate SNPs are located in the 3′-flanking region of the **HHEX** locus [2]. **HHEX** encodes the transcription factor ‘hematopoietically expressed homeobox protein’ (HHEX) which is expressed in the embryonic ventral-lateral foregut that gives rise to the ventral pancreas and the liver [8]. Knockout of this gene was shown to impair proliferation of endodermal epithelial cells, positioning of ventral foregut endoderm cells relative to the mesoderm, and budding and morphogenesis of the ventral pancreas [8]. This genetic manipulation finally provoked lethality during mid-gestation [8].

Due to these developmental defects of the **HHEX** knockout, it was obvious to ask whether the two reported T2DM candidate SNPs near the **HHEX** locus [2] affect β-cell function. This was therefore assessed in five non-diabetic European populations thoroughly characterized by an intravenous glucose tolerance test (IVGTT).

RESEARCH DESIGN AND METHODS

Subjects. Eight hundred and forty-four non-diabetic subjects were recruited from the five European clinical centres constituting the EUGENE2 consortium, i.e. the Lundberg Laboratory for Diabetes Research (Göteborg, Sweden), the Polyclinic Mater Domini of the University Magna Graecia (Catanzaro, Italy), the Steno Diabetes Center (Copenhagen, Denmark), the Kuopio University Hospital (Kuopio, Finland), and the Tübingen University Hospital (Tübingen, Germany). The baseline characteristics of the study population are presented in Table 1. All participants underwent standard medical history and physical examination, assessment of smoking status, alcohol consumption habits and activity, routine blood tests, and an oral glucose tolerance test (OGTT). A subgroup of 758 subjects was further characterized by an IVGTT. In addition, hyperinsulinemic-euglycemic clamps were performed in four centres (N = 575). The participants gave informed written consent, and the protocols were approved by the local ethical committees.

Genotyping of the study population. For genotyping, DNA was isolated from whole blood using commercial DNA isolation kits. SNPs were genotyped using TaqMan allelic discrimination assays (Applied Biosystems, Foster City, CA, USA). Primer sequences are available upon request. TaqMan genotyping reaction was amplified on a GeneAmp PCR system 2700 and fluorescence was detected using an ABI Prism 7000 sequence detector (Applied Biosystems). The overall genotyping success rate was 99.7 %, and rescreening of 3.3 % of subjects gave 100 % identical results.

Body composition and body fat distribution. Body composition was measured by bioelectrical impedance as the percentage of body fat. BMI was calculated as weight divided by the square of height (kg/m²). Moreover, waist and hip circumferences were measured.

OGTT, IVGTT, and hyperinsulinemic-euglycemic clamp. After an overnight fast, all subjects underwent a 75-g OGTT, and venous blood samples were obtained at 0,
30, 60, 90, and 120 min for the determination of plasma glucose and insulin. On a separate occasion, an IVGTT was performed in overnight fasted subjects, as described by the Botnia protocol [9]. After baseline samples had been collected, a 0.3 g/kg body weight glucose dose of a 20 % glucose solution was given at time 0. Blood samples for the measurement of plasma glucose and insulin were obtained at 2, 4, 6, 8, 10, 20, 30, 40, 50, and 60 min. Hyperinsulinemic-euglycemic clamp was performed, starting at 60 min after the IVGTT glucose bolus. To this end, subjects received a primed infusion of short-acting human insulin (40 mU/m²/min) for 120 min. Variable infusion of 20 % glucose was started to clamp the plasma glucose concentration at 5 mM. Blood samples for the measurement of plasma glucose were obtained at 5-min intervals. Plasma insulin levels were measured at baseline and at the steady state of the clamp. Plasma glucose and insulin were determined by standard laboratory methods.

Calculations. The trapezoidal method was used to calculate areas under the curve (AUC) of plasma glucose (in mM·min) and insulin (in pM·min). Homeostasis model assessment of insulin resistance (HOMA-IR, in mM·µU/ml) was calculated as Glc0·Ins0/22.5. Clamp-derived insulin sensitivity (M-value) was calculated as glucose infusion rate necessary to maintain euglycemia during the last 60 min (steady state) of the clamp (in µmol/kg/min).

Statistical analyses. Unless otherwise stated, the data are given as means ± SD. Hardy-Weinberg equilibrium and differences in genotype distribution between the five centres were tested using χ² test. Insulin levels and HOMA-IR were log-transformed in order to obtain a normal distribution. Linear mixed model was applied to adjust for confounding factors. For mixed model analysis, we included the centre and pedigree (coded as a family number) as random factors, the genotype and gender as fixed factors, and age, BMI, and HOMA-IR as covariates. The SNP genotype was expressed as a nominal value (0 – homozygous for the major allele, 1 – heterozygous, or 2 – homozygous for the minor allele), handled as a covariate, and tested for association with traits in the additive inheritance model. A p-value < 0.05 was considered statistically significant. These statistical analyses were performed with SPSS 14.0 (SPSS, Chicago, IL, USA). In the additive model using global F-test (ANOVA), our study was sufficiently powered (1-β > 0.8) to detect effect sizes with Cohen’s f ≥ 0.19 for SNP rs7923837 and f ≥ 0.17 for SNP rs1111875 assuming average group sizes of N = 91 and N = 123, respectively, according to these SNPs’ smallest genotype groups. Power calculations were performed using G*power software available at http://wwwpsycho.uni-duesseldorf.de/aap/projects/gpower/.

RESULTS

We genotyped the 844 subjects (baseline characteristics given in Table 1) for the two SNPs rs1111875 C/T and rs7923837 G/A in the 3’-flanking region of the HHEX gene (chr. 10). Both SNPs were found to be in Hardy-Weinberg equilibrium (p = 0.55 and 0.49, respectively) and displayed minor allele frequencies (MAFs) very similar to those recently reported [2] (MAF = 0.39 and 0.34, respectively, Table 2). Analysis of our genotype data revealed that both SNPs were in strong, but not in complete, linkage disequilibrium (D’ = 0.984, r² = 0.779). Furthermore, the HHEX SNPs rs1111875 and rs7923837 did not show significant differences in genotype distribution between the five centres (p = 0.09 and p = 0.17, respectively; Supplementary Table 1 [available at http://diabetes.diabetesjournals.org]). Both SNPs were not associated with anthropometric data, such as age, weight, height, BMI, waist and hip circumference, or body fat content (data not shown). Neither SNP rs1111875 nor SNP rs7923837 were associated with fasting glucose and insulin concentrations, glucose levels at 120 min of OGTT, insulin levels at 30 min of OGTT, the AUCs of the glucose and insulin responses during the OGTT, or insulin
sensitivity before and after adjustment for centre, family relationship, gender, age, and BMI (Table 2; data by centre presented in Supplementary Tables 2-6). Furthermore, HHEX SNP rs1111875 was not associated with first-phase (0-10 min) or second-phase (10-60 min) insulin release during the IVGTT (Table 2 and Supplementary Tables 2-6). By contrast, HHEX SNP rs7923837 was significantly associated with IVGTT-derived first-phase insulin release prior to as well as after adjustment (Table 2 and Supplementary Tables 2-6). Notably, it is the minor A-allele that confers higher insulin responses to an intravenous glucose load. Furthermore, additional adjustment for HOMA-IR and glucose levels at 30 min of OGTT revealed a trend towards an association of HHEX SNP rs7923837 with insulin levels at 30 min of the OGTT (p = 0.066) supporting the role of this SNP in insulin release. Finally, to assess whether the association of HHEX SNP rs7923837 with IVGTT-derived first-phase insulin release is already detectable in healthy normal-glucose-tolerant subjects, we excluded 23 subjects with impaired fasting glucose, 110 subjects with impaired glucose tolerance, and 20 subjects with both impaired fasting glucose and impaired glucose tolerance (Table 1) from statistical analyses. In the remaining normal-glucose-tolerant cohort, we did no longer detect significant differences between the HHEX SNP rs7923837 genotypes after appropriate adjustment (p = 0.12 and p = 0.09 for first-phase insulin release and for first-phase insulin release over basal, respectively, IVGTT), and this is likely due to the reduced sample size.

DISCUSSION

We examined possible associations of two very recently reported T2DM candidate SNPs near the HHEX locus [2] with differences in insulin secretion (and insulin sensitivity) in 844 non-diabetic subjects from five different European clinical centres, 758 of them having undergone an IVGTT. Both SNPs which were found to be in strong, but not complete, linkage disequilibrium did not reveal association with insulin resistance. We could not replicate the results of very recent studies showing an association of rs1111875 with acute insulin response [10] and β-cell glucose sensitivity [11], and this is probably due to the limited power of our study to detect smaller effects of this SNP (Cohen’s f < 0.17) in insulin secretion parameters which could still be clinically meaningful. However, we observed a clear association of SNP rs7923837 with first-phase insulin release, as derived from IVGTT data. Moreover, the major G-allele which was formerly identified as T2DM risk allele [2,4-6] turned out to represent a risk allele for impaired glucose-stimulated insulin response. This finding not only strengthens the role of the HHEX gene in the pathogenesis of impaired glucose tolerance and T2DM, as suggested by genome-wide association studies [2,4-6] but moreover reveals the underlying mechanisms how this SNP increases the risk of T2DM. Thus, knowledge of the HHEX genotype could advance the development of appropriate strategies in therapy and prevention of T2DM, as recently discussed [12]. Based on the observations reported from the HHEX knockout mouse [8], the association of rs7923837 with differences in glucose-stimulated insulin release could arise from mild alterations in the embryonic organogenesis of the ventral pancreas. This part of the pancreas is also the major site of pancreatic polypeptide production. Therefore, it is possible that the SNP affects this hormone’s production during embryogenesis and/or adulthood provoking the effects on insulin release. These suggestions, however, await further physiological and molecular clarification.

Finally, it is noteworthy that we realized distribution abnormalities in our insulin data with heterozygous carriers of both HHEX SNPs displaying higher mean insulin levels and higher SD values than the homozygous groups. Further examination revealed that, in four centres, the heterozygous subjects had higher mean insulin levels compared to the homozygous groups, whereas the
heterozygous subjects from the fifth centre (Gothenburg) displayed somewhat lower mean insulin levels than the homozygous groups. Even though we have currently no explanation for these abnormalities, the centre-specific differences are likely to explain the high SD values for insulin levels in the heterozygous individuals.

In conclusion, a common genetic variation in the 3’-flanking region of the \textit{HHEX} locus, i.e. SNP rs7923837, is associated with altered glucose-stimulated insulin release. This SNP’s major allele represents a crucial allele for \(\beta\)-cell dysfunction and, thus, might confer increased susceptibility of \(\beta\)-cells towards adverse environmental factors.

ACKNOWLEDGMENTS

We thank all study participants for their cooperation. The study was supported by the European Community’s framework program FP6 EUGENE2 (LSHM-CT-2004-512013).
REFERENCES

TABLE 1. Baseline characteristics of the non-diabetic study population.

<table>
<thead>
<tr>
<th>N</th>
<th>844</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>40.1 ± 10.4</td>
</tr>
<tr>
<td>Males / Females (%)</td>
<td>43 / 57</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.6 ± 4.9</td>
</tr>
<tr>
<td>WHR</td>
<td>0.87 ± 0.09</td>
</tr>
<tr>
<td>Subjects with NGT / IFG / IGT / IFG&IGT</td>
<td>691 / 23 / 110 / 20</td>
</tr>
</tbody>
</table>

IFG – impaired fasting glucose; IGT – impaired glucose tolerance; NGT – normal glucose tolerance; WHR – waist-hip ratio.
<table>
<thead>
<tr>
<th>Genotype</th>
<th>HHEX rs1111875 (0.39)</th>
<th></th>
<th>HHEX rs7923837 (0.34)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>303</td>
<td>418</td>
<td>123</td>
<td>-</td>
</tr>
<tr>
<td>Fasting glucose (mM)</td>
<td>5.10 ± 0.55</td>
<td>5.09 ± 0.54</td>
<td>5.01 ± 0.44</td>
<td>0.3</td>
</tr>
<tr>
<td>Glucose 120 min OGTT (mM)</td>
<td>6.28 ± 1.58</td>
<td>6.25 ± 1.53</td>
<td>6.20 ± 1.42</td>
<td>1.0</td>
</tr>
<tr>
<td>AUC glucose OGTT (mM·min)</td>
<td>872 ± 175</td>
<td>862 ± 181</td>
<td>863 ± 151</td>
<td>0.7</td>
</tr>
<tr>
<td>Fasting insulin (pM)</td>
<td>48.3 ± 32.5</td>
<td>54.2 ± 73.8</td>
<td>44.4 ± 29.9</td>
<td>0.22</td>
</tr>
<tr>
<td>Insulin 30 min OGTT (pM)</td>
<td>360 ± 225</td>
<td>403 ± 282</td>
<td>385 ± 234</td>
<td>0.11</td>
</tr>
<tr>
<td>AUC insulin OGTT (pM·min)</td>
<td>247 575 ± 154 834</td>
<td>263 378 ± 188 720</td>
<td>246 755 ± 135 307</td>
<td>0.4</td>
</tr>
<tr>
<td>AUC insulin 0-10 min IVGTT (pM·min)*</td>
<td>3 580 ± 2 842</td>
<td>4 013 ± 3 232</td>
<td>3 616 ± 2 359</td>
<td>0.17</td>
</tr>
<tr>
<td>AUC insulin 0-10 min IVGTT over basal insulin (pM·min)*</td>
<td>3 062 ± 2 502</td>
<td>3 471 ± 2 749</td>
<td>3 198 ± 2 206</td>
<td>0.15</td>
</tr>
<tr>
<td>AUC insulin 10-60 min IVGTT (pM·min)*</td>
<td>11 164 ± 11 340</td>
<td>11 450 ± 10 699</td>
<td>9 576 ± 7 098</td>
<td>0.3</td>
</tr>
<tr>
<td>AUC insulin 10-60 min IVGTT over basal insulin (pM·min)*</td>
<td>8 601 ± 9 316</td>
<td>8 737 ± 8 177</td>
<td>7 449 ± 6 222</td>
<td>0.3</td>
</tr>
<tr>
<td>HOMA-IR (mM·µU/ml)</td>
<td>11.1 ± 8.2</td>
<td>12.8 ± 20.6</td>
<td>10.0 ± 7.0</td>
<td>0.17</td>
</tr>
<tr>
<td>M-value (µmol/kg/min)**</td>
<td>42.7 ± 16.5</td>
<td>41.1 ± 16.6</td>
<td>41.0 ± 16.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

P-values are given for unadjusted data (p₁). Additional p-values are presented for all data after adjustment for centre, family relationship, gender, age, and BMI (p₂) and for IVGTT data after additional adjustment for HOMA-IR (p₃). AUC – area under the curve; HOMA-IR – homeostasis model assessment of insulin resistance; IVGTT – intravenous glucose tolerance test; MAF – minor allele frequency; M-value – clamp-derived insulin sensitivity; OGTT – oral glucose tolerance test; SNP – single nucleotide polymorphism. *subgroup (N = 758), **subgroup (N = 575).