Urinary Smad1 is a novel marker to predict later onset of mesangial matrix expansion in diabetic nephropathy

Akira Mima¹, Hidenori Arai², Takeshi Matsubara¹, Hideharu Abe⁵, Kojiro Nagai⁶, Yukinori Tamura³, Kazuo Torikoshi¹, Makoto Araki¹, Hiroshi Kanamori¹, Toshikazu Takahashi³, Tatsuya Tominaga³, Motokazu Matsuura³, Noriyuki Iehara¹, Atsushi Fukatsu¹, Toru Kita⁴, and Toshio Doi⁵

¹Departments of Nephrology, ²Geriatric Medicine, ³Clinical Innovative Medicine, and ⁴Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
⁵Department of Clinical Biology and Medicine, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
⁶Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A.

Running Title: Urinary Smad1 in diabetic nephropathy

Corresponding Author:
Hidenori Arai, M.D.,Ph.D.
Department of Geriatric Medicine, Kyoto University Graduate School of Medicine
54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
harai@kuhp.kyoto-u.ac.jp.

Received for publication 10 December 2007 and accepted in revised form 8 February 2008.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org.
ABSTRACT

Objective: We reported that Smad1 is a key transcriptional factor for mesangial matrix expansion in diabetic nephropathy. In this study, we examined whether urinary Smad1 in an early phase of diabetes can predict later development of glomerulosclerosis in diabetic nephropathy, and how an angiotensin II receptor blocker (ARB) can modulate structural changes and urinary markers.

Research design and Methods: Smad1 and albumin in the urine were examined 4 weeks after injection of streptozotocin in 48 rats or 6 weeks diabetes in db/db mice. Their renal pathology was analyzed after 20 weeks in rats or 12 weeks in mice. Among 48 diabetic rats 7 rats were treated with olmesartan for 20 weeks.

Results: Urinary Smad1 at 4 weeks of diabetic rats was nicely correlated with mesangial matrix expansion at 24 weeks (r=0.70, P<0.001), while albuminuria showed a weaker association (r=0.31, P=0.043). Olmesartan treatment significantly ameliorated glomerulosclerosis, and dramatically decreased urinary Smad1 (from 3.9±2.9 to 0.3±0.3 ng/mg creatinine, P < 0.05). In db/db mice, urinary Smad1 at 6 weeks was also significantly correlated with mesangial expansion at 18 weeks. In contrast, there was no change in urinary Smad1 in control diabetic rats or mice.

Conclusions: The increase of urinary Smad1 in an early stage of diabetes is correlated with later development of glomerulosclerosis in two rodent models. These data indicate that urinary Smad1 could be a novel predictor for later onset of morphological changes and can be used to monitor the effect of ARB in diabetic nephropathy.
Diabetic nephropathy is a morbid complication associated with diabetes mellitus and the most common cause of end-stage renal disease. Diabetic nephropathy is characterized by mesangial matrix expansion followed by glomerulosclerosis, leading to accumulation of extracellular matrix (ECM) components secreted mainly from mesangial cells (1). Accumulating evidence indicates that the administration of angiotensin II (AngII) type 1 receptor blocker (ARB) slows the progression of renal disease and delays the need for dialysis or transplantation in diabetic patients (2, 3). We have recently reported that Smad1 is a key molecule for direct transcriptional regulation of type IV collagen (Col4) in vitro, which is one of the major components of ECM increased in diabetic nephropathy (4) and that both glomerular expression of Smad1 and urinary excretion of Smad1 are increased significantly in diabetic rats along with mesangial expansion. Moreover, we have demonstrated that ARB ameliorates the development of diabetic nephropathy through the inhibition of Src/Smad1 pathway (5).

The term albuminuria first appeared in the literature 40 years ago (6). Thereafter, albuminuria has been used as a predictor of future overt diabetic nephropathy, which is recognized as a progressive stage. Recent evidence shows that modulating therapies, including strict blood glucose control, blood pressure control with ARB or angiotensin converting enzyme inhibitor, and diet therapy at the stage of albuminuria can prevent the development of overt nephropathy (7, 8). Therefore, albuminuria is a clinically useful diagnostic marker for predicting future overt nephropathy, but both sensitivity and specificity of albuminuria are not so high enough for detecting the initial stage of nephropathy.

Although the measurement of albuminuria has been used for estimating renal function in the early phase of diabetic nephropathy, we and others showed that albuminuria per se is not always correlated with mesangial matrix expansion in the early phase of diabetic nephropathy (9, 10), which is a key pathological findings for detecting decreased renal function in insulin dependent diabetes mellitus. Other molecules, such as urinary excretion of Col4, transforming growth factor (TGF-β), and connective tissue growth factor (CTGF) are still not satisfactory to detect diabetic glomerulosclerosis (11, 12). So far renal biopsy is the only way to detect therapeutical effects of diabetic nephropathy, but it is not practical to do renal biopsy in all diabetic patients. Thus, it is necessary to establish a noninvasive marker reflecting both predictable and therapeutical effects.

Therefore, we examined whether increased urinary Smad1 in the early phase of diabetes is associated with the later onset of mesangial matrix expansion followed by glomerulosclerosis in two rodent diabetic nephropathy models, and whether ARB can ameliorate diabetic structural changes along with urinary Smad1. This study should provide the first evidence that the increase in urinary Smad1 in the early stage of diabetes is correlated with the later development of glomerulosclerosis and that ARB treatment significantly ameliorates glomerulosclerosis, perfectly consistent with a decrease of urinary Smad1. These data indicate that urinary Smad1 could be a novel predictor for future morphological changes and can be used to monitor the effect of ARB in diabetic nephropathy.

Research Design and Methods

Experimental design and animals. We used age-matched male Sprague-Dawley rats and C57BLKS/J-Lpr background db/db, db/m mice bred at the Shimizu Laboratory Animal center (Hamamatsu, Japan). The animals were housed under specific pathogen-free conditions...
conditions at the Animal Facility of Kyoto University, Faculty of Medicine. All of animal experiments were performed in accordance with institutional guidelines, and the Review Board of Kyoto University granted ethical permission to this study. Male rats weighing 170-200g were made diabetic by a single intravenous injection of streptozotocin (STZ) (Wako, Osaka, Japan) (55mg/kg body weight) in 0.05mol/l citrate buffer (pH4.5). Rats receiving an injection of citrate buffer were used as controls (5). The levels of blood glucose were determined 2days after injection of STZ or citrate buffer, and rats with blood glucose levels more than >16.7 mmol/liter were used as diabetic. Four weeks after injection of STZ, some rats were sacrificed for examining no morphological changes at this time. The other rats were fed and sacrificed at 24 weeks (N=48). Seven out of 48 rats were treated with ARB, olmesartan (Sankyo, Tokyo, Japan) using sonde. (diabetic rats treated with ARB, N=7) for the following 20 weeks (Figure 1). db/m mice (control mice) and db/db mice (N=10) were fed and sacrificed at 18weeks.

Serum creatinine and blood urea nitrogen were measured with a Hitachi Mode 736 autoanalyzer (Hitachi, Tokyo, Japan) (13). The levels of blood glucose and HbA1c were measured using One touch ultra (Johnson & Johnson, Tokyo, Japan) and DCA2000 analyzer (Bayer Medical, Tokyo, Japan). In rats, 4 and 24 weeks after injection of STZ, creatinine and albumin were measured from 24-hour urine collection, while in mice, at 6 and 18 weeks of age, blood glucose and HbA1c were measured.

Renal histology and morphometric analysis.

Light microscopy. Methyl Carnoy’s solution-fixed, paraffin-embedded kidney sections (2 µm) were stained with periodic acid silver methenamine (PASM) and periodic acid-Schiff’s (PAS). Tissue blocks for light microscopy examination were fixed in methyl Carnoy’s solution and embedded in paraffin. Sections (2 µm) were PASM and PAS.

Glomerular morphometry was evaluated in PASM-stained tissues. The glomerular surface area and the PASM-positive area/glomerular area (%) were measured using an image analyzer with microscopy (IPAP, Image Processor for Analytical Pathology; Sumitomo Chemical Co., Osaka, Japan) as described (5,14-17). For each animal, 50 glomeruli were analyzed.

Immunohistochemistry. Kidney sections were processed for immunohistochemistry following standard procedures. To study Col4, ethyl Carnoy’s solution-fixed and paraffin-embedded tissue blocks were used. Kidney sections were rehydrated and treated with 0.3% hydrogen peroxide in methanol for 30 min. To eliminate nonspecific staining, sections were incubated with the appropriate preimmune serum for 60 minutes at room temperature, and then incubated with AvidinD and Biotin blocking solutions (Vector, Burlingham, CA) for 15 min each. Sections were incubated with anti-Col4 antibody (1: 200 dilution) (PROGEN BIOTECHNIK GMBH, Heidelberg, Germany) overnight at 4°C, and then incubated with the appropriate biotinylated secondary antibodies followed by incubation with the avidin-biotin peroxidase complex (Vectastain Elite ABC kit, Vector). Peroxidase conjugates were subsequently localized using diaminobenzidine tetrahydrochloride. To quantificate the expression of Col4, frozen kidney sections were used. Sections (4 µm) were fixed in acetone, blocked with 10% donkey serum, and incubated overnight with anti-Col4 antibody (1: 200 dilution) (PROGEN), the Col4 positive area in glomeruli was measured using Image-Pro PLUS (Media Cybernetics, silverspring, MD) as described (5, 18). For each animal, 50 glomeruli were evaluated.

Measurement of urinary variables. Urinary albumin and creatinine were measured at 24 weeks in 24-hour urine collection samples from rats housed in individual metabolic cages. During the urine collection, the rats were
allowed free access of to food and water. Albumin concentration in the urine was measured by Nephrat and Albuwell (Exocell Inc., Philadelphia, PA) and urinary excretion of Col4 was measured by Collagen IV M (Exocell Inc., Philadelphia, PA) according to the manufacture’s protocols. Body weight-adjusted creatinine clearance (Ccr) was calculated by the following equation: Ccr = urine creatinine (mg/dL) X urine volume (µL/min)/serum creatinine (mg/dL)/body weight (g) (5, 19).

Recombinant Smad1 protein. cDNA encoding human Smad1 was kindly provided by Dr. K. Miyazono (Tokyo University, Tokyo, Japan). cDNA was subcloned into the prokaryotic expression vector pGEX-4T (Amersham Biosciences) in frame at BamHI and XhoI site for GST fusion protein. This GST fusion protein was produced in *E. coli* strain DH5a and purified according to the manufacturers' instructions. The purified recombinant protein was extensively dialyzed against 0.1M Phosphate buffer and stored at –80 °C until use. Protein concentrations were determined by the Bradford method (Bio-Rad) or from the intensities of the bands in Coomassie Blue-stained SDS-PAGE gels using bovine serum albumin as a standard.

Urine preparation. Urine samples were centrifuged at room temperature for 15 min. The supernatants were stored at -80°C, and rapidly thawed and centrifuged to remove any urates or phosphates before use in assays. Because Smad1 concentrations in urine are below the detection limits of our assays, the following methods for concentration were developed and tested.

A 2.0-ml urine sample was placed in a Centricon-10 filter (Amicon) pretreated with 0.1% Tween-20 used to limit adsorption to its polypropylene components. The extent of concentration achieved was calculated from the exact retenate volume measured with a Hamilton pipet. This ranged from 25- to 60-fold, with a median of 55-fold concentration. This prepared urine concentrate was diluted to total volume of 110 ml with the dilution buffer as described below. Subsequently, 100 µl of the 110 µl total volumes was utilized in the following assays. The final urine concentration was 18-fold higher than the original sample. This was taken into consideration in the final calculation of the concentration of Smad1 in each urine sample.

ELISA Procedure. The following buffers were prepared with deionized water and used in ELISA. Coating buffer: 0.1mol/l phosphate buffer, pH 7.4 (PB) containing 3 % bovine serum albumin (SIGMA). Dilution buffer: PB containing 3 % bovine serum albumin and 0.1% Tween 20. Washing buffer: PB containing 0.1 % Tween 20.

All the ELISA assays were performed in 96-well microtiter plates (Nunc). Anti-Smad1 monoclonal antibody (Santa Cruz) was diluted with the coating buffer to obtain a final concentration of 2.5 mg/ml. Aliquots (250 ng/100 ml) were added to each well, and the plate was incubated overnight at 4°C. The wells were washed three times. Fifty µl of the prepared urine samples and standard solutions of recombinant Smad1 prepared at concentrations ranging from 0.125 ng/ml to 512 ng/ml with the dilution buffer were added to the plate and incubated overnight at 4°C. The plates were then washed three times. One hundred µl of rabbit anti-Smad1 polyclonal antibody (Upstate) was diluted with the diluting buffer to obtain a final concentration of 2.5 mg/ml, added to each well, and incubated overnight at 4°C. Horseradish peroxidase conjugated anti-rabbit IgG polyclonal antibody (Amersham) was diluted 500-fold with the dilution buffer, and 50 µl were then dispensed into each well and the plate was further incubated at room temperature for 120 min. The plates were washed three times.

Fifty µl of freshly prepared peroxidase substrate solution (DAKO) were added to each
well. The plates were kept at room temperature in the dark for 30 min, and the enzyme reaction was then stopped by adding 50 µl of 2N H₂SO₄ to each well. The optical density was measured at 492 nm using a microplate reader SPECTRA (TECAN Austria). Each Smad1 determination was carried out in duplicate. Delta SOFT3TM (Biometallics) was used to obtain the calibration curve and the polynomial equation. The optical densities of all urine samples were then inserted in the equation in order to calculate the corresponding Smad1 concentration.

Isolation of glomeruli. Rat glomeruli were isolated from renal cortex of rats using the differential sieving method. The purity of the glomeruli was >90%.

Western blotting. Isolated glomerular mesangial cells were suspended in RIPA buffer (50mM Tris, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.25% SDS, 1mM Na3VO4, 2mM EDTA, 1mM phenylmethylsulfonyl fluoride, 10mg/ml of aprotinin), and incubated for 1h at 4 °C. After centrifugation, the supernatants were used as total cell lysates. Twenty µg of each sample was applied to SDS-PAGE. After electrophoresis, the proteins were transferred to nitrocellulose filters (Schleicher & Schuell, Keene, NH). The blots were subsequently incubated with anti-Smad1 (Upstate) or anti-Col4 antibody (PROGEN), followed by incubation with horseradish peroxidase-conjugated goat anti-rabbit IgG, and sheep anti-mouse IgG (Amersham Biosciences, Piscataway, NJ). β-actin (Cell Signaling Technology, Beverly, MA) or GAPDH (Clontech, Mountain View, CA) was used as a loading control. The immunoreactive bands were visualized using horseradish peroxidase-conjugated secondary antibody and the enhanced chemiluminescent system (Amersham Biosciences). These bands were quantified by imaging densitometer, Science Lab 99 Image Gauge (Fujifilm, Tokyo, Japan).

RNA isolation and quantitative real-time RT-PCR of collagen α1(IV) mRNA. One µg of total RNA was used to prepare complementary DNA with Superscript III reverse transcriptase (Invitrogen) according to the manufacture’s protocol. Real-time PCR was performed to measure the mRNA levels of α1(IV) collagen and 18S rRNA, an internal control, for each sample in separate wells in duplicate on an ABI Prism 7900 HT Sequence Detection System (Applied Biosystems, Foster City, CA) using the SYBR Green PCR Master Mix (Applied Biosystems). The parameters included a single cycle of 95°C for 10 min followed by 40 cycles of 95°C for 15 s, annealing, and 60°C for 1min. The primers were; α1(IV) collagen forward, 5’-ATTCTTGTGATGCAACCAG-3’; α1(IV) collagen reverse, 5’-AAGCTGAAGCATTCGCTAGTA-3’; 18S rRNA forward, 5’-CGTTCTTAGTTGGTGAGCGA-3’ and 18S rRNA reverse 5’-TGAACGCCACTTGTCCCTCT-3’. The primers crossed intron and exon junctions.

Data analysis. The data are expressed as the mean ± S.D. Comparison among more than 2 groups was performed by one-way analysis of variance (ANOVA) followed by the post hoc analysis (Bonferroni/Dunn test) to evaluate statistical significance between the two groups. All analyses were performed using StatView (SAS Institute, Cary, CA). Statistical significance was defined as P<0.05.

RESULTS

Renal functional changes. Blood sugar (BS) and HbA1c were increased, and body weight was decreased in both diabetic rat groups compared with the control rat group. Systolic blood pressure remained in the normal range in the three groups and no difference was found during the study period. The urine volume, creatinine clearance (Ccr), and albuminuria were increased in diabetic rats without olmesartan. However, treatment with olmesartan for 20 weeks significantly
decreased Ccr and albuminuria as shown in Table 1. As seen in STZ rats, BS and HbA1c were increased in db/db mice compared with db/m mice, while body weight was increased only in db/db mice (Table 2).

Expression of glomerular Smad1 and Col4 was increased at 4 weeks of diabetic rats. First, we examined whether mesangial expansion can be observed in an early phase of diabetic nephropathy. We divided 14 diabetic rats into two groups according to the median of 1.74 ng/mg Cre. Although we found no significant glomerular lesions by light microscopic analysis at 4 weeks of diabetic rats, glomerular expression of Smad1 and Col4 was already increased in some diabetic rats at this stage (Figure 2). Because the level of urinary Smad1 was widely distributed, we divided diabetic rats into two groups; one is a group showing higher levels of urinary Smad1 at 4 weeks above the median, and the other is a group showing lower levels of urinary Smad1 less than the median. As expected glomerular Smad1 was significantly increased in the group with higher urinary Smad1 than in the group with lower urinary Smad1 (Figure 3A, B). In these two groups we measured mRNA levels of α1(IV) collagen obtained from the glomeruli by real-time PCR along with glomerular α1(IV) collagen-positive area by immunohistochemistry. α1(IV) collagen mRNA and col4-positive areas were higher in diabetic rats with higher urinary Smad1 (Figure 3C, D). Next, we checked the correlation between glomerular expression of Col4 and urinary Smad1. As shown in Figure 3E, there was a statistically significant correlation between them (r= 0.77, P = 0.001).

Urinary Smad1 in an early phase of diabetes correlates with later onset of mesangial matrix expansion. We previously developed ELISA to measure the concentration of urinary Smad1 (Supplemental figure 1) (15, 20) and reported that the glomerular expression of Smad1 is significantly increased and that urinary Smad1 is closely related with mesangial matrix expansion in diabetic rats at 24 weeks after STZ injection. Therefore, we examined whether this is also the case at 4 weeks after STZ injection. At the same time, we examined the relationship of mesangial matrix expansion with albuminuria and urinary excretion of Col4. As expected, urinary Smad1 at 4 weeks was nicely correlated with mesangial matrix expansion at 24 weeks in diabetic rats (r= 0.70, P < 0.001; Figure 4A), while urinary excretion of Smad1 was hardly detected in control rats (data not shown). We also found that albuminuria was correlated with mesangial matrix expansion, although its association was weaker than Smad1 (r= 0.31, P =0.043; Figure 4B). We found no correlation between urinary excretion of Col4 and mesangial matrix expansion (r=0.01, P =0.523; Figure 4C). Moreover, there was no association between urinary Smad1 and albuminuria (r=0.04, P =0.812; Figure 4D). Also, there was no correlation of urinary Smad1 with blood pressure or serum glucose (r= 0.13, P=0.434; Figure 4E, r= 0.24, P =0.126; Figure 4F). We obtained similar results when we analyzed urine samples at 24 weeks (data not shown).

Next, we examined whether urinary Smad1 in an early phase of diabetic nephropathy is correlated with later onset of mesangial matrix expansion in another diabetic model, db/db mice. At 18 weeks of age, mesangial matrix was significantly expanded in db/db mice (Figure 5A), and there was a significant correlation between urinary Smad1 at 6 weeks and mesangial expansion (r=0.62, P=0.033; Figure 5B). As in STZ rats, the association between albuminuria and mesangial matrix expansion was less prominent (r=0.55, P=0.09; Figure 5C).

Olmesartan inhibits mesangial matrix expansion and decreases urinary excretion of Smad1 in diabetic rats. We previously reported that olmesartan ameliorates the development of diabetic nephropathy through the inhibition of Src and Smad1 (5). Therefore,
in this study we investigated whether amelioration of morphological changes and mesangial matrix expansion can be correlated with the change of urinary Smad1 by olmesartan treatment in STZ rats. Figure 6 shows a representative light microscopic picture and immunohistochemistry of Col4 in each group. Untreated diabetic rats showed an increase of mesangial matrix and mesangial matrix fraction compared with control rats and this increase was diminished by olmesartan treatment. In untreated diabetic rats, the glomerular expression of Col4 was significantly increased compared with that of control rats, while olmesartan treatment inhibited the glomerular expression of Col4 induced by diabetes (Figure 7B, C).

We next examined the effect of olmesartan on urinary Smad1 in diabetic rats. In control rats, there was almost no excretion of Smad1. However, in untreated diabetic rats, urinary Smad1 was markedly increased along with an increase of glomerular Smad1 (data not shown). We found no significant change in urinary Smad1 between 4 and 24 weeks (3.3±3.8 ng/mg creatinine vs. 4.4±7.7 ng/mg creatinine, P = 0.383, Figure 8A). In contrast, urinary Smad1 was dramatically decreased at 24 weeks compared with at 4 weeks in diabetic rats by olmesartan treatment (3.9±2.9 ng/mg creatinine vs. 0.3±0.3 ng/mg creatinine, P = 0.007, Figure 8B) and its decrease was correlated with the morphological change of mesangial expansion in the early phase of diabetic nephropathy.

DISCUSSION

In this study we have shown that urinary Smad1 in an early phase of diabetes can predict the future development of mesangial glomerular expansion in two rodent diabetic models and that the correlation of urinary Smad1 with glomerular expansion is better than that with albuminuria or urinary excretion of Col4. We have also shown that olmesartan treatment consistently ameliorated the morphological change in rat diabetic nephropathy as well as urinary excretion of Smad1. Thus our data strongly indicate that urinary Smad1 could be a novel diagnostic marker to predict not only morphological changes, but also the effect of ARB treatment on mesangial matrix expansion in diabetic nephropathy.

A number of clinical studies have shown a relationship between the extent of proteinuria, or albuminuria and the rates of progression of renal disease and complications (21, 22). It is generally accepted that albuminuria can predict the later progression to overt proteinuria and it is a useful diagnostic marker for predicting future overt nephropathy. However, as mentioned above, the sensitivity and specificity of albuminuria are not so high. Therefore, it is not always reliable. Indeed in this study, we showed that albuminuria was associated with mesangial matrix expansion, but its association was weaker than that of urinary Smad1. Moreover, we found no association between urinary Smad1 and albuminuria. Thus albuminuria may not be sufficient as a diagnostic marker to predict the future morphological changes. However, albuminuria is an effective marker to identify subjects who are at increased risk for metabolic syndrome, especially for cardiovascular events (23), because recent studies show that albuminuria is a component of metabolic syndrome and may represent a marker of cardiovascular disease associated with insulin resistance and endothelial dysfunction (24, 25). Therefore, albuminuria may be sustained by the inflammatory status that accompanies macrovascular disease (26). However, its ability to predict mesangial matrix expansion of diabetic nephropathy is weaker than urinary Smad1. Therefore, we propose that albuminuria can be used together with urinary Smad1 to predict diabetic nephropathy more accurately. In this study, although there were no significant glomerular lesions by light microscopic analysis at 4
weeks of diabetic rats, expression of glomerular Col4 was already increased at this stage. Further, urinary Smad1 could be detected at this early time point. Induction of Col4 transcription could be induced by Smad1 at this stage.

Several cytokines such as TGF-β or CTGF can be detected in the urine of diabetic patients and several groups found the relationship between those urinary cytokines and albuminuria or glomerular filtration rate. However, these markers generally increase in the relatively late phase of the disease and interpretation of these markers might be difficult because of their highly ubiquity and multiple forms.

ARB treatment for diabetic nephropathy has lately been paid considerable attention by a number of studies that show the effect of ARB for diabetic nephropathy (27-29). However, the only way to detect the effect of ARB on mesangial matrix expansion in the early phase of diabetic nephropathy has been renal biopsy. In addition, ARB treatment is known to reduce urinary TGF-β, CTGF, or Col4 in diabetic renal disease (3, 30-32). However, no report demonstrates the relationship of morphological changes and these cytokines. In this study, we clearly showed that olmesartan treatment significantly ameliorated mesangial matrix expansion in diabetic rats, which was perfectly consistent with a decrease of urinary Smad1. Therefore, we proposed that urinary excretion of Smad1 would be a better diagnostic marker, because it nicely reflects morphological changes by olmesartan in diabetic nephropathy.

The observed reduction of urinary Smad1 by olmesartan may reflect a specific inhibition of Smad1 expression, because our previous study demonstrated that the expression of glomerular Smad1 is inhibited by olmesartan and that the Src/Smad1 pathway is inhibited by olmesartan (5). We found no relationship between blood pressure and urinary Smad1. Moreover, the reduction in urinary Smad1 can not be explained by changes in blood glucose or HbA1c since both variables are not different between diabetic rats with olmesartan and untreated diabetic rats. In this study, we have demonstrated an additional, blood pressure-independent reduction in urinary Smad1 by ARB therapy. Therefore, further study is necessary to clarify this mechanism. Clinical study is under way to investigate the concept that urinary Smad1 could be an early predictor in diabetic patients.

It is well known that ARB has renoprotection beyond blood pressure lowering (33) and that its renoprotective effect is dose dependent (34). We detected a significant decrease of urinary Smad1 in 2 mg/kg group, in other words, we could hardly detect urinary Smad1 as in control rats (below the low standard), along with significant decrease in blood pressure (2mg/kg: 77.3±7.6mmHg, 0.6mg/kg: 108±6.1mmHg). These findings would reflect dose-dependence of the olmesartan effect.

We have shown that distinct glomerular hypertrophy was observed in 12 weeks after STZ injection, which was ameliorated by warfarin treatment (18). In warfarin treatment group, as ARB treatment, urinary Smad1 was decreased along with glomerular expression of Smad1 was inhibited (DM without warfarin 3.1±1.2ng/ mg.Cre vs. DM with warfarin 1.6±0.6ng/ mg.Cre, P =0.05) (Supplemental figure2).

One question may arise about the source of urinary Smad1. We assume that urinary Smad1 comes from mesangial cells, because both Smad1 and phospho-Smad1 were dominantly detected in mesangial cells by immunohistochemistry. However, Smad1 is also found in endothelial cells (35) and urinary podocyte excretion is shown in diabetic nephropathy (36). These data suggest that urinary Smad1 might also derive from podocytes or endothelial cells. There is another possibility that Smad1 in serum is excreted in the urine. However, we could
hardly detect Smad1 using our ELISA system. Therefore, this possibility can be excluded. Further investigation is necessary to determine the mechanism and source of urinary Smad1.

Recently, it has been reported that Smad5, not Smad1 is preferred R-Smad for BMP7 in proximal tubular cells, mesangial cells, and podocytes and that BMP7 has a renoprotective effect (37-39). Therefore, the role of BMP and Smads in diabetic nephropathy should be further addressed in future studies and whether Smad1 is injurious or protective for diabetic nephropathy needs to be examined by overexpression or knockout of Smad1 in mesangial cells. Study is now underway to determine the specific role of Smad1 in diabetic nephropathy by making transgenic and knockout mice.

It is intriguing to address the role of Smad1 in non-diabetic ECM accumulation models. Therefore, we examined whether urinary Smad1 is also detected in a non-diabetic ECM accumulation model. However, we could not detect urinary Smad1 in rats with Thy1 nephritis (data not shown). Although both diabetic nephropathy and Thy1 nephritis accumulate ECM, why urinary Smad1 was not detected in Thy1 nephritis is still unclear. Further investigation is necessary to elucidate this mechanism.

In this study, we have clearly shown that urinary Smad1 in a very early stage of diabetes is significantly correlated with the later development of mesangial matrix expansion followed by glomerulosclerosis, and that olmesartan treatment significantly ameliorated mesangial matrix expansion, perfectly consisting with a decrease of urinary Smad1. These data indicate that urinary Smad1 could be a novel predictor for future morphological damages and can be used to monitor the effect of ARB in diabetic nephropathy.

ACKNOWLEDGEMENTS

We thank Hideo Uchiyama (Taigenkai Hospital), Maki Watanabe, and Ayumi Hosotani (Kyoto University) for excellent technical assistance. This study was supported by Grants-in Aid from the Ministry of Education, Science, Sports, and Culture of Japan and a research grant for health sciences from the Japanese Ministry of Health and Welfare.
REFERENCES

32. Ogawa S, Mori T, Nako K, Kato T, Takeuchi K, Ito S: Angiotensin II type 1 receptor blockers
TABLE 1. Biochemical parameters in each experimental group

<table>
<thead>
<tr>
<th>Study group</th>
<th>Control (N=6)</th>
<th>DM (N=41)</th>
<th>DM+olmesartan (N=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>642±31</td>
<td>447 ±87*</td>
<td>354±49*</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>117±3.1</td>
<td>112±5.9</td>
<td>108±6.1</td>
</tr>
<tr>
<td>Urine volume (ml/day)</td>
<td>8.5±2.0</td>
<td>150±65*</td>
<td>74±70*</td>
</tr>
<tr>
<td>Blood Sugar (mg/dl)</td>
<td>113±22</td>
<td>375±103*</td>
<td>394±152*</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>2.6±0.1</td>
<td>7.0±1.9*</td>
<td>6.4±0.8*</td>
</tr>
<tr>
<td>albuminuria (mg/day)</td>
<td>1.0±0.5</td>
<td>12±1.3*</td>
<td>4.8±3.0**</td>
</tr>
<tr>
<td>Ccr (mL/day/100gBWT)</td>
<td>8.3±0.2</td>
<td>26±9.0*</td>
<td>19±3.5**</td>
</tr>
</tbody>
</table>

Control; control rat, DM; STZ diabetic rat with vehicle, DM+olmesartan; STZ diabetic rats treated with olmesartan, SBP; systolic blood pressure, Ccr; creatinine clearance

Rats with olmesartan treatment were administered 0.6 mg/kg olmesartan. After 24 weeks of STZ injection, systolic blood pressure was measured by the cuff-tailed method, and the rats were weighed and sacrificed. Blood was taken to evaluate blood sugar and HbA1c. Creatinine clearance was calculated and normalized as described in methods. Albuminuria was measured by Nephrat. The data are expressed as the mean± SD. *P < 0.05 vs Control; **P < 0.05 vs DM
TABLE 2. Biochemical data in each group

<table>
<thead>
<tr>
<th>Study group</th>
<th>Control (N=6)</th>
<th>DM (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>32±1.1</td>
<td>54±3.6*</td>
</tr>
<tr>
<td>Blood Sugar (mg/dl)</td>
<td>75±10</td>
<td>540±103*</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>2.6±0.1</td>
<td>9.2±0.8*</td>
</tr>
</tbody>
</table>

Control; db/m control mouse, DM; db/db diabetic mouse
At 18 weeks of age, mice were weighed and sacrificed. Blood was taken to evaluate blood sugar and HbA1c. The data are expressed as means± SD. *P < 0.05 vs Control
FIGURE LEGENDS

Figure 1. Experimental protocol of olmesartan treatment in STZ induced diabetic rats.

Figure 2. Glomerular expression of Col4 at 4 weeks after STZ injection.
(A) Representative light microscopic appearance of glomeruli (PASM and PAS staining) and immunohistochemistry of Col4 for control rats (a, d, g), diabetic rats with high urinary Smad1 (b, e, h), and diabetic rats with low urinary Smad1 (c, f, i). High urinary Smad1; data from the rats in which urinary Smad1 at 4 weeks was equal or higher than the median, Low urinary Smad1; data from the rats in which urinary Smad1 at 4 weeks was lower than the median. (a)-(c); PAS staining, (d)-(f); PASM staining (g)-(i); Col4. The original magnification was X400.

Figure 3. Glomerular expression of Col4 at 4 weeks after STZ injection.
(A) Immunoblots for Smad1 in control and diabetic rats at 4 weeks are shown. Proteins (20 µg) obtained from each glomerular lysates were loaded. Each lane represents a representative Western blot for the glomerular lysates from each rat. (B) Quantification of glomerular Smad1 by optical densitometry. The data are expressed as means±SD. (C) Glomerular mRNA gene expression for Col4a1 was measured by real-time RT-PCR. The data are expressed as means±SD. (D) Morphometric analysis of the glomerular expression of Col4. The glomerular staining area of Col4 was measured as described in methods. The data are expressed as means±SD. High urinary Smad1; data from the rats in which urinary Smad1 at 4 weeks was equal or higher than the median, Low urinary Smad1; data from the rats in which urinary Smad1 at 4 weeks was lower than the median.*P < 0.05 (E) The correlation between glomerular expression of Col4 (arbitrary units obtained from band intensity of immunoblots) and urinary Smad1.

Figure 4. Association of urinary Smad1 with glomerular expansion in STZ rats.
(A) The correlation between urinary Smad1 at 4 weeks and mesangial matrix fraction at 24 weeks is shown (r=0.70, P < 0.001). Smad1 in two consecutive 24-hour urine samples in untreated diabetic rats was measured by ELISA and normalized by the amount of creatinine in the same sample. (B) Correlation between albuminuria at 4 weeks and mesangial matrix fraction at 24 weeks (r=0.31, P =0.043) (C) or urinary Col4 at 4 weeks (r=0.01, P =0.523) (D) Correlation between urinary Smad1 and albuminuria at 4 weeks (r=0.04, P =0.812). (E) Correlation between urinary Smad1 and blood pressure at 4 weeks (r=0.13, P =0.434). (F) Correlation between urinary Smad1 and blood sugar at 4 weeks (r=0.24, P =0.126).

Figure 5. Association of urinary Smad1 with glomerular expansion in db/db mice.
(A) Representative light microscopic appearance of glomeruli (PASM and PAS staining) for db/m mice (a, c), db/db mice (b, d). (a),(b);PAS staining, (c),(d); PASM staining. The original magnification was X400. (B) The correlation between urinary Smad1 at 6 weeks and mesangial matrix fraction at 18 weeks is shown (r=0.62, P =0.033). (C) Correlation between albuminuria and mesangial matrix fraction at 18 weeks (r=0.55, P =0.09).

Figure 6. Olmesartan ameliorates mesangial matrix expansion.
Representative light microscopic appearance of glomeruli (PAS and PASM staining) and immunohistochemistry of Col4 for control rats (a, d, g), diabetic rats (b, e, h), diabetic rats with olmesartan (c, f, i). (a)-(c); PAS staining, (d)-(f); PASM staining (g)-(i);Col4. The original magnification was X400.
Figure 7. Olmesartan ameliorates mesangial matrix expansion.
(A) Morphometric analysis of PASM positive staining area *P < 0.05 (B) Morphometric analysis of the glomerular expression of Col4. *P < 0.05 (C) Immunoblots for Col4 in control and diabetic rats at 24 weeks are shown. Proteins (20 µg) obtained from each glomerular lysates were loaded. Each lane represents a representative Western blot for the glomerular lysates from each rat. Control;control rat, DM;STZ diabetic rat with vehicle, DM+Olm;STZ diabetic rats treated with olmesartan.

Figure 8. Urinary Smad1 was dramatically decreased by olmesartan in diabetic rats.
(A) There was no difference in untreated rats between at 4 weeks and at 24 weeks (3.3±3.8 ng/mg creatinine vs. 4.4±7.7 ng/mg creatinine, P =0.383 vs. 4 weeks). (B) Olmesartan dramatically decreased urinary Smad1 (3.9±2.9 ng/mg creatinine vs. 0.3±0.3 ng/mg creatinine, *P < 0.05 vs. 4 weeks.). The data are expressed as means±SD.

NOTE: The figures for this article can be found using the link entitled “Figures”. (Available at http://dx.doi.org/10.2337/db07-1726.)