ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes

Tikellis C, Bialkowski K, Pete J, Sheehy K, Su Q, Johnston C, Cooper ME, Thomas MC

JDRF Danielle Alberti Memorial Centre for Diabetes Complications
Baker Medical Research Institute,
PO Box 6492, St Kilda Central,
Melbourne 8008, Australia

Corresponding Author:
A/ Prof Merlin Thomas
Baker Medical Research Institute,
PO Box 6492, St Kilda Central,
Melbourne 8008, Australia
Merlin.Thomas@baker.edu.au

Received for publication 29 August 2007 and accepted in revised form 17 January 2008.
ABSTRACT

Objective: The degradation of angiotensin (Ang) II by angiotensin converting enzyme 2 (ACE2), leading to the formation of Ang 1–7, is an important step in the renin-angiotensin system (RAS), and one which is significantly altered in the diabetic kidney. This study examines the role of ACE2 in early renal changes associated with diabetes, and the influence of ACE2 deficiency on ACE inhibitor-mediated renoprotection.

Methods: Streptozotocin diabetes was induced in male c57bl6 mice and ACE2 KO mice. After five weeks of study, animals were randomised to receive the ACE inhibitor, perindopril (2 mg/kg/day). Wild-type mice were further randomised to receive the selective ACE2 inhibitor, MLN-4760 (10 mg/kg/day) and followed for an additional five weeks. Markers of renal function and injury were then assessed.

Results: The induction of diabetes in wild-type mice was associated with a reduction in renal ACE2 expression and decreased Ang1-7. In diabetic mice receiving MLN-4760 and in ACE2 KO mice, diabetes-associated albuminuria was enhanced, associated with an increase in blood pressure. However, renal hypertrophy and fibrogenesis were reduced in diabetic mice with ACE2 deficiency and hyperfiltration was attenuated. Diabetic wild type mice treated with an ACE inhibitor experienced a reduction in albuminuria and blood pressure. These responses were attenuated in both diabetic ACE2 KO mice and diabetic mice receiving MLN-4760. However, other renoprotective and antifibrotic actions of ACE inhibition in diabetes were preserved in ACE2 deficient mice.

Conclusions: The expression of ACE2 is significantly modified by diabetes, which impacts both on the pathogenesis of kidney disease, as well as the responsiveness to RAS blockade. These data indicate that ACE2 is a complex, and site-specific modulator of diabetic kidney disease.
Blockade of the renin-angiotensin system (RAS) is considered to be among the most important interventions for the prevention and management of diabetic kidney disease(1). Drugs that inhibit Angiotensin Converting Enzyme (ACE) or block the activation of the type 1 angiotensin (AT\(_1\)) receptor are effective in attenuating renal damage in diabetes, and over and above any reduction in systemic blood pressure(2; 3). Historically, these actions have been linked to reduced signalling through angiotensin II (Ang II)-dependent pathways. However, at least some of the systemic effects of RAS blockade may be mediated by Ang1–7, a potent vasodilator, with actions that antagonize or compensate those of Ang II(4). In the kidney, Ang1–7 is largely derived from the degradation of Ang II by the zinc-dependent carboxypeptidase, ACE2 (figure 1)(5). Our group and others, have previously shown that the pattern of ACE2 expression in the kidney is significantly modified following the induction of diabetes in experimental animals(6-10). Despite this, the potential role of ACE2 in modulating the efficacy of ACE inhibition has not been previously considered. This study specifically examines the role of ACE2 in early renal changes associated with diabetes, using two different models of ACE2 deficiency, the ACE2 KO mouse, and wild-type mice treated with a selective ACE2 inhibitor (8). In addition, this study examines the potential influence of ACE2 deficiency on ACE inhibitor-mediated renoprotection in experimental diabetes.

MATERIAL AND METHODS

The induction of experimental type 1 diabetes. Wild-type male c57bl6 mice and ACE2 knockout (KO) mice (kindly donated by Dr Penninger(11)), 10-weeks of age, were randomly allocated to receive streptozotocin (55mg/kg, Sigma Chemical Co, St. Louis, MO, USA) or buffer (sodium citrate buffer pH 4.5) delivered in five consecutive daily doses. This regimen induces an insulinopenic form of diabetes associated with hyperglycaemia (blood glucose ~30 mM) but with sufficient β-cell reserve to prevent ketosis or require insulin supplementation. The presence of diabetes was confirmed by a blood glucose level > 15 mM, one week after the first dose of streptozotocin. Throughout the study animals were given access to food and water *ad libitum.*

Treatment arms. Control and diabetic c57bl6 mice and ACE2 KO mice, after 5-weeks without treatment, were randomised to receive treatment with the ACE inhibitor, perindopril (Servier, Neuilly, France) at a dose of 2 mg/kg/day in drinking water, or no treatment for 5 weeks. This ‘delayed’ intervention was chosen to mimic the clinical scenario of introducing ACE inhibition in patients with established microalbuminuria. In addition, previous experimental studies have demonstrated that, when delivered from the onset of diabetes, ACE inhibition is completely effective in preventing diabetes-associated increases in albuminuria. Wild type mice were further randomised to receive the specific non-peptide ACE2 inhibitor, MLN-4760 (Millennium Pharmaceuticals, Cambridge, Boston, M.A., USA) at a dose of 10 mg/kg/day in drinking water, or no treatment for 5 weeks after 5 weeks of diabetes. Each group contained 10 animals. Ten weeks of diabetes was chosen specifically to examine the effects of ACE2 on early physiological changes in the diabetic kidney, including albuminuria, hypertrophy and hyperfiltration, without the potentially confounding effects of cardiac dysfunction or glomerulosclerosis that have been described in older male ACE2 KO mice(11; 12). However, it should be appreciated that 10-weeks of diabetes in mice bred on a c57bl6-background is insufficient to produce significant interstitial fibrosis or mesangial changes, structural features associated with more advanced nephropathy as described in other rodent models(13).

General assessment parameters. The following parameters were serially measured: body weight, blood glucose,
measured using a glucometer (Accutrend; Boehringer Mannheim G.m.b.H. Biochemica, Mannheim, Germany), systolic blood pressure, measured by tail-cuff plethysmography in conscious, pre-warmed mice(14) and glycated haemoglobin, measured by high performance liquid chromatography (CLC330 GHb Analyzer; Primus, Kansas City, MO, USA.)(15). Urine was collected from animals that were placed in individual metabolic cages (Iffa Credo, L’Arbresle, France) for 24 hours, allowing measurement of the urinary excretion of mouse albumin by ELISA (Bethyl laboratories, Texas, USA). Creatinine clearance was estimated from serum and urine creatinine concentrations, as determined by HPLC according to ADMCC guidelines(16). Effective renal plasma flow (ERPF) was estimated from the clearance of endogenous hippuric acid clearance in conscious animals, and determined by HPLC as previously described(17). After 10-weeks of experimental diabetes, mice were culled by a fatal overdose of anesthetic followed by cardiac exsanguination. The kidneys were rapidly dissected out, weighed and bisected, with one half snap frozen in liquid nitrogen and stored at -80°C prior to use and the other half embedded in paraffin.

Activity of the intrarenal RAS. Gene expression of various components of the RAS, including ACE, ACE2 and prorenin mRNA in cortical homogenates were assessed by real-time quantitative RT-PCR. This was performed using the TaqMan system based on real-time detection of accumulated fluorescence (ABI Prism 7700, Perkin-Elmer Inc, PE Biosystems, Foster City, CA, USA) as previously utilised by our group(18). Gene expression was normalised to 18S mRNA and reported as ratios compared to the level of expression in untreated control mice, which were given the arbitrary value of 1.

Renal and serum ACE2 activity was determined following incubation with the intramolecularly quenched synthetic ACE2-specific substrate, o-aminobezoic acid-Ser-Pro-Tyr(NO2)-OH (Peptides International, Inc., Kentucky, USA). Briefly, 5 µL of heparinized plasma or cortical homogenate were added to wells containing 95 uL 100 mM Tris pH 6.5, 1.5 M NaCl, 1mM PMSF, 1mM N-ethylmaleimide, 2 µg bovine serum albumin, and 33 µM substrate. Reactions were in triplicates (one of each three wells constituted a blank). Blank wells contained the same components but 1 mM EDTA was also added. This inhibited activity to the same extent as MLN-4760 (data not shown). After incubation at 37 °C for 1-18 h, fluorescence was measured using a F-max plate fluorescence reader with an excitation of 320 nm and an emission of 420 nm. Total fluorescence was corrected for volume (in plasma samples) or protein content (in tissue homogenates) after subtracting blank values. Purified recombinant ACE2 was used to calibrate activity, and results are expressed as ng equivalents. Renal and serum ACE activity was determined following incubation with the intramolecularly quenched synthetic ACE-specific substrate, o-aminobezoic acid-FRK(Dnp)-P (Peptides International, Inc., Kentucky, USA). Results are expressed as a percentage of activity observed in control samples. Renal ACE2 expression was further localised following immunohistochemical staining of paraffin-fixed kidney sections using a rabbit polyclonal anti-ACE2 antibody diluted 1:500 raised against ACE2 residues 489-508 (antibody kindly donated by Millennium Pharmaceuticals, Cambridge, Boston, M.A., USA).

The intrarenal concentration of Ang1-7 was measured on snap frozen renal cortical samples by a commercial radioimmunoassay (ProSearch International, Malvern, Australia) utilising an Ang1-7 selective polyclonal antibody and 125I-Ang1-7. Prior to analysis, samples were homogenized in ice-cold methanol in the presence of protease inhibitors [50 mmol/L ethylenediaminetetraacetic acid, 0.5-mmol/L o-phenanthrine, 1 mmol/L N-ethylmaleimide, and 0.1 mmol/L pepstatin A]. Samples were then centrifuged to
remove protein, and the upper (aqueous) phase was removed and lyophilised in glass tubes at –80°C. Results are expressed adjusted for the wet weight of the sample.

Markers of renal hypertrophy and nephropathy. Each kidney was cleaned of fat, weighed with the result expressed as the combined weight adjusted for body surface area (g/m²). The expression of early markers of nephropathy and matrix accumulation in diabetes, including osteopontin and fibronectin were determined by real time quantitative RT-PCR in cortical homogenates, as previously described(19). The glomerular expression of fibronectin protein was further quantified by a computerized image analysis of sections stained with a polyclonal rabbit anti-human fibronectin (DaKO, Denmark) antibody and detected using with a secondary biotinylated goat anti-rabbit antibody and the ABC detection system (Vector Laboratories, Burlingame, California, USA).

Statistical analysis. Continuous data are expressed as mean ± SEM, except for AER, which was expressed as its geometric mean (x/± tolerance factor) and analysed after log transformation. Differences in the mean among groups were compared using 2-way ANOVA with diabetic status and ACE2 status as the 2 variables. Pairwise multiple comparisons were made with the Student-Newman-Keuls post hoc analysis to detect significant differences between groups. P<0.05 was considered statistically significant.

RESULTS

General parameters. The induction of streptozotocin diabetes in both c57bl6 and ACE2 KO mice was associated with a significant increase in plasma glucose concentration (~25-30 mM) and glycated hemoglobin (12-15%) when compared to respective non-diabetic controls (table 1). Plasma glucose levels in diabetic animals were unaffected by the inhibition of ACE, ACE2 or their combination, while in non-diabetic mice, there was a small reduction in fasting glucose levels in ACE2 deficient mice. Consistent with the initial reports in ACE2 KO mice(11), tail cuff systolic blood pressure (BP) levels in the absence of diabetes were not significantly different between c57bl6 and ACE2 KO mice, or c57bl6 mice treated with an ACE2 inhibitor. However, following the induction of diabetes, the systolic BP rose significantly both in ACE2 KO mice and wild-type mice treated with a selective ACE2 inhibitor, when compared to untreated c57bl6 mice with diabetes. In c57bl6 mice, the systolic BP was reduced by the ACE inhibitor, perindopril, both in the presence or absence of diabetes. However, this hypotensive action was attenuated in ACE2 KO mice and in c57bl6 mice receiving an ACE2 inhibitor in combination with perindopril (table 1).

Markers and mediators of RAS.

The induction of diabetes in c57bl6 mice led to a reduction in the cortical expression of ACE2 mRNA (figure 3a) and ACE2 protein, particularly at the apical surface of the S1-2 proximal tubules (figure 2). This was associated with a significant reduction in cortical levels of Ang1-7 (figure 4). Despite this, renal ACE2 activity, measured in cortical homogenates, was paradoxically increased following the induction of diabetes in c57bl6 mice (figure 3b). In addition, the induction of diabetes in c57Bl6 mice was associated with a greater than two-fold increase in plasma ACE2 activity (figure 3c).

Treatment of c57Bl6 mice with an ACE2 inhibitor reduced plasma ACE2 activity by 75-80% in both control and diabetic animals (figure 3c). MLN-4760 had no detectable effect on cortical ACE2 activity in control animals, but reduced cortical ACE2 activity in diabetic mice, to levels observed in untreated control animals (figure 3b). In addition, treatment with MLN-4760 was also associated with reduced cortical levels of Ang1-7 in both control and diabetic mice (figure 4). ACE2 KO mice had no detectable ACE2 gene expression or activity in renal or plasma samples. ACE2 KO mice also demonstrated reduced renal cortical levels of Ang1-7.
when compared to wild type animals (figure 4).

The ACE inhibitor, perindopril, reduced the expression and activity of ACE, in both plasma and in the kidney, by 50-60% (figure 5). The magnitude of this effect was similar in both control and diabetic animals, as well as in c57bl6 mice and ACE2 KO mice. Although the ACE2 enzyme is not inhibited by ACE inhibitors in vitro, perindopril also significantly modified the expression and activity of ACE2 in our models. Treatment of c57Bl6 mice with perindopril reduced plasma ACE2 activity and cortical ACE2 activity, in both control and diabetic animals (figure 3c). This was also associated with a significant reduction in cortical levels of Ang1-7 when compared to untreated wild type animals (figure 4).

Conversely, the selective ACE2 inhibitor, MLN-4760 also reduced the renal expression and activity of ACE, in both control and diabetic animals. This action was not due to direct inhibition of ACE, as the addition of equivalent concentrations of MLN-4760 to control plasma did not inhibit ACE, nor did the mixture of plasma from animals receiving an ACE2 inhibitor cause additional inhibition of ACE (data not shown).

The induction of experimental diabetes in c57bl6 mice was also associated with an increase in the intra-renal expression of prorenin mRNA (2.3±0.5 fold), as previously described by other groups(20). However, in both diabetic ACE2 KO mice (0.3±0.1 fold) and diabetic mice receiving an ACE2 inhibitor (0.4±0.1 fold), no increase was demonstrated. Treatment with an ACE inhibitor also increased prorenin expression in the kidney, as a known part of its negative feedback loop (c57bl6 + perindopril 5.3±0.9 fold)(21). This increase was similar in both control and diabetic animals, and unaffected in both ACE2 KO mice (4.7±0.7 fold) and mice also receiving an ACE2 inhibitor (4.2±0.4 fold).

Diabetes-associated albuminuria. The induction of diabetes in c57bl6 mice was associated with a 3.6-fold increase in the urinary AER, when compared to untreated c57bl6 mice. Diabetic ACE2 KO experienced a 5.2-fold increase in the urinary AER, when compared to untreated ACE2 KO mice (table 1). When comparing to the baseline urinary albumin excretion levels, this increase in AER was statistically greater in ACE2 KO mice (p=0.03). As previously described(7, 9), treatment with an ACE2 inhibitor alone significantly increased the urinary albumin excretion rate in diabetic c57bl6 mice (table 1). Treatment with an ACE inhibitor alone significantly reduced the urinary AER in diabetic c57bl6 mice, consistent with its known anti-proteinuric actions. However, this anti-proteinuric effect of ACE inhibition was lost in diabetic animals treated with a selective ACE2 inhibitor and in diabetic ACE2 KO mice (table 1).

Renal function in diabetic mice. The induction of diabetes in c57bl6 mice was associated with a significant increase in creatinine clearance and effective renal plasma flow, when compared to non-diabetic mice (table 1). These increases were attenuated in diabetic mice treated with an ACE2 inhibitor, and in diabetic ACE2 KO mice. Creatinine clearance and effective renal plasma flow was not affected by ACE inhibition in wild type animals, with or without diabetes. However, in ACE2 KO mice, ACE inhibition significantly reduced creatinine clearance (table 1).

Renal hypertrophy in diabetic mice. The induction of diabetes in c57bl6 mice was associated with a 45% increase in body weight adjusted renal mass (table 1). The induction of diabetes in ACE2 KO mice was associated with an attenuated (27%) increase in renal mass. Similarly, treatment with a selective ACE2 inhibitor attenuated diabetes-associated renal hypertrophy. Reduced renal mass in ACE2 deficient mice was also associated with reduced cortical expression of proliferating cell nuclear antigen (PCNA) in renal samples, when compared to untreated diabetic c57bl6 mice (figure 6). Treatment with an ACE inhibitor alone had no effect on diabetes-associated
renal hypertrophy or the expression of PCNA in wild type mice (figure 6). However, the use of ACE inhibitors in diabetic ACE2 KO mice achieved a significant additional reduction in diabetes-associated renal hypertrophy. **Markers of diabetic nephropathy.** As noted above, 10-weeks of experimental diabetes is insufficient to produce significant glomerulosclerosis, interstitial or mesangial expansion in mice bred on a c57bl6 background. However, increased cortical gene expression of the extracellular matrix protein, fibronectin, was observed following the induction of diabetes (figure 7a), together with the accumulation of fibronectin protein in diabetic glomeruli (figure 7b). Treatment with a selective ACE2 inhibitor alone also reduced the expression of fibronectin in diabetic c57bl6 mice. Similarly, diabetic ACE2 KO mice showed reduced accumulation of glomerular fibronectin when compared to wild type controls (figure 7a). Treatment with an ACE inhibitor significantly reduced the expression and accumulation of fibronectin in c57bl6 animals with diabetes, consistent with its known renoprotective actions. This anti-fibrotic activity was preserved in diabetic ACE2 KO mice.

The expression of osteopontin mRNA has been suggested as a useful marker of early diabetic nephropathy(22). In our study, the induction of diabetes was associated with a 3-fold increase in cortical osteopontin gene expression in both wild-type and ACE2 KO mice (figure 8). This increase was prevented by treatment with an ACE inhibitor, in both wild type and ACE2 KO mice. Treatment with a selective ACE2 inhibitor also resulted in a reduction in osteopontin expression, in both control and diabetic mice.

DISCUSSION

The RAS is a key mediator of diabetic kidney disease(1). While most research has focused on the actions of ACE and Ang II, other components of the RAS may also play an important role (figure 1)(1). In this study, we have demonstrated that renal changes associated with early diabetes are substantially influenced by the carboxypeptidase, ACE2, such that increased creatinine clearance and renal blood flow are attenuated in ACE2 deficient mice with experimental diabetes. However, diabetes-associated albuminuria was enhanced. These data point to ACE2 as a complex and site-specific modulator of diabetic kidney disease, and an important new player in diabetic complications.

Increased renal blood flow in early diabetes is thought to be due to dilation of resistance arterioles, associated with an impaired reactivity to exogenous Ang II(23). However, the renal vasculature is also highly sensitive to the vasodilator effects of Ang 1-7, particularly at the afferent arteriole(24), and in states associated with activation of the local RAS, leading to an increase in ERPF following an infusion of Ang 1-7 in rats(25). We demonstrate for the first time that the circulating ACE2 activity is significantly increased in diabetic mice, potentially contributing to impaired reactivity to Ang II(23). Moreover, suppression of this circulating ‘angiotensinase’ activity with a selective ACE2 inhibitor was able to prevent diabetes-associated hyperfiltration. That similar hemodynamic patterns were observed in diabetic ACE2 KO mice and wild-type mice receiving a selective ACE2 inhibitor, suggests that circulating ACE2 may have an important role in the induction and maintenance of diabetic hyperperfusion. Although previous studies have failed to detect ACE2 activity in human plasma samples(26), the increased sensitivity of our assay and the 9-fold higher ACE2 activity in murine samples when compared to human plasma, may partly explain this discrepancy. Moreover, the angiotensinase activity observed in this study was consistent with that of systemic ACE2, as it was inhibited by the same inhibitors (MLN-4760, EDTA, Ang II, data not shown) and this enzyme activity was absent in ACE2 KO mice.
A number of recent studies have shown that the expression of ACE2 is significantly altered in the diabetic kidney, in a site-specific manner(6; 7). For example, expression of ACE2 protein in the diabetic tubule (figure 2) and ACE2 mRNA levels in cortical samples are reduced in experimental diabetes(6). Consistent with this finding, we also show here that Ang1-7, the major product of ACE2, is also significantly reduced in diabetic kidneys (figure 4). At the same time we, and others(7), have also found that total renal ACE2 activity is paradoxically increased in the diabetic kidney (figure 3b). We speculate that inadvertent contamination with circulating ACE2, which is elevated in diabetes, may have contributed to this finding. Although some studies have also suggested that the glomerular expression of ACE2 may be increased in experimental diabetes(6; 7), and in renal biopsy samples of patients with diabetic kidney disease(27), glomeruli make up only 5% of cortical mass suggesting that glomerular expression cannot explain differences in cortical ACE2 activity. Moreover, glomerular ACE2 expression in mice is much lower than seen in the proximal tubule (figure 2) or in blood.

In our study, ACE2 deficiency resulted in increased albuminuria in the context of diabetes, consistent with recent findings in the ACE2 KO Akita mouse, which manifests increased albuminuria following the onset of diabetes(10). Similarly, Batlle and colleagues demonstrated increased albuminuria in both db/db mice(8) and streptozotocin diabetic mice(9) receiving the selective ACE2 inhibitor MLN-4760, injected subcutaneously at a dose of 40 mg/kg every other day. Importantly, these studies also showed that the antiproteinuric action of AT1 receptor blockers were also partly attenuated in ACE2 deficient animals(8-10), failing to restore albuminuria to non-diabetic levels, which is normally achieved in ACE2 replete animals. In our study, we saw no reduction in albuminuria in ACE2 deficient animals treated with an ACE inhibitor. It is likely that delayed treatment with an ACE inhibitor, as employed in our study, was less renoprotective than AT1 receptor blockers delivered from the onset of diabetes in other studies, since even diabetic wild-type mice treated with an ACE inhibitor had higher levels of albuminuria than control mice. However, we wished to test the efficacy of ACE inhibition in a more clinically relevant context, reflecting the current indications for treatment in patients with type 1 diabetes with agents that block the RAS(28). Nonetheless, taken together, these findings suggest that the antiproteinuric efficacy of strategies to block the RAS in the context of diabetes is, at least, partly dependent on ACE2.

It is noteworthy that non-diabetic ACE2 KO mice and mice receiving a selective ACE2 inhibitor had lower levels of albuminuria than observed in wild-type mice, while in diabetes the opposite phenomenon was seen. It is conceivable that in non-diabetic animals, reduced renal blood flow in ACE2 deficient mice leads to reduced albuminuria. By contrast, in diabetes, the increased filtration fraction observed in diabetic ACE2 deficient mice may also have contributed to glomerular hypertension, and therein the increased albuminuria observed in this model. In addition, we demonstrate that, in the context of diabetes, genetic or acquired ACE2 deficiency resulted in increased systolic BP levels, which may also act to increase albuminuria. However, in control animals, BP levels were unaffected by ACE2 deficiency. This is consistent with the lack of any hypotensive effect in healthy animals treated with Ang1-7 itself or Ang1-7 receptor agonists, but significant blood pressure lowering with these agents in the context of diabetes(29). Ferrario and colleagues proposed that the vascular responses to Ang1–7 (and, by association, ACE2) were augmented in conditions in which the endogenous RAS had been stimulated(4), of which diabetes is a classic example. It is possible that activation of
Ang-II dependent vasoconstrictor pathways in diabetes is partly offset by upregulation of vasodilator stimuli and responsiveness (and increased renal blood flow). Furthermore, in settings where these vasodilator pathways are inhibited, such as in ACE2 deficient animals, blood pressure and albuminuria may also be increased.

In our study, the blood pressure lowering effects of ACE inhibition were attenuated in ACE2 deficient mice, both with and without diabetes. This finding is consistent with recent studies showing firstly that ACE inhibition significantly increases circulating Ang1-7 levels(30), and secondly that preventing this increase in Ang1-7 attenuates the hypotensive effects of ACE inhibition(4). These findings contrast those made in the original description of the ACE2 KO mouse, where the ACE inhibitor, captopril reduced the blood pressure by 30-40 mmHg(11). However, in our study we used a smaller and potentially more clinically relevant dose of the ACE inhibitor, perindopril that achieved a mean reduction in wild-type animals of only 8 mmHg. As blood pressure lowering is considered one of the major actions of ACE inhibition in the clinic, further examination of this phenomenon with radiotelemetry is warranted.

It should be noted that some of the actions of ACE inhibition, including reductions in fibronectin and osteopontin expression, were preserved in both ACE2 replete and ACE2 deficient mice with diabetes. While this finding is consistent with these renoprotective actions being fundamentally Ang-II dependent, this study also showed that ACE2 inhibition was able to attenuate diabetes-associated changes in osteopontin expression and glomerular fibronectin accumulation. It is conceivable that the reduction in renal ACE activity in animals treated with a selective ACE2 inhibitor (figure 5), or other compensatory changes in the kidney, may have indirectly contributed to the impact of ACE2 deficiency on these parameters in our study. The observed reduction in ACE expression and activity was not due to cross-reactivity of MLN-4760 with ACE, as the achieved plasma concentration of MLN-4760 when delivered orally at a dose of 10 mg/kg/day (~0.03µM) is well below that for ACE (~50µM) and above that for circulating ACE2 (~5nM) which was effectively suppressed in our study (figure 3c). In addition, a reduction in cortical ACE activity was also seen in ACE2 KO mice.

Although perindopril does not inhibit ACE2 in vitro, in our study this agent significantly reduced renal Ang 1-7 levels in non-diabetic mice. This was observed both in wild-type and ACE2 KO mice, suggesting that this activity was not dependent on ACE2 inhibition. It has been previously shown in renal homogenates, that metabolism of Ang 1-7 to peptide fragments is mediated by aminopeptidases and neutral endopeptidase (figure 1), rather than ACE(31). Therefore, the reduction in renal Ang1-7 following ACE inhibition in our study probably reflects the reduction in substrate (Ang II). This contrasts angiotensin metabolism in the circulation, where ACE inhibition increases Ang 1-7 levels, by abolishing the generation of Ang 1-5(30). It is possible that increased circulating levels of Ang 1-7 in wild-type animals receiving an ACE inhibitor also led to the compensatory reduction in circulating ACE2 activity observed in our study (figure 3c).

In summary, we have demonstrated that ACE2 mediates increased renal perfusion and hyperfiltration associated with diabetes. In addition, the antiproteinuric and antihypertensive actions of ACE inhibition in experimental diabetes are partly dependent on ACE2, as these effects are attenuated in diabetic ACE2 KO mice and in animals in which circulating ACE2 activity has been pharmacologically inhibited. These data indicate that ACE2 is a complex, and site-specific modulator of diabetic kidney disease and vascular dysfunction.
REFERENCES

FIGURE LEGENDS

Figure 1. Mediators of angiotensin peptide synthesis and degradation. ACE = angiotensin converting enzyme, NEP = nephrilysin, PEP = prolyl endopeptidase, AP-A/N= aminopeptidase A and aminopeptidase N, CAGE = chymostatin-sensitive angiotensin II-generating enzyme

Figure 2. Immunohistochemistry staining for ACE2 expression in cortical sections. Original magnification x850. A = c57bl6; B = ACE2 KO; C = c57bl6 + diabetes; D = c57bl6 + diabetes + perindopril; E = c57bl6 + diabetes + MLN-4760; F = c57bl6+diabetes + perindopril + MLN-4760

Figure 3. Cortical ACE2 gene expression (a), ACE2 activity in cortical homogenates (b) and ACE2 activity in heparinised plasma (c). No ACE2 expression activity was detected in ACE2 KO mice (data not shown). Data are shown as mean ± SEM. * vs control c57, † vs diabetic c57, p<0.05

Figure 4. Angiotensin 1-7 concentration in cortical homogenates. Data are shown as mean ± SEM * vs control c57, ‡ vs control ACE2KO, p<0.05.

Figure 5. Cortical ACE gene expression (a), ACE activity in cortical homogenates (b) and ACE activity in heparinised plasma (c). Data are shown as mean ± SEM. * vs control c57, † vs diabetic c57, ‡ vs control ACE2KO, p<0.05.

Figure 6. The expression of the proliferating cell nuclear antigen (PCNA) in cortical homogenates, as measured by real-time RT-PCR. Data are shown as mean ± SEM. * vs control c57, † vs diabetic c57, p<0.05.

Figure 7. The gene expression of fibronectin (a) in cortical homogenates, as measured by real-time RT-PCR, and the glomerular expression of fibronectin protein (b), as assessed by semi-quantitative immunohistochemistry. Data are shown as mean ± SEM. * vs control c57, † vs diabetic c57, ‡ vs control ACE2KO, § vs diabetic ACE2KO, p<0.05.

Figure 8. The gene expression of osteopontin in cortical homogenates, as measured by real-time RT-PCR. Data are shown as mean ± SEM. * vs control c57 † vs diabetic c57 , ‡ vs control ACE2KO, § vs diabetic ACE2KO, p<0.05.

NOTE: The figure for this article can be found using the figure link available at http://dx.doi.org/10.2337/db07-1212.
Table 1

<table>
<thead>
<tr>
<th></th>
<th>Body weight (g)</th>
<th>Glucose (mmol/L)</th>
<th>Glycated Hb (%)</th>
<th>Systolic BP (mmHg)</th>
<th>Albumin excretion (µg/day)</th>
<th>Renal mass (g/m²)</th>
<th>Creatinine clearance (ml/min)</th>
<th>ERPF (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c57 (wild-type)</td>
<td>33±1</td>
<td>11.1±1.6</td>
<td>4.1±0.1</td>
<td>121±1</td>
<td>47 ±1.1</td>
<td>33±1</td>
<td>0.26±0.02</td>
<td>0.7±0.1</td>
</tr>
<tr>
<td>c57+ACEi</td>
<td>32±1</td>
<td>10.5±1.2</td>
<td>4.1±0.1</td>
<td>113±1</td>
<td>30 ±1.1</td>
<td>34±1</td>
<td>0.27±0.04</td>
<td>0.5±0.1</td>
</tr>
<tr>
<td>c57+ACE2i</td>
<td>33±1</td>
<td>8.0±1.0</td>
<td>3.8±0.2</td>
<td>120±2</td>
<td>30 ±1.1</td>
<td>35±1</td>
<td>0.34±0.02</td>
<td>1.4±0.2</td>
</tr>
<tr>
<td>c57+ ACEi +ACE2i</td>
<td>33±1</td>
<td>8.4±1.3</td>
<td>3.6±0.1</td>
<td>118±1</td>
<td>39 ±1.1</td>
<td>36±1</td>
<td>0.32±0.03</td>
<td>1.3±0.1</td>
</tr>
<tr>
<td>Diabetes + c57</td>
<td>26±1</td>
<td>30±1.3</td>
<td>12.0±0.6</td>
<td>119±2</td>
<td>218 ±1.1</td>
<td>46±1</td>
<td>0.66±0.01</td>
<td>2.1±0.2</td>
</tr>
<tr>
<td>Diabetes + c57+ ACEi</td>
<td>27±2</td>
<td>27±1.4</td>
<td>13.5±0.6</td>
<td>113±1†</td>
<td>102 ±1.1†</td>
<td>45±1</td>
<td>0.66±0.02</td>
<td>1.5±0.1</td>
</tr>
<tr>
<td>Diabetes + c57+ ACE2i</td>
<td>28±2</td>
<td>29±1.2</td>
<td>13.7±0.7</td>
<td>125±2†</td>
<td>302 ±1.1†</td>
<td>42±1†</td>
<td>0.37±0.03</td>
<td>1.1±0.1†</td>
</tr>
<tr>
<td>Diabetes + c57+ ACEi +ACE2i</td>
<td>26±2†</td>
<td>28±1.3†</td>
<td>12.9±0.6†</td>
<td>125±1†</td>
<td>294 ±1.3†</td>
<td>40±1†</td>
<td>0.28±0.03†</td>
<td>1.2±0.1†</td>
</tr>
<tr>
<td>ACE2 KO</td>
<td>31±1</td>
<td>9.1±1.1</td>
<td>3.5±0.2</td>
<td>122±2</td>
<td>35 ±1.1</td>
<td>34±1</td>
<td>0.33±0.02</td>
<td>1.3±0.2†</td>
</tr>
<tr>
<td>ACE2 KO + ACEi</td>
<td>30±1</td>
<td>9.0±1.3</td>
<td>4.0±0.1</td>
<td>120±3</td>
<td>39 ±1.1</td>
<td>32±1</td>
<td>0.27±0.04</td>
<td>1.1±0.1†</td>
</tr>
<tr>
<td>Diabetes + ACE2 KO</td>
<td>24±1†</td>
<td>29.1±1†</td>
<td>11.9±0.6†</td>
<td>126±2†</td>
<td>193 ±1.1†</td>
<td>43±1†</td>
<td>0.45±0.03†</td>
<td>1.2±0.1†</td>
</tr>
<tr>
<td>Diabetes + ACE2 KO +ACEi</td>
<td>25±1†</td>
<td>28.5±1†</td>
<td>13.9±0.4†</td>
<td>135±4††</td>
<td>255 ±1.1†</td>
<td>36±1†</td>
<td>0.32±0.03†</td>
<td>0.8±0.1†§</td>
</tr>
</tbody>
</table>

Data are shown as mean ± SEM, except for AER which is shown as its geometric mean. *t1.1 tolerance factor
* vs control c57, † vs diabetic c57, ‡ vs control ACE2 KO, § vs diabetic ACE2 KO, p<0.05