FRUCTOSE-1,6-BISPHOSPHATASE OVER-EXPRESSION IN PANCREATIC β-CELLS RESULTS IN REDUCED INSULIN SECRETION: A New Mechanism For Fat-Induced Impairment Of β-Cell function.

Melkam Kebede, PhD¹, Jenny Favaloro, PhD¹, Jenny E. Gunton, MBBS, FRACP, PhD²,³, D. Ross Laybutt, PhD², Margaret Shaw, PhD¹, Nicole Wong, BSc Honours¹, Barbara C. Fam, PhD¹, Kathryn Aston-Mourney, PhD¹, Christian Rantzau CAppSc¹, Anthony Zulli, PhD¹, Joseph Proietto, MBBS, FRACP, PhD¹ and Sofianos Andrikopoulos, PhD¹

¹University of Melbourne, Department of Medicine (AH/NH), Heidelberg Repatriation Hospital, Heidelberg Heights, Victoria 3081 Australia
²Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010 Australia
³Diabetes and Endocrinology, Westmead Hospital, Westmead, NSW 2045 Australia

Running Title: Elevated islet FBPase impairs insulin secretion

Corresponding Author:
Sofianos Andrikopoulos, Ph.D
University of Melbourne
Department of Medicine (AH/NH)
Heidelberg Repatriation Hospital,
300 Waterdale Road
Heidelberg Heights, Victoria 3081 Australia
sof@unimelb.edu.au

Received for publication 17 September 2007 and accepted in revised for 23 March 2008.
ABSTRACT

Objective: Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme that is up-regulated in islets or pancreatic β-cell lines exposed to high fat. However, whether specific β-cell upregulation of FBPase can impair insulin secretory function is not known. The objective of this study therefore is to determine whether a specific increase in islet β-cell FBPase can result in reduced glucose-mediated insulin secretion.

Research Design and Methods: To test this hypothesis we have generated three transgenic mouse lines over-expressing the human FBPase gene specifically in pancreatic islet β-cells. In addition, to investigate the biochemical mechanism by which elevated FBPase affects insulin secretion, we made two pancreatic β-cell lines (MIN6), stably over-expressing human FBPase.

Results: FBPase transgenic mice showed reduced insulin secretion in response to an intravenous glucose bolus. Compared to the untransfected parental MIN6, FBPase over-expressing cells showed a decreased cell proliferation rate, and significantly depressed glucose induced insulin secretion. These defects were associated with a decrease in the rate of glucose utilization resulting in reduced cellular ATP levels.

Conclusions: Taken together these results suggest that up-regulation of FBPase in pancreatic islet β-cells, as occurs in states of lipid oversupply and type 2 diabetes, contributes to insulin secretory dysfunction.
Type 2 diabetes is characterized by a chronic elevation of plasma glucose concentration causing complications such as retinopathy, neuropathy and nephropathy and increasing the risk of cardiovascular disease and stroke. Although insulin resistance may be the initiating defect, hyperglycemia in type 2 diabetes results from a relative deficiency of circulating insulin (1). Progressive deterioration in β-cell function is likely to result from exposure to the diabetic milieu (i.e. hyperglycemia and hyperlipidemia) thus setting up a positive feedback loop in which hyperglycemia and/or hyperlipidemia impairs β-cell function leading to further hyperglycemia (2-7).

Chronic high fatty acid exposure results in increased basal and blunted glucose-mediated insulin secretion and reduced β-cell mass (2; 5; 8; 9). This is associated with the pancreatic β-cells undergoing adaptive changes such that genes that are highly expressed under normal conditions, for example insulin, PDX-1 and GLUT2, are under-expressed and genes that are poorly expressed in the pancreatic β-cells, such as hexokinase I, glucose-6-phosphatase, c-Myc, and acetate dehydrogenase are shown to be up-regulated (10; 11).

One of the genes that is up-regulated in β-cell lines under conditions of high fatty acid exposure is fructose-1,6-bisphosphatase (FBPase) (10-12), a regulated enzyme in the gluconeogenic pathway that catalyzes the dephosphorylation of fructose-1,6-bisphosphate to fructose-6-phosphate. FBPase is abundant in the liver and the kidneys, but is poorly expressed in the pancreatic β-cells under normal conditions. In addition, FBPase was up-regulated 5-fold in islets from the diabetes susceptible obese BTBR mouse compared to the diabetes resistant C57BL/6 mouse (13). We have previously shown that FBPase is up-regulated in the liver of mice or rats fed a high-fat diet (14; 15) and in the New Zealand Obese (NZO) mouse, an obese model of type 2 diabetes (14; 16). We have recently demonstrated that transgenic mice with specific over-expression of FBPase in the liver displayed increased glycerol gluconeogenesis (17).

From the above-mentioned studies it is evident that up-regulation of FBPase is induced by fatty acids. However, whether an increase in FBPase alone can be detrimental to cellular function and in particular to β-cell insulin secretory rates has not been investigated.

To determine whether an increase in FBPase impairs insulin secretion, we generated both transgenic mice and stably transfected pancreatic β-cell lines (MIN6) overexpressing the human FBPase gene. We demonstrated that over-expression of FBPase in β-cells results in impaired glucose-stimulated insulin secretion which is associated with decreased glucose metabolism resulting in reduced cellular ATP levels and cell proliferation.

RESEARCH DESIGN AND METHODS

Materials. MIN6 cells were obtained from Professor Jun-ichi Miyazaki (Osaka University, Osaka Japan). The RIP7 expression vector was kindly provided by Professor Thomas Kay (St. Vincent’s Institute of Medical Research, Victoria Australia). The FBPase primary antibody was a kind gift from Dr Hideo Mizunuma (Akita University, Akita, Japan). Oligonucleotide primers were synthesised by Gene Works Pty Ltd (Hindmarsh SA Australia). Dulbecco’s Modified Eagle’s medium (DMEM), fetal bovine serum, glutamine, penicillin/streptomycin were from Invitrogen Australia Pty Ltd (Mount Waverley Vic Australia).

Human islet preparation. Human islets were prepared as previously described (18). Briefly, pancreata were removed from heart-beating deceased donors and disaggregated by infusing the ducts with cold Liberase enzyme (Liberase Human Islet, Roche Applied Science, Indianapolis, Ind, USA). Dissociated islets and acinar tissue was
Elevated islet FBPase impairs insulin secretion

separated on a continuous Biocoll (Biochrom AG, Berlin) density gradient (polysucrose 400 and amidotrizolic acid).

Generation of transgenic construct.
Standard molecular biology techniques were used to generate the transgenic construct (19) (Figure 1A). Pancreatic β-cell specificity of transgene expression was directed by a segment of the rat insulin II gene promoter (RIP), generated by PCR amplification of the RIP7 expression vector (20). The amplified fragment included a 659 bp promoter/enhancer region, the first exon and intron of the rat insulin II gene, a Clal cloning site in the second exon and the class II Eα poly A terminator sequence (20). This fragment was then ligated into a pUC-based expression vector, designated the insulated transgenic vector, in which the promoter fragment was flanked on each side by two tandem copies of the chicken Hyper-Sensitive-4 (HS4) insulator sequence (21). The human FBPase (huFBPase) fragment was generated by PCR amplification of the human liver cDNA as previously described (17) and ligated into the Clal cloning site. The complete DNA sequence of the insulated RIP-huFBPase plasmid was determined, and expression of huFBPase confirmed by transient transfection in a βTC3 cell line (22) and Western blot analysis. The insulated RIP-huFBPase expression fragment (Figure 1A) was separated from the pUC-19 backbone by AvrII and SpeI restriction enzyme digestion and gel purification.

Transgenic mice.
Transgenic mice were generated at the Central Microinjection Service of the Walter and Eliza Hall Institute of Medical Research (Parkville Vic Australia) by injecting the insulated RIP-huFBPase DNA fragment (Figure 1A) into the pronuclei of C57BL/6 fertilized oocytes, following established procedures (23). Offspring were genotyped for the presence of the transgene by PCR amplification of tail DNA using a forward primer from the RIP promoter (5'-GCTGGGTCAACTCGCCCGTG-3') and a reverse primer from the coding region of human FBPase (5'-GCTGGGTCAACTCGCCCGTG-3'). Primers amplifying a GAPDH fragment of 650bp were included as an internal control for the PCR analysis. PCR reagents were obtained from New England Biolabs Inc (Beverly, MA, USA). The amplified DNA products were resolved on a 2%-agarose gel.

Physiological studies were carried out on third- and fourth-generation heterozygous mice. Control mice for all experiments were the transgene-negative littermates. Mice were fed ad libitum with a standard rodent laboratory diet and kept under a 12-hour light/12-hour dark cycle (light on at 0700 hours).

RNA and cDNA preparation.
Total RNA was extracted from tissues and cultured cells using the Chomczynski and Sacchi procedure (24). RNA was treated with DNasel (RNase-free, Ambion) before cDNA synthesis using 2µg of RNA and random primers with the Promega Reverse Transcription Kit.

Real Time PCR analysis.
Primers were designed for SYBR-green Real Time PCR using the Primer-Express software (Applied Biosystems, Foster City, CA, USA). The primers for β-actin (GeneBank: NM_007393) were forward, 5'-GCTGAAAAGATGACCCAGATCA-3' and reverse, 5'-CACAGCCTGGATGGCTACGT-3'. The primers for total FBPase were homologous to both mouse (GeneBank: NM_019395) and human (GeneBank: NM_000507) liver FBPase sequences. The sequences were forward, 5'-AGC CTT CTG AGA AGG ATG CTC- 3' and reverse, 5'- GTC CAG CAT GAA GCA GTT GAC-3'. The transgene-specific primers for RIP-huFBPase mRNA, but not the endogenous mouse FBPase sequence, were forward, 5'-AGC CTT CTG AGA AGG ATG CTC- 3' and reverse, 5'-ACC AGC TAC AGT CGG AAA CCA -3'. All primer sets were designed to amplify a product spanning an exon-intron boundary of the genomic DNA.

Each sample was run in triplicate for each set of primers (i.e. FBPase and β-
Elevated islet FBPase impairs insulin secretion

actin). Gene expression was determined using ABI PRISM 7900 HT system (Applied Biosystems, Foster City, CA, USA). The relative quantification comparative Ct also known as the ΔΔCt method using the ABI sequence detection software (SDS) was used.

Western blot analysis. FBPase protein levels were determined by immunoblotting as previously described (25). Protein lysates were resolved by SDS-PAGE under reducing conditions, transferred to polyvinylidene difluoride membranes (PolyScreen PVDF membrane (Perkins Elmer) and probed with the appropriate secondary antibody by standard protocols. Immunoreactive proteins were visualized with ECL Western blotting detection reagents (Amersham Bioscience).

Intravenous glucose tolerance test. The intravenous glucose tolerance test was performed as previously described (26). A bolus of glucose (1 g/kg) was injected via a carotid artery catheter and blood sampled at 0, 2, 5, 10, 15 and 30 minutes post the injection. Plasma was stored at −20 oC for future glucose and insulin analysis.

Intraperitoneal glucose tolerance test. The intraperitoneal glucose tolerance test was performed as previously described (26). A bolus of glucose (2 g/kg) was injected intraperitoneally and blood sampled at 0, 15, 30, 60, and 120 minutes post the injection. Plasma was stored at −20 oC for future glucose and insulin analysis.

Islet isolation and culture. Islets were isolated from the pancreas by collagenase digestion as previously described (27; 28). After islets were freed from exocrine tissue, they were hand-picked under a stereomicroscope (Olympus, Tokyo, Japan) and transferred for overnight culture in RPMI 1640 medium with 10% (vol/vol) heat-inactivated fetal calf serum, in a 37ºC humidified atmosphere of 95% air:5% CO2.

Following overnight culture, batches of islets were preincubated for 90 minutes in Krebs-Ringer bicarbonate buffer (KRBB) with 2.8 mmol/l glucose. Triplicate batches of 5 islets were then transferred to tubes containing 1 mL KRBB supplemented with either 2.8 mmol/l in the absence or presence of 10 mmol/l L-arginine or 20 mmol/l glucose. After a 60 minute incubation of the islets at 37ºC, tubes were centrifuged at 2000 rpm for 5 minutes and 0.5 mL supernatant was removed for insulin analysis. The remaining 0.5 mL containing the islets was treated with 0.18 mol/l HCl/95% ethanol, followed by sonication in order to determine insulin content.

Insulin levels were determined with a double antibody radioimmunoassay using a rat-specific insulin antibody and rat insulin as a standard (Linco Research – St. Charles, MO, USA).

Cell Culture. Pancreatic cell lines were routinely cultured in DMEM supplemented with 25 mM glucose, 15% fetal calf serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 50 µM β-mercaptoethanol at 37ºC with 5% CO2.

Transient Transfection. Cells were seeded into 6-well plates at 2 x 10⁶ cells/well two days before transfection. Lipofectamine 2000 (Invitrogen) was used to co-transfect cells with 1-2 µg of supercoiled insulated RIP-huFBPase plasmid (Figure 1A) and 0.1-0.2 µg of pEGFP-C1 (Clontech Laboratories, Inc.) reporter plasmid per well according to the manufacturer’s protocol. Cells were harvested 48 hours post-transfection and cell pellets stored at -80ºC for subsequent analysis.

Stable Transfection. Cells were transfected with the linear insulated RIP-huFBPase fragment (Figure 1A) using Lipofectamine 2000 as above, but the co-transfecting plasmid was pPGK-puro to enable selection with the antibiotic puromycin. Forty-eight hours after transfection, the cell medium was supplemented with 6 µg/ml puromycin, and resistant cells started to form colonies after about 7 days. Colonies were picked, amplified and screened for FBPase expression by RNA and protein analysis.

Cell Proliferation Assay. Cell proliferation was assessed over a seven-day period using trypan blue dye exclusion. At day 0, cells were seeded at 1x10⁵ cells per well in 0.5 ml
DMEM in 24 well plates. Cells were then counted manually at days 1, 3, 5 and 7.

FBPase Enzyme Activity Assay. Proteins were extracted by homogenizing 1x10⁶ cells in 0.5 ml of homogenisation buffer (50 mM Triethanolamine pH 7.2, 1 mM DTT, 10 mM EDTA), followed by centrifugation at 40,000 g for 40 minutes at 4°C. FBPase enzyme activity was determined using a spectrophotometric-coupled enzyme assay as previously described (16; 25).

Insulin Secretion and Content in MIN6 cells. Cells were seeded at 3x10⁵ cells per well in 0.5 ml DMEM in 24 well plates. After 24 hours cultured cells were washed in modified KRB buffer containing 2.8 mM glucose and pre-incubated for 30 minutes in 0.5 ml of the same medium at 37°C. This medium was then replaced with 0.5 ml of pre-warmed KRB containing either 2.8 mM glucose; 2.8 mM glucose plus 10 mM methyl-pyruvate; 16.8 mM glucose; or 16.8 mM glucose plus a non-glucose secretagogue cocktail. The secretagogue cocktail contained 0.1 mM 3-isobutyl-1-methylxanthine (IBMX), 10 mM arginine, and 5 µM carbamylcholine chloride (carbachol) (29; 30). The cells were incubated for 60 minutes at 37°C, and an aliquot of medium removed for analysis of insulin. To measure the total insulin content, the cell monolayers were washed twice in PBS, harvested in 0.5 ml of 0.18 M HCl/95% ethanol per well, followed by sonification for 20 minutes in a Branson 2200 bath sonicator (Branson Ultrasonics, Danbury, CT, USA). The cell lysates were centrifuged at 13,000 rpm for 10 minutes and supernatants retained and stored at –20°C until analysis. Insulin levels were determined with a double-antibody radioimmunoassay using rat-specific insulin antibody and rat insulin as a standard (Linco Research, St. Charles, MO).

Measurement of Glucose Utilization and Glucose Oxidation. Glucose utilization of cells was measured using the production of tritiated water from the metabolism of D-[5-³H]-glucose as previously described (31; 32). Tritiated H₂O was then measured by liquid scintillation counting. Glucose oxidation was estimated by assessing the formation of ¹⁴CO₂ from the metabolism of U-[¹⁴C]-glucose (33). The amount of ¹⁴CO₂ was determined by liquid scintillation counting.

Measurement of Glycolytic intermediates. Fructose 1,6-bisphosphate and fructose 6-phosphate assays were performed on the supernatant as described before (34; 35).

Measurement of Cellular ATP content. The amount of ATP was measured fluorimetrically using the ATP bioluminescent assay kit from Sigma (St. Louis, MO, USA) as previously described (30).

Immunohistochemistry. For immunohistochemical detection of FBPase and insulin, pancreata from control and transgenic mice were fixed in freshly made 4 % paraformaldehyde, processed for paraffin, embedded and sectioned at 5 µm. Slides were incubated with either a guinea-pig anti-porcine insulin antibody (DAKO, California, USA) diluted 1:100 or rabbit-anti-rat FBPase antibody diluted 1:100. The sections were then washed with Tris hydrochloride (10 mM, pH 7.4) for 10 minutes and then incubated with the DAB chromagen for 1 minute. Sections were counterstained with haematoxylin and mounted with DPX mounting media and observed under a microscope.

Ethical Approvals. All of the animal studies were approved by the Austin Health Animal Ethics committee. Consent for collection of the human tissue samples was obtained by the Red Cross Transplantation Service and St Vincent’s Sydney Hospital Human Research Ethics Committee gave approval for the human studies.

Statistical Analysis. Area under the curve was calculated using the trapezoidal rule. Results are presented as means (±SEM). Statistical significance was assessed using the Student’s t-test. Differences were considered statistically significant at p≤0.05.
RESULTS
To confirm the literature reports that FBPase is up-regulated by lipid oversupply, we first assessed the pancreatic FBPase levels in a naturally occurring obese animal model, the NZO mouse, in a diet induced obesity animal model, the C57BL/6 mice fed a 60% fat diet for 16 weeks and in the diabetic C57BL/KsJ/db/db mouse. We found that both the NZO and high fat fed C57BL/6 mice had a two-fold increase in pancreatic FBPase protein levels, while there was a 3.5-fold increase in FBPase mRNA levels in db/db mice compared to their respective controls (Table 1).

To determine if patients with Type 2 diabetes have elevated FBPase, pancreatic islets were isolated from 3 diabetic and 6 age- (50.6 ± 3.4 vs 51 ± 4.4 years) and BMI- (26.5 ± 0.5 vs 27.8 ± 4.0 kg/m²) matched control subjects as previously described (18). FBPase mRNA levels were measured by real-time PCR and were corrected for expression using the house-keeping gene TATA-box binding protein (TBP). FBPase levels were increased by 2-fold in the human diabetic islets (P<0.05, Figure 2). Taken together this data supports previous experimental evidence that FBPase is up-regulated by lipid oversupply/diabetes in animal models and suggests for the first time that islet FBPase may also be increased in patients with Type 2 diabetes.

To determine whether a specific up-regulation of FBPase in islet β-cells can result in defective insulin secretion, transgenic mice were generated. A construct was generated with the human liver FBPase cDNA, driven by the minimal (654 bp) rat insulin II promoter and flanked by the chicken HS4 (cHS4) insulator sequences (Figure 1A). To test whether this construct expressed protein it was transiently transfected into the immortalized pancreatic β-TC3 cell line. Immunoblotting of transiently transfected cells showed a band immunoreactive with the anti-FBPase antibody at the expected size of 37 kDa (Figure 1B), confirming that the construct was capable of producing FBPase. The RIPII-huFBPase chimeric gene was microinjected into mouse embryos, and 4 founder mice (on the C57BL/6 genetic background) were obtained. One of the lines did not express the transgene so was excluded from further analysis. The studies presented here were performed using three transgenic mouse lines denoted 1, 32 and 44. The three lines expressed the transgene at different levels. The highest expressor (Line 1), exhibited an approximately 9 times higher transgene mRNA level than the lowest expressor (Line 44), as estimated by real time-PCR (Figure 3A). No expression of the transgene was detected in the liver, muscle and brain of the transgenic mice (data not shown). Immunoblotting confirmed Line 1 as the highest expressor of FBPase, followed by Line 32 and Line 44, while very low levels of FBPase protein were detected in the pancreata of negative littermate mice (Figure 3B). While it is not quantitative, immunohistochemistry of FBPase transgenic and negative littermate pancreata showed islet FBPase staining in the same region as insulin immunostaining, suggesting β-cell specific expression of the transgene in the transgenic mice, while the negative littermate mice showed no islet FBPase staining (Figure 3C).

Body weight of the three FBPase transgenic lines was not different to the negative littermates (Table 2). Fasting plasma glucose levels were not different, except for a slight increase in Line 44 compared with the negative littermate mice (Table 2). However, fasting plasma insulin concentrations were significantly lower in all three FBPase transgenic lines compared to negative littermates (Table 2). Pancreatic insulin content was comparable between transgenic mice to that of the negative littermate mice (Table 2).

When subjected to an intravenous glucose tolerance test, all three lines showed a significant impairment in insulin secretion (Figure 4A). Consequently the area under the insulin curve was reduced in all three transgenic lines compared with the negative littermates (Figure 4B). Glucose tolerance
was significantly impaired only in Line 1 (Table 2), which had the highest expression of FBPase and most significant defect in insulin secretion, compared to the negative littermates.

Insulin secretion was also determined in vitro in isolated islets from Line 32 and the data presented in Figure 4C. In response to high glucose, Line 32 transgenic islets secreted significantly less insulin compared with negative littermate islets. Furthermore, in response to arginine, which is proposed to act distal to the K+ATP-channel by directly depolarising the plasma membrane, there was no difference in insulin release between transgenic and negative littermate islets.

In order to investigate the biochemical mechanism by which FBPase upregulation resulted in significantly reduced glucose mediated insulin secretion, transgenic cell lines (MIN6) overexpressing the human FBPase gene were generated and characterized as follows. The FBPase and pPGK-puro constructs were stably transfected into MIN6 cells. Eighteen colonies, which grew in puromycin were selected and checked for FBPase expression and protein levels. From this screen, three colonies were chosen to be more extensively studied: a colony that had no FBPase expression but grew in puromycin as a result of the pPGK-puro transgene, a colony with relatively low expression and a colony with relatively high expression of FBPase (Figure 5A). FBPase enzyme activity was also assayed and shown to be elevated in the high expressing cells compared to the low expressing cells (Figure 5B). Furthermore, the parental and pPGK-puro cells had undetectable activity, concurring with the immunoblotting data (Figure 5A).

To determine whether the over-expression of FBPase affected insulin secretory function, the parental MIN6, pPGK-puro, and the two overexpressing cell lines were incubated with basal glucose (2.8 mM), high glucose (16.8 mM) or high glucose plus a cocktail of secretagogues (arginine, IBMX and carbachol) and insulin release determined. All cell lines released similar levels of insulin under basal conditions although there was a trend for insulin secretion to be lower in the FBPase transfected cells (Figure 6A) reflecting the lower basal plasma insulin levels in the transgenic mice (Table 2). Both the parental MIN6 and pPGK-puro cells showed increases in insulin secretion in response to high glucose and high glucose plus the secretagogue cocktail respectively (Figure 6A). In contrast, FBPase overexpressing cells did not increase insulin release in response to 16.8 mM glucose, and showed a much-blunted response to glucose plus the cocktail secretagouge, compared with the parental cell line (Figure 6A). Insulin content was determined and found to be not significantly different in the transfected cells compared to the parental MIN6 (Figure 6B). Therefore over-expression of FBPase significantly reduced glucose-mediated insulin secretion, reproducing and confirming what was found in vivo in the transgenic mice over-expressing FBPase in β-cells.

A mechanism by which increased FBPase may reduce insulin secretion is by decreasing glucose utilization and energy production. Since islets from patients with type 2 diabetes have markedly decreased expression of phosphofructokinase-1 (PFK-1) (18) increased FBPase would be expected to further impair glycolysis. Therefore glucose utilization and glycolytic intermediates were measured. All cell lines had comparable glucose utilization when cultured at basal (2.8 mM) glucose concentrations (Figure 7A left panel). However, in response to high (16.8 mM) glucose, glucose utilization (assessed using 53H-glucose) was significantly lower in cells overexpressing FBPase compared to the parental and pPGK-puro controls (Figure 7A, right panel). Furthermore glucose oxidation (measured using U-14C-glucose) was reduced in the high overexpressing FBPase compared to the parental MIN6 cells when incubated with both 2.8 mM and 20 mM glucose (Figure 7B). Fructose-1,6-bisphosphatase catalyzes
the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate and is opposed by PFK-1 in the glycolytic pathway. Overactivity of FBPase would be expected to result in overabundance of the product and a reduction of the substrate. Figure 7C shows that the substrate (fructose-1,6-bisphosphate) was lower and the product (fructose-6-phosphate) was higher in the FBPase overexpressing cell lines compared to the parental MIN6 cells.

To determine whether the decrease in glucose utilization caused a reduction in energy levels, cellular ATP levels were measured and found to be comparable among the four cell lines at basal (2.8 mM) glucose (Figure 7D). However, with high (16.8 mM) glucose culture, the FBPase over-expressing cell lines showed decreased ATP levels compared with the parental and control cell lines (Figure 7D). Together, this data suggests that decreased glucose utilization and energy production may be responsible for the reduced insulin secretion, in β-cells over-expressing the human liver FBPase gene.

A reduction in energy availability may impact on cell growth. To study this, the proliferation rate of the four cell lines was determined over seven days. There was an increase in cell number in all cell lines over the 7 day test period (Figure 8A). However the cell lines over-expressing FBPase showed a slower rate of cell proliferation compared to the parental and the pPGK-puro control cell lines respectively (Figure 8A). This difference in cell proliferation was particularly pronounced at day 5 and 7.

To confirm that the reduction in growth rate was due to a deficiency in energy availability secondary to reduced rate of glycolysis, cells were supplemented with sodium pyruvate to a final concentration of 2.5 mM. As can be seen in Figure 8B, pyruvate supplementation normalized growth rates at 5 and 7 days in the low expressing and at 5 days in the high expressing FBPase-MIN6 cells. This data further supports the assertion that increased expression of FBPase results in impaired cellular function by reducing energy availability.

In order to investigate if pyruvate stimulation improves the insulin secretory function of FBPase overexpressing MIN6 cells, the parental and low expressing cells were pre-treated with pyruvate (to a final concentration of 2.5 mM) and insulin secretory function determined at basal glucose (2.8 mM) concentrations. We chose the low expressing cell line since we have shown in Figure 8B that in this cell line 2.5 mM pyruvate supplementation rescued the cell proliferation defects in FBPase overexpressing cells. In concordance with this data, pyruvate stimulation also resulted in significantly higher insulin secretory rates in the FBPase transfected cells, compared with control cells transfected with the puromycin gene only (% insulin content: 68.3 ± 2.6 vs 16.4 ± 1.5, n=4, P<0.05).

DISCUSSION

Islet β-cell dysfunction is a key characteristic of patients with type 2 diabetes that results in hyperglycemia. Hyperglycemia, in conjunction with the dyslipidemia, which is often present in patients with type 2 diabetes, can further exacerbate the defects in insulin secretion. A number of studies have shown that FBPase is up-regulated in response to high glucose or fatty acid conditions (10-12; 36). Importantly, direct evidence for the stimulatory effect of fat on FBPase expression has been provided in vitro using pancreatic β-cell lines incubated with palmitate (10; 11). While the mechanism for this induction is not known, we speculate fatty acids increase the transcription of the FBPase gene. We have extended these results and have shown here that in obese (NZO) or diabetic (C57BL/KsJ-db-db) mice and in a high fat fed mouse model, there is a two to three fold increase in pancreatic/islet FBPase levels. Furthermore we show for the first time that increased FBPase expression has direct relevance to human disease as its expression was increased 2-fold in islets from patients
Elevated islet FBPase impairs insulin secretion

with type 2 diabetes. These studies however do not provide any information on whether this increase in FBPase has functional consequences in islet β-cells. To determine if over-expression of FBPase impairs insulin secretion we generated three lines of transgenic mice with different levels of islet FBPase over-expression. We demonstrated insulin secretion in response to glucose was reduced in a dose-dependent manner with greater over-expression causing more severe impairment of secretion. Interestingly, despite a reduction in insulin secretion in all three transgenic lines tested, glucose tolerance was impaired only in Line 1 with the highest FBPase overexpression and the greatest reduction in secretion. This probably reflects the robust nature of the mouse and that a severe reduction in insulin secretion is required before it affects glucose tolerance. All this suggests that up-regulation of islet FBPase by high glucose/lipid levels can result in reduced glucose-mediated insulin secretion in vivo. Using MIN6 cells, an in vitro β-cell model, we went on to show that the most likely mechanism by which FBPase over-expression impairs insulin secretion is a reduction in glycolytic flux resulting in reduced energy production. Arginine-induced secretion was not impaired in the transgenic islets. Since arginine acts by directly depolarising the plasma membrane, this result suggests that the secretory machinery is functioning appropriately and supports the notion of decreased glycolytic flux as the cause of reduced insulin secretion in the transgenic mice.

Many mechanisms for β-cell dysfunction and death have been proposed including high glucose-induced oxidative stress (8), fatty acid-induced defects in secretion and activation of apoptotic pathways (30; 37), islet amyloid-mediated β-cell death (38; 39), and others (40). Some of these may be inherent defects which are exposed when the islet is stressed with obesity and excess nutrients. It is clear from our own data and that of other researchers that the up-regulation of FBPase is a consequence of the diabetic milieu. The question then arises what role does this particular abnormality play in the pathogenesis of type 2 diabetes? We show in this study that FBPase is not normally expressed at high levels in the islet. Furthermore, we and others have shown that this enzyme is upregulated by fat. This together with the data in this report that a specific upregulation of FBPase causes impaired insulin secretion, we suggest that the obese/diabetic milieu of increasing lipemia stimulates the expression of islet FBPase, which contributes to the deteriorating function of the β-cell resulting in further diminution of insulin release.

We show in this report that FBPase expression is increased in patients with type 2 diabetes and that a specific increase in this gene can lead to impaired insulin secretory function. However, this is not the only protein whose expression is altered in diabetes. It has been shown that there are over 200 genes up-regulated in islets from patients with type 2 diabetes compared to controls (18) and Busch and colleagues (10) have shown that over 100 genes are over-expressed more than 1.9 fold when MIN6 cells are cultured in high fat conditions (including FBPase). One approach to determine the functional consequences would be to systematically inhibit each of the overexpressed genes in diabetes and determine whether cellular function is improved. While for most genes, this would have to be done in vitro using, for example, siRNA technology, for FBPase this can now be done in vivo as specific inhibitors of this enzyme have been developed as therapeutic targets to treat type 2 diabetes (41; 42). MB06322 (CS-917) is one such compound that efficiently inhibits the enzyme and reduces gluconeogenesis in hepatocytes and in vivo in ZDF rats resulting in a substantial lowering of plasma glucose levels in these diabetic animals (41; 42). It would be of interest to determine whether this or other compounds that inhibit islet FBPase can improve insulin secretory function and the diabetic phenotype of animal models such
Elevated islet FBPase impairs insulin secretion

as the ZDF rat or C57BL/KsJ-db/db mouse, or even in patients with type 2 diabetes.

It is of interest that reduction in glycolytic rate and the ensuing reduction in ATP levels resulted in a slowing of β-cell growth in vitro. It is important to note that the insulin secretory experiments were performed following 24 hours of seeding the same amount of cells, a time that there was no difference in cell number whether FBPase was expressed or not (Figure 8). We therefore do not believe that differences in cell number can explain the blunting in glucose-mediated insulin release with FBPase overexpression. As stated above, we provide evidence that the decreased insulin release is due to reduced glycolytic flux.

Taken together, we have demonstrated that obese and hyperglycemic mice and patients with type 2 diabetes display an increase in the expression of pancreatic islet FBPase. We consequently generated transgenic mice and cell lines with a specific increase in islet β-cell FBPase, and these were shown to have reduced insulin secretion, associated with impaired glucose metabolism and ATP generation. This study identifies islet FBPase as a possible therapeutic target for the improvement of insulin secretory function in type 2 diabetes.

ACKNOWLEDGMENTS

We would like to thank Amy Blair for excellent technical assistance and Dr July Blassioli for help with the ATP assay. This study was supported by projects grants from the National Health and Medical Research Council of Australia and Diabetes Australia Research Trust. SA was supported by a National Health and Medical Research Council of Australia RD Wright Biomedical Career Development Award. JG was supported by a National Health and Medical Research Council of Australia C.J. Martin Fellowship.
Elevated islet FBPase impairs insulin secretion

REFERENCES

4. Boden G: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. *Diabetes* 46:3-10, 1997

Elevated islet FBPase impairs insulin secretion

Table 1. FBPase up-regulation in mouse models of obesity and diabetes. Pancreatic FBPase was measured by immunoblotting in New Zealand Obese (NZO) and high fat fed (60% w/w for 16 weeks) C57BL/6 mice and islet FBPase mRNA levels were determined in C57BL/KsJ-db/db mice using real-time PCR. Results are presented as mean ± SEM for the number of mice indicated in the table. * P<0.05, ** P<0.01

<table>
<thead>
<tr>
<th>Model</th>
<th>FBPase Levels (fold increase of corresponding control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZO (n=3)</td>
<td>1.9 ± 0.2*</td>
</tr>
<tr>
<td>High fat fed C57BL/6 (n=3)</td>
<td>2.1 ± 0.3*</td>
</tr>
<tr>
<td>C57BL/KsJ-db/db (n=5)</td>
<td>3.5 ± 1.0**</td>
</tr>
</tbody>
</table>
Table 2. Body weights (grams), fasting plasma glucose (mM) and plasma insulin (ng/ml) concentrations, pancreatic insulin content levels and glucose tolerance in 10 week old β-cell FBPase transgenic mice. Results are presented as mean ± SEM (n=10). * P<0.05 compared to the negative littermate.

<table>
<thead>
<tr>
<th></th>
<th>Line 1 (High)</th>
<th>Line 32 (Medium)</th>
<th>Line 44 (Low)</th>
<th>Negative Littermate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Body-weight (g)</td>
<td>21.4 ± 1.0</td>
<td>22.9 ± 0.4</td>
<td>24.4 ± 0.5</td>
<td>22.5 ± 0.8</td>
</tr>
<tr>
<td>Female Body-weight (g)</td>
<td>17.2 ± 0.51</td>
<td>16.7 ± 0.35</td>
<td>17.6 ± 0.10</td>
<td>17.7 ± 0.30</td>
</tr>
<tr>
<td>Plasma Glucose (mM)</td>
<td>7.0 ± 0.4</td>
<td>7.5 ± 0.3</td>
<td>10.3 ± 0.5</td>
<td>8.0 ± 0.6</td>
</tr>
<tr>
<td>Plasma Insulin (ng/ml)</td>
<td>0.3 ± 0.02*</td>
<td>0.5 ± 0.10*</td>
<td>0.3 ± 0.10*</td>
<td>0.8 ± 0.16</td>
</tr>
<tr>
<td>Pancreatic Insulin Content (ng/µg protein)</td>
<td>883 ± 197</td>
<td>739 ± 95</td>
<td>694 ± 61</td>
<td>661 ± 72</td>
</tr>
<tr>
<td>AUCglc (mMx120 min)</td>
<td>2500 ± 101*</td>
<td>1773 ± 103</td>
<td>1460 ± 125</td>
<td>1863 ± 113</td>
</tr>
</tbody>
</table>
Elevated islet FBPase impairs insulin secretion

FIGURE LEGENDS

Figure 1. Generation and testing of the transgenic construct. (A) The complete 7645 bp linear insulated RIP-human FBPase construct, which consists of 695 bp of the rat insulin II promoter (RIPII), the first intron of the insulin gene, a cDNA encoding human FBPase, and a downstream polyadenylation site (Poly A) flanked by two sets of the cHS4 insulator sequences. (B) Transient transfection of FBPase in βTC-3 cells with the construct depicted in (A), showing its capacity to produce the expected 37 kDa protein immunoreactive with the FBPase antibody in tissue culture. Lane 1, un-transfected βTC-3 cells, lanes 2 and 3 transiently transfected βTC-3 cells, compared to a mouse liver sample.

Figure 2. Islet FBPase expression in patients with Type 2 diabetes. FBPase mRNA levels in islets isolated from patients with Type 2 diabetes (n=3) and in age- and weight-matched control subjects (n=6) was determined using real time PCR. Results are presented as mean ± SEM. * P<0.05

Figure 3. Expression of the FBPase gene in Transgenic mice. (A) Human FBPase mRNA levels in three transgenic mouse lines (1, 32 and 44), showing a high, medium and low expression level of the transgene, relative to the lowest expressing transgenic line 44. As expected the transgene was not detected (ND) in negative littermate mice. (B) Immunoblotting of pancreatic samples from transgenic lines 1, 32 and 44 showing high, medium and low level of the 37 kDa FBPase protein, in accordance with the mRNA data shown in (A) above. (C) Immunohistochemistry of pancreata from the three FBPase transgenic mouse lines (1, 32 and 44) and a negative littermate, showing insulin immunostaining in all sections, while FBPase immunostaining was only seen in the transgenic pancreata, localized to the insulin staining.

Figure 4. Insulin secretory responses in FBPase transgenic and negative littermate mice. (A) Plasma insulin levels in FBPase transgenic and negative littermate mice during the intravenous glucose tolerance test (IVGTT). (B) Total insulin secretion, calculated as the area under the insulin curve over the thirty minutes of the IVGTT in the three transgenic FBPase and negative littermate mice. Results are presented as mean ± SEM (n=6-14). * P≤0.05; **P<0.01. (C) Insulin secretion measured from islets isolated from line 32 transgenic and negative littermate control mice. Results are presented as mean ± SEM (n=3). * P<0.05 compared with 2.8 mM glucose; # P<0.05 compared with control islets.

Figure 5. Generation of MIN6 cells overexpressing human FBPase. (A) MIN6 cells were co-transfected with 1-2 µg of the transgene construct shown in Figure 1A and 0.1-0.2 µg of the pPGK-puro selection plasmid. Eighteen puromycin-resistant colonies were isolated, of which three colonies were selected to be extensively studied with no (pPGK-puro), low and high levels of the FBPase protein respectively as assessed by immunoblotting. Lane 1 - Parental MIN6 cells; lane 2 - low FBPase; lane 3 - high FBPase; lane 4 - pGK- puro (no FBPase); lane 5 – mouse liver control. (B) FBPase enzyme activity in the cell lines depicted in Fig 5A showing increased activity in the cells with the highest FBPase protein levels, while the parental MIN6 and pPGK-puro cells had no detectable (ND) enzyme activity. Results are presented as mean ± SEM (n=3). *P<0.05 compared with low expressing FBPase transgenic cells.

Figure 6. Glucose and non-glucose induced insulin secretion in FBPase transgenic MIN6 cells. (A) The cells were incubated in KRB medium containing either 2.8 mM glucose, 16.8 mM glucose or 16.8 mM glucose plus a cocktail of secretagogues including 10 mM arginine,
Elevated islet FBPase impairs insulin secretion

0.1 mM IBMX and 5 μM carbachol for 1 hour. Medium was taken to determine levels of insulin secretion. (B) Total cellular insulin content was determined by lysing the cells with 0.18 M HCl/95% ethanol, followed by sonification. Insulin secretion was then expressed as relative to total cellular insulin content of cells. Results are presented as means ± SEM of three independent experiments. * P<0.05 compared with parental MIN6 cells.

Figure 7. Glucose utilization, glucose oxidation, glycolytic intermediate and cellular ATP levels in MIN6 cells overexpressing FBPase. (A) Glucose utilization was measured by the conversion of [5-3H] glucose into 3H2O as described in Research Design and Methods. Results are expressed as means ± SEM of three independent experiments. *P<0.05 compared to parental MIN6 cells. (B) Glucose oxidation was measured by the conversion of [U-14C] glucose into 14CO2 as described in Research Design and Methods. Results are expressed as means ± SEM of five independent experiments. *P<0.05 compared to parental MIN6 cells. (C) Fructose-1,6-bisphosphate and fructose-6-phosphate levels in parental MIN6 cells, pGK-puro (no FBPase), low FBPase and high FBPase MIN6 cells. Results are expressed as means ± SEM of three independent experiments. *P<0.05 compared to control MIN6 cells. (D) Cellular ATP content was measured in parental MIN6 cells, low FBPase and high FBPase MIN6 cells. Results are expressed as means ± SEM of three independent experiments. * P<0.05 compared with parental cells.

Figure 8. Cell proliferation rates in MIN6 cells overexpressing FBPase. (A) Cells were counted on Days 1, 3, 5 and 7 following seeding. Results are expressed as means ± SEM of three independent experiments. * P<0.05 compared with parental cells. (B) The cell culture medium was supplemented so that the final concentration of pyruvate was 2.5 mM and cells counted on day 1, 3, 5 and 7 following seeding. Results are expressed as means ± SEM of three independent experiments. * P<0.05 compared with parental cells.
Figure 1

A
\[\text{2 x cHS4} \quad \text{RIPII} \quad \text{FBPase} \quad \text{2 x cHS4} \]

B
1 2 3 Mouse Liver

\[\text{37 kDa} \]
Elevated islet FBPase impairs insulin secretion

Figure 2

![Graph showing elevated FBPase mRNA in Type 2 Diabetes compared to Control](image)
Figure 3

A

![Bar graph showing Human Islet FBPase mRNA expression relative to Low across different lines.](image)

- Line 1 (High)
- Line 32 (Medium)
- Line 44 (Low)
- Negative Littermate (ND)

B

![Western blot showing protein expression at 37 kDa across different lines.](image)

- Line 1 (High)
- Line 32 (Medium)
- Line 44 (Low)
- Negative Littermate

37 kDa
Elevated islet FBPase impairs insulin secretion

Figure 3

C

<table>
<thead>
<tr>
<th>Negative Littermate</th>
<th>Low (line 44)</th>
<th>Medium (line 32)</th>
<th>High (line 1)</th>
</tr>
</thead>
</table>

Insulin

FBPase
Figure 4

A

![Graph showing plasma insulin levels over time for different conditions.](image-url)
Figure 4

B

![Bar chart showing total insulin secretion (ng/ml x 30 min) for different conditions: Negative Littermate (Line 44), Low (Line 32), Medium (Line 32), and High (Line 1).](chart_B)

C

![Bar chart showing islet insulin secretion (% fold 2.8 mM glucose) for Control and Transgenic conditions with different glucose levels: 2.8 mM glucose, 20 mM glucose, and 2.8 mM glucose + arginine.](chart_C)
Figure 5

A

![Western blot image with 37 kDa marker](image)

B

![Bar graph showing FBPase enzyme activity](image)
Elevated islet FBPase impairs insulin secretion

Figure 6

A

B
Figure 7

A

Glucose Utilization

\(^{3}\text{H}\text{O}/60\min/\mu\text{g protein}\)

- Parental
- pPGK-puro
- Low
- High

2.8mM Glucose
16.8mM Glucose

B

Glucose Oxidation

\(^{14}\text{CO}_2/60\min/\mu\text{g protein}\)

- Parental
- High

2.8 mM Glucose
20 mM Glucose
Elevated islet FBPsase impairs insulin secretion

Figure 7
Figure 7

D

![Bar chart showing ATP levels in different glucose concentrations for different conditions.

- Parental
- Low
- High

2.8 mM glucose
16.8 mM glucose

* Indicates significant difference from control group.
Elevated islet FBPase impairs insulin secretion

Figure 8

A

B

Cells supplemented with 2.5mM sodium pyruvate

Parental
pGK-puro
Low
High