The PANIC-ATTAC mouse model

PANIC–ATTAC, a mouse model for
inducible and reversible β cell ablation

Zhao V. Wang1,2,3, James Mu4, Todd D. Schraw2,3, Laurent Gautron2,5,6, Joel K. Elmquist2,5,6, Bei B. Zhang4, Michael Brownlee7 and Philipp E. Scherer2,3

1Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York.
2Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
3Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas.
4Department of Metabolic Disorders, Merck Research Laboratories, Rahway, New Jersey.
5Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas.
6Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas.
7Department of Medicine and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York.

Correspondence addressed to:
Philipp E. Scherer,
Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, Texas, 75390-8549.
E-mail: Philipp.Scherer@utsouthwestern.edu

Received for publication 21 November 2007 and accepted 05 May 2008.

Additional information for this article can be found in an online appendix at

http://diabetes.diabetesjournals.org
The PANIC-ATTAC mouse model

Objective: Islet transplantations have been performed clinically, but the practical applications are limited. An extensive effort has been made towards the identification of pancreatic β cell stem cells which has yielded many insights to date, yet targeted reconstitution of β cell mass remains elusive. Here, we present a mouse model for inducible and reversible ablation of pancreatic β cells named the PANIC-ATTAC mouse (pancreatic islet β cell - apoptosis through targeted activation of caspase 8).

Research Design and Methods: We efficiently induce β cell death through apoptosis and concomitant hyperglycemia by administration of a chemical dimerizer to the transgenic mice. In contrast to streptozotocin-treated animals, the diabetes phenotype and β cell loss are fully reversible in the PANIC-ATTAC mice and we find significant β cell recovery with normalization of glucose levels after two months.

Results: The rate of recovery can be enhanced by various pharmacological interventions with agents acting on the GLP-1 axis as well as agonists of peroxisome proliferator-activated receptor-γ. During recovery, we find an increased population of Glut2 positive, insulin negative cells in the islets of PANIC-ATTAC mice, which may represent a novel pool of potential β cell precursors.

Conclusion: The PANIC-ATTAC mouse may be used as an animal model of inducible and reversible β cell ablation and therefore has applications in many areas of diabetes research that include identification of β cell precursors, evaluation of glucotoxicity effects in diabetes and examination of pharmacological interventions.
Diabetes mellitus is an epidemic affecting 180 million people worldwide with rising prevalence (1). Successful islet transplantation with the Edmonton protocol was considered a significant step towards a cure (2). However, due to the scarcity of available islets and limited viability of transplanted islets, this procedure has not yet found widespread application. Extensive efforts have been directed towards identifying pancreatic β cell stem cells for transplantation and approaches to stimulate β cell regeneration.

In the past, the potential β cell precursors have been identified among embryonic stem cells, ductal cells, acinar cells and nonendocrine epithelial cells (3-7). More recently, the proliferation of pre-existing β cells has been shown to be the major source of β cell regeneration in lineage tracing studies (8). The mechanisms of β cell regeneration remains therefore controversial and different methodologies and animal models may be at the source of these inconsistent observations.

In the present study, we describe a pancreas injury model with inducible and reversible β cell ablation. In the current transgenic mouse model, the PANIC-ATTAC mouse (pancreatic islet β cell apoptosis through targeted activation of caspase 8), β cell death is induced in a specific and well-defined manner through treatment of a chemical dimerizer. Importantly, the PANIC-ATTAC mice show extensive β cell regeneration and normalization of glucose levels post-treatment. We found an increased population of Glut2 positive, insulin negative cells which may serve as β cell precursors. The PANIC-ATTAC mouse model has the potential to be highly informative in many areas of diabetes research and provides an opportunity to characterize β cell pathophysiology during diabetes progression.

RESEARCH DESIGN AND METHODS

Generation of the PANIC-ATTAC transgenic mice.

The rat insulin promoter was used to drive the expression of FKBP-caspase 8 fusion protein. A PCR fragment containing FKBP-caspase 8 and 3’ untranslated region was cloned into pCR4TA (Invitrogen) and then subcloned into the promoter vector. After linearization, the DNA preparation was injected into FVB embryos. Positive lines were identified by PCR genotyping (9). All animal protocols were approved either by the Institute for Animal Studies of the Albert Einstein College of Medicine or by the Institutional Animal Care and Use Committee of University of
The P ANIC-ATTAC mouse model

Texas Southwestern Medical Center at Dallas.

Tests and assays.

For oral glucose tolerance test (OGTT), mice were fasted for 2.5 h before glucose oral gavage at 2.5 mg/kg body weight. Tail blood was drawn for glucose measurements by an oxidase-peroxidase assay (Sigma). The insulin levels were determined by an insulin ELISA assay (Millipore). For intraperitoneal glucose tolerance tests, mice were fasted for 5 h and glucose was administrated at a concentration of 2.5 mg/kg body weight. The pancreatic insulin content was measured as described previously (10). For insulin tolerance tests, mice were fasted for 2.5 h before administration of insulin at 1 IU/kg body weight intraperitoneally (Novo Nordisk).

Dimerizer administration.

The dimerizer AP20187 was administrated to 2-3 months old animals according to the manufacturer recommendations (Ariad Pharmaceuticals). For hemizygous PANIC-ATTAC mice, dimerizer of 0.2 μg/g body weight was injected twice a day at 12 pm and 6 pm every other day for a total of 8 injections. For homozygous PANIC-ATTAC mice, a single injection (0.2 or 0.3 μg/g body weight) was performed at 12 pm.

Histology.

Pancreas was dissected and fixed in 10% buffered formalin overnight. Paraffin sections of 5 μm were processed for histology. For immunofluorescence, sections were incubated with primary antibodies for 24 h and subsequently decorated with secondary antibodies for 1 h at room temperature (RT). Antibodies used include: guinea pig anti-swine insulin (DAKO, 1:500), rabbit anti-human glucagon (Zymed, 1:250), rabbit anti- Glut2 (Chemicon, 1:200), rabbit anti-PDX-1 (provided by Dr. Raymond MacDonald, 1:200), goat anti-PDX-1 (provide by Dr. Klaus Kaestner, 1:1000), rat anti-mouse Ki67 (DAKO, 1:100), rabbit anti-MafA (Bethyl labs, 1:1000), donkey anti-guinea pig IgG-FITC (Jackson Immunoresearch, 1:250) and donkey anti-rabbit IgG-Cy3 (Jackson Immunoresearch, 1:500). Images were taken on a Leica TCS SP5 confocal microscope (Leica). For immunohistochemistry, sections were incubated with primary antibodies for 24 h at 4°C. Sections were then incubated with biotinylated secondary antibodies (anti-guinea pig IgG, DAKO, 1:500, anti-rabbit IgG, DAKO, 1:200) for 1 h at RT and reaction was developed with ABC reagent (Vector laboratories). Images were acquired with Coolscope (Nikon). To visualize apoptotic nuclei, TUNEL staining was performed using an in situ cell death detection kit (Roche) (11). To measure β cell mass, a full print pancreas section was chosen for immunostaining of insulin. The whole area of the pancreas was calculated by ImageJ. The sum area of all islets was calculated with the automatic measurement tool of AxioVision 4.6 (Carl Zeiss). To study the role of the hypothalamus, mice were perfused with 10% formalin and the brain was removed for overnight fixation. After 24 h incubation in 20% sucrose, hypothalamus free floating sections (25μm) were produced using a freezing microtome. Hypothalamus sections were mounted on glass slides, air dried and processed for TUNEL staining.

Treatments.

For streptozotocin treatments, FVB mice received a single intraperitoneal dose (175 mg/kg) of freshly prepared streptozotocin (Sigma). For Exendin-4 treatment, male hemizygous transgenic PANIC-ATTAC mice
were fed with HFD 4 weeks before hyperglycemic induction. Two doses of exendin-4, 3.3 or 10 microgram per kilogram body weight, were selected for daily injection at 4 pm. Postprandial glucose and body weight were monitored periodically. For PPAR-γ agonist treatment, the 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid compound, a kind gift from Merck Research Laboratories (12), was mixed with powdered food at 75 µg/g. The average dose for mice is 10 mg/kg body weight. For the sitagliptin studies (13), male homozygous PANIC-ATTAC mice were induced to hyperglycemia by three continuous injections of dimerizer (0.2 µg/g body weight) 24 hrs apart and put on diet mixed with compound (7.8 g active ingredient per kg chow diet) (Research Diets). Postprandial glucose and body weight were monitored periodically. An OGTT was conducted at day 75 of sitagliptin treatment. Serum samples obtained from terminal bleeds (postprandial) at day 80 were used for active GLP-1 level determination using an active GLP-1 ELISA assay (Millipore).

Statistical analysis.
Results were presented as mean ± standard error of the mean. Statistical analysis was performed with the Student t test except oral glucose tolerance test, insulin tolerance test and glucose profiling results, which were done by two-way ANOVA analysis and subsequent Tukey test. Significance was accepted at $P < 0.05$.

RESULTS
Generation of transgenic PANIC-ATTAC mice.
To ablate pancreatic β cells in a targeted and inducible way, we have taken advantage of the cell-specific expression of a FKBP-caspase 8 fusion protein. This approach relies on a system developed by Clackson and colleagues that utilizes a mutated form of FKBP domain which selectively and avidly binds a FK506 analog but not the endogenous ligand (14). This interaction can bring two mutant FKBP domains in close proximity, thereby effectively inducing dimerization of any passenger protein attached to the FKBP moiety. We fused the mutant FKBP domain to caspase 8 which after dimerization can lead to apoptosis (15). The expression of this FKBP-caspase 8 protein does not convey a phenotype in its monomeric form. However, upon administration of a chemical that forces the dimerization of caspase 8 through interaction with the FKBP domain, caspase 8 is activated and the apoptotic cascade is initiated (16). We have previously described a mouse model that carries such a transgene under the control of an adipocyte-specific promoter (FAT-ATTAC) in which we were able to inducibly ablate adipocytes (9). Here, we put the gene encoding this fusion protein under the control of the rat insulin promoter. By reverse transcription-PCR (RT-PCR) analysis, we found that all three lines expressed the transgene (Fig. 1A). By quantitative PCR, line B23.2 showed the highest expression and was chosen for further studies (Fig. 1B). We refer to this mouse model as PANIC-ATTAC (pancreatic islet β cell apoptosis through targeted activation of caspase 8).

To evaluate tissue-specific expression, RT-PCR analysis was performed on 11 tissues of a transgenic mouse. As expected, the pancreas shows high level expression (Fig. 1C). Several reports in the literature have indicated that the rat insulin promoter cassette can
convey expression in the brain, which is consistent with what we found here (17). Expression can be seen in a number of regions (Streamson Chua, personal communication, data not shown). Importantly, however, activation of the hypothalamic caspase 8 does not seem to occur under conditions when the pancreatic β cells are efficiently ablated since no evidence of apoptosis in hypothalamic neurons could be found under these conditions (Supplemental Fig. 1). This could be due to the resistance of neurons to caspase-8 mediated apoptosis, or due to the inability of the dimerizer compound to effectively cross the blood brain barrier. We were unable to trigger neuronal apoptosis even after direct icv administration of the dimerizer (not shown). We therefore believe that it is very unlikely that the effects reported below would be influenced by events triggered in the brain upon dimerizer treatment.

Characterization of mice hemizygous for the PANIC-ATTAC transgene.

Wild type (WT) and transgenic mice are phenotypically indistinguishable for body weight (data not shown), glucose and insulin levels during oral glucose tolerance test (OGTT), pancreatic insulin content and islet architecture (Fig. 2A). We concluded that the mice had no measurable baseline phenotype. A cohort of WT and transgenic animals were chosen for treatment with the dimerizer compound of 8 injections. An OGTT was performed 8 days after the initiation of treatment. Interestingly, despite identical genetic background and treatment regimen, the transgenic mice could be grouped into “low responders (L-PANIC)” whose glucose levels were elevated but still below 300 mg/dL and “high responders (H-PANIC)” whose glucose levels tended to be higher than 400 mg/dL. One possible reason for this heterogeneous response may be the subtle difference of actual dimerizer delivery between animals. A similar phenomenon has been found in partial pancreatectomy animal models in which subtle variations in the proportion of pancreatic tissue removed resulted in two different degrees of hyperglycemia (18). The transgenic mice were therefore classified into two groups and analyzed separately. Both groups displayed high glucose levels during the OGTT with H-PANIC displaying bigger excursions (Fig. 2B). None of the hyperglycemic PANIC-ATTAC animals displayed much of insulin release during OGTT. Total pancreatic insulin content was reduced by > 75% in L-PANIC and > 90% in H-PANIC. Correspondingly, the damage at the level of islets was quite apparent by histology. From these and other quantitative assessments of the β cell mass, it is clear that hyperglycemia manifests only after a substantial portion of β cell mass is eliminated (19).

We were surprised to see that upon allowing these mice to recover for approximately 8 weeks, the glucose tolerance during an OGTT showed improvements compared to the initial hyperglycemic conditions (Fig. 2C). Insulin release during the OGTT was however still impaired even though total pancreatic insulin content approached WT levels in the L-PANIC and dramatically increased in the H-PANIC. Upon analysis of fasting glucose levels, it is apparent that glucose control is normalized in all mice upon recovery (Fig. 2D). A more detailed analysis of fasting glucose levels during the entire period shows recovery that even the high responders manifest (Fig. 2E).
These results suggest that we can effectively induce β cell ablation and hyperglycemia in hemizygous PANIC-ATTAC animals and more importantly, the mice can restore euglycemic control post-recovery.

The treatment regimen described above established the conditions under which we can obtain both low responders and high responders. We aimed to find conditions that would render the β cells more susceptible to apoptosis. Lipotoxicity has been implicated in the dysfunction of β cells during diabetes progression (20). When exposed to a normal chow diet, the majority of the mice convert to low responders after dimerizer treatment, with only about 30% displaying a high response. Upon exposure to high fat diet (HFD) for 5 or 10 weeks prior to dimerizer treatment, a much higher percentage of mice was converted to H-PANIC by the same injections (Fig. 3A). To assess the effects of HFD on the transgene expression (under the control of rat II insulin promoter), we isolated islets and performed quantitative RT-PCR after exposure to HFD. We found that HFD treatment increases the transgene expression (Supplemental Fig. 2). While transgene expression does play a role under these conditions, there may also be a contribution of lipid accumulation in β cells under these conditions. The more susceptible phenotype may therefore be a combination of increased transgene expression and lipotoxicity.

Exendin-4 treatment improves the recovery after a massive β cell insult.

A number of powerful anti-diabetic drugs have recently become available, many of which take advantage of the glucagon-like peptide 1 (GLP-1) axis. Exendin-4 is a potent and long-lived GLP-1 receptor agonist (21) which has been shown to increase β cell mass and improve glucose tolerance (22). We chose severely challenged PANIC-ATTAC mice (glucose levels >500 mg/dL) and treated them with exendin-4. As seen in Fig. 3B, dimerizer treatment as well as subsequent exendin-4 treatment did not have an impact on glucose levels in WT animals. However, PANIC-ATTAC mice that were exposed to low and high doses of exendin-4 showed a dose-dependent improvement of hyperglycemia over a period of two weeks. Correspondingly, the PANIC-ATTAC mice in the 10 μpk group showed lower glucose levels during an OGTT (Fig. 3C) yet remained deficient in GSIS (Fig. 3D). The potent effects of exendin-4 treatment was seen when total pancreatic insulin content was measured (Fig. 3E) which was further corroborated by islet histology (Fig. 3F).

Characterization of homozygous PANIC-ATTAC transgenic mice.

While mice hemizygous for the PANIC-ATTAC transgene require multiple injections of dimerizer and still fall into “moderate” and “full” responder categories, we wanted to probe the effects of doubling the transgene dosage, i.e. rendering the mice homozygous at the transgene loci. At baseline, the homozygous mice revealed no differences compared to WT animals (Fig. 4A). However, the higher potency of doubling transgenic dosage became apparent when a single injection of dimerizer compound at only 0.2 μg/g body weight was sufficient to trigger a uniform response and homogeneous hyperglycemia in all mice (Fig. 4B). Phenotypically, the mice behaved as expected, with severe hyperglycemia during an OGTT, ineffective GSIS, low pancreatic insulin content and very few insulin positive cells in islets (Fig. 4B). To confirm that the decrease
of pancreatic insulin content is due to β cell loss, we quantified the β cell mass 8 days post initiation of dimerizer treatment. We detected a 10-fold decrease of β cell mass, consistent with the results obtained by assessing the decrease in pancreatic insulin content (Supplemental Fig. 3). As with all models targeting β cells in vivo, we cannot formally rule out the possibility of a downregulation of insulin expression in otherwise mature β cells that may give a false impression of β cell loss. However, the widespread apoptotic β cells found in islets, the absence of MafA+/insulin-cells and the disrupted islet architecture suggest β cell death is the most likely cause of decreased pancreatic insulin content and hyperglycemia. Despite the aggressive nature of the ablation, no lethality has been found and these mice managed to mount an effective recovery as evident during an OGTT, by pancreatic insulin content and by histology (Fig. 4C). The recovered glucose tolerance during an OGTT is accompanied by a defective insulin response. To assess whether differences in gastric absorption are involved, we performed intraperitoneal glucose tolerance test (IPGTT) after 5 hours fasting. As with OGTT, we found that during IPGTT, the glucose tolerance is improved, while glucose stimulated insulin secretion remains defective (Supplemental Fig. 4).

While the initial effects shown here were obtained with a single dose of dimerizer, the homozygous mice also displayed a dose-dependent reduction of pancreatic insulin content, offering the possibility to ablate a pre-determined number of β cells in a reproducible and uniform manner (Fig. 4D). Focusing on the fasting glucose levels further corroborated that the mice improved their glucose control after recovery (Fig. 4E). A more refined analysis of the fasting glucose levels showed that the mice restored euglycemia within approximately 6 weeks after the onset of hyperglycemia (Fig. 4F).

To formally demonstrate that the β cell death triggered by forced dimerization of caspase 8 is indeed caused by apoptosis, we performed TUNEL staining. While relatively limited apoptosis was seen 4 h after dimerizer treatment, TUNEL positive cells (red) were clearly visible 24 h post-treatment, particularly in the more stringent homozygous setting (Fig. 4G). The disorganized islet structure and decreased insulin-positive β cells in homozygous transgenic mice indicate that the peak apoptotic response may occur before 24 h while in hemizygous mice the normal appearance of islets with a sharp increase of apoptotic staining suggests that massive β cell death is about to initiate at 24 h post-treatment.

PPAR-γ agonist and sitagliptin treatments improve β cell recovery in homozygous PANIC-ATTAC mice. The stimulation of the GLP-1 axis is a powerful approach to speed up recovery in the hemizygous PANIC-ATTAC mice. While a β cell-specific PPAR-γ knockout only showed a relatively mild phenotype (23), recent studies suggested that PPAR-γ can in fact play an important role in β cell physiology (24). To probe whether PPAR-γ agonists may have an impact on recovery, homozygous PANIC-ATTAC mice were treated with a single dose dimerizer at 0.3 μg/g body weight to trigger severe hyperglycemia. On day 8 post dimerizer treatment, mice were treated with a PPAR-γ agonist (COOH) (12). By day 28, fasting glucose had nearly recovered to baseline levels (Fig. 5A). The OGTT response also improved significantly (Fig. 5B), but
GSIS remained impaired (Fig. 5C). While PPAR-γ agonists have a potent impact on insulin sensitivity in peripheral tissues, they also have an effect on β cells by increasing the pancreatic insulin content, even though the differences did not reach statistical significance (Fig. 5D). An insulin tolerance test (ITT) on day 48 revealed only modest differences between PPAR-γ agonist and vehicle treatments (Fig. 5E). Whether the improvements found in glucose control are a function of direct effects of PPAR-γ in β cells or reflect an indirect mechanism of action of PPAR-γ agonist action in adipocytes or other tissues remains to be seen.

Sitagliptin is a dipeptidyl peptidase (DPP)-4 inhibitor in clinical use, increasing active GLP-1 levels (10; 13). After induction of severe hyperglycemia, sitagliptin treatment was initialized as a food additive. We found that the active GLP-1 levels were increased two-fold in sitagliptin-treated animals (Fig. 5F). This was accompanied by an improved glucose tolerance (Fig. 5G) and substantial restoration of islet structure and morphology (Fig. 5H) (10).

PANIC-ATTAC mice display improved insulin sensitivity upon recovery.

An additional interesting phenomenon was unraveled when we assessed the recovered transgenic mice. Since they had undergone several weeks of hyperglycemia, we expected that the chronic exposure to high glucose would have caused permanent damage due to a “hyperglycemic memory” effect leading to insulin resistance. However, we found that recovered PANIC-ATTAC mice displayed significant improvements in insulin sensitivity in both hemizygous (Fig. 6A) and homozygous mice (Fig. 6B). While the low concentrations of available insulin may contribute to the increased effectiveness of injected insulin, there may be additional mechanisms in place in light of the rather unusual but physiological context in which the PANIC-ATTAC animals operate.

Glut2 positive, insulin negative cells increase after β cell recovery.

The remarkable recovery of pancreatic β cells in PANIC-ATTAC mice raises the question of what cell type gives rise to the newly emerging β cell population. Upon careful analysis of the recovering pancreas, insulin positive cells appeared in the ducts (data not shown) which has been suggested to be a sign for β cell neogenesis (4; 25). However, we decided to focus on a different cell type that may or may not be related to the insulin positive ductal cells. We took advantage of the fact that high-dose streptozotocin (STZ)-treated animals generally do not recover from hyperglycemia (Fig. 6C compared to Fig. 4F). The main route of cellular entry of STZ is through the glucose transporter Glut2 (26). We reasoned that high-dose STZ treatment results in irreversible damage to the pancreas due to the fact that β cell precursors may also express Glut2 and the lack of recovery is mostly due to simultaneous elimination of both adult β cells and precursors. In the PANIC-ATTAC mice, we are ablating only mature, insulin-positive β cells. If this is indeed the case, we postulated that we should be able to identify a novel population of insulin-negative, Glut2 positive cells in the recovering PANIC-ATTAC mice. This is indeed the case (Fig. 6D). While in WT cells, Glut2 staining is restricted to insulin positive cells with very few Glut2+/insulin− cells, high-dose STZ treatment eliminated essentially all Glut2 positive cells. However, in recovering PANIC-ATTAC mice, a significant number of...
Glut2 positive cells are insulin negative and PDX-1 negative (Fig. 6D and supplemental Fig. 5). This is suggestive that a β cell precursor pool exists that is defined by Glut2 positivity without concomitant insulin expression. We are currently in the process of developing an approach to isolate these cells. Further characterization of these cells will have to await detailed lineage tracing studies.

We found that the membrane-bound localization of Glut2 is lost in hyperglycemic PANIC-ATTAC animals compared to animals that have achieved euglycemic levels again (Fig. 6E). The predominantly intracellular localization of Glut2 suggests that β cells have additional and so far uncharacterized mechanisms in place to protect them from hyperglycemic damage that not only involves the transcriptional downregulation of Glut2 (27), but also the intracellular retention of the transporter.

DISCUSSION

Here, we describe a novel mouse model allowing the inducible ablation of β cells at any stage during the life cycle of a mouse. Compared to several conventional pancreas injury models, the PANIC-ATTAC mice differ in a number of ways and offer great potential in several areas of islet physiology.

In the PANIC-ATTAC model, the degree of apoptosis in the β cell population can be manipulated in several ways, by both varying the dose and the frequency of dimerizer treatment, by transgene dosage (hemizygous vs homozygous animals) and by dietary intervention (HFD exposure). While an aggressive treatment regimen has the advantage of destroying a large number of β cells rapidly, yielding uniform hyperglycemia, a moderate challenge can be employed to examine the key anti-apoptotic responses in surviving cells.

One of the most novel aspects of this model is the dramatic recovery of β cells to levels nearly identical as before treatment. A number of mechanisms may enable the β cell population to recover under these circumstances. The rather “gentle” pro-apoptotic approach used here as opposed to the more widely used necrotic methods may minimize the inflammatory response in the islets. Hyperglycemia per se seen in the PANIC-ATTAC model may provide a more favorable environment for β cell recovery compared to other pancreas injury models where hyperglycemia is usually accompanied by hyperinsulinaemia and dyslipidemia. Additionally, we may preserve a potential β cell precursor pool by targeting insulin-positive cells compared to the less specific exposure to STZ. Similar animal models have been reported by targeting expression of diphtheria toxin specifically in β cells (28; 29). Nir and colleagues found a similar phenomenon of β cell regeneration after triggering ablation in their animal model, reporting results vastly consistent with the observations described here, further emphasizing the potential for plasticity of β cell mass under some conditions (29). More recently, another animal model using inducible Myc activation has been created and characterized which shows significant regeneration post β cell ablation (30).

The lack of GSIS in the recovered islets does not come as a surprise. In rat models, hyperglycemia has been reported to cause defective GSIS (19). Additionally, it is
possible that the newly differentiated β cells do not respond to glucose effectively in the recovered islets, presumably due to the lack of a specific factor. While it is clear that we fail to fully reconstitute complete functionality of β cells, this also represents a unique tool for testing factors and compounds that can confer restoration of GSIS. Putative GSIS-reconstitution drugs can be used together with anti-diabetic treatments which may only restore the pancreatic insulin content (Fig. 3 and 5). The combination of improvements for both GSIS and pancreatic insulin content is pivotal for effective glycemic control. Additionally, this model can also be used to examine the in vivo effectiveness of candidate genes enabling the restoration of GSIS which were previously identified in vitro to be critically involved in this process (31).

We have shown a number of “proof of concept” examples of pharmacological interventions that enhance the recovery kinetics upon a massive pro-apoptotic challenge. The PANIC-ATTAC mouse model lends itself for further applications in this area with uniform hyperglycemia and the ability to recover. In the current study, we have used these transgenic mice post hyperglycemia to determine the recovery-enhancing aspects of pharmacological interventions. An equally attractive approach is to test the anti-apoptotic protective mechanisms that may be induced pharmacologically. Using the PANIC-ATTAC mouse model, we are able to screen for pharmacological interventions that confer protective effects on β cells during diabetes initiation to slow down and prevent the onset of hyperglycemia.

The PANIC-ATTAC mouse model lends itself to additional experimental approaches for which there is currently no experimental paradigm available. Gestational diabetes is associated with adverse effects on fetal development during pregnancy and more importantly, increasing incidence for diabetes in the offspring later in life (32). To study gestational diabetes, glucose infusion and chemical-induced hyperglycemia have been used in animals with limitations and toxin-related complications (33; 34). Using PANIC-ATTAC mice, transgene-positive animals can be induced to become hyperglycemic during gestation, exposing WT embryos to hyperglycemia without confounding factors. Additionally, to dissect the exact contributions of hyperglycemia in utero versus hyperglycemic effects during lactation on future diabetes development, wt pups from diabetic mothers can be adopted by euglycemic mothers and vice versa.

Both neogenesis from precursor cells and replication from adult β cells have been identified as the mechanism of β cell regeneration (4; 29; 35). The inconsistencies may be due to the differences in experimental models and conditions. Here, we define a novel cell population that can be observed at high frequency in recovering PANIC-ATTAC islets. This population is characterized by high level expression of Glut2, yet these cells have not (or not yet) induced the expression of insulin. We appreciate that we have not formally demonstrated that these cells are indeed precursors for β cells, and it is possible that they are a curiosity of this particular system. We did not find significant number of Glut2 positive/insulin negative cells in WT control animals which argues against this cell
population as a resident cell type in islets. However, it is clear that STZ treatment at higher concentrations completely eliminates this cell population, and this might be a potential reason to prevent recovery of the islets. The widespread presence of these cells in the recovering PANIC-ATTAC islets is intriguing, but it is also consistent with the finding that Glut2 positive epithelial cells have been postulated to give rise to adult β cells during development (36). Additionally, in the ductal ligation model of pancreas injury, increased proliferation of Glut2 positive cells has been reported in pancreatic ducts (25). We are currently devoting significant efforts towards the isolation of this cell population.

In summary, the PANIC-ATTAC mice provide an inducible model of β cell loss with the ability of β cell recovery with a host of novel aspects that most of the previously described pancreas injury models failed to display to date. Applications of the PANIC-ATTAC mouse model in several areas of islet research may provide an ideal system to improve our understanding of GSIS, gestational diabetes and the definition of novel β cell precursors.

ACKNOWLEDGEMENTS
The work was supported by JDRF grants 1-2008-16 PES) and JDRF 17-2007-1026 (Chris Newgard) as well as NIH grant R01-DK55758 (P.E.S.). T.D.S is supported by a post-doctoral fellowship from the American Heart Association. We thank Dr. Susan Bonner-Weir (Joslin Diabetes Center) for technical help, instructions and advice for this project. We thank Yuan Xin (Albert Einstein College of Medicine), Aisha Cordero (Albert Einstein College of Medicine), Virginia Liu, Amy Song and James Yi (University of Texas), Zhihua Li, Yue Feng and Yun-Ping Zhou (Merck Research Laboratories) for expert technical assistance and Nils Halberg (University of Texas & Copenhagen University) for help with the statistical analysis. We thank Ariad Pharmaceuticals for providing the dimerization kit and compound AP20187. We thank Dr. Raymond Macdonald (Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas) and Dr. Klaus Kaestner (Department of Genetics, University of Pennsylvania) for providing PDX-1 antibodies. We thank the entire Scherer group for helpful discussions, Dr. Ken Chen and the transgenic core facility at the Albert Einstein College of Medicine for transgenic mouse generation and the Metabolic Core Facility at UTSW for help in phenotyping. We also thank Drs. Streamson Chua and Jean Herbert from the Albert Einstein College of Medicine for sharing unpublished information.
REFERENCES

14. Clackson T, Yang W, Rozamus LW, Hatada M, Amara JF, Rollins CT, Stevenson LF, Magari SR,

FIG. 1. Generation of PANIC-ATTAC transgenic mice.
A: Transgene expression in all the three founder transgenic lines. Total RNA from whole pancreas was isolated and processed for reverse transcription. The PCR amplification results are shown for the transgene, insulin and GAPDH with the latter two as loading controls.
B: Quantitative PCR analysis to determine the expression levels of the transgene relative to insulin in three positive founder lines. n = 5 per mouse line. * P < 0.001.
C: Tissue distribution of the transgene in the founder line B23.2. GAPDH was used as a loading control. Note that the relative expression of transgene in pancreas is higher compared to hypothalamus due to the partial degradation of RNA during preparation indicated by the low GAPDH signal in the pancreas.
FIG. 2. Characterization of hemizygous PANIC-ATTAC transgenic mice.

A: Oral glucose tolerance test (OGTT) and pancreatic insulin content of WT and hemizygous PANIC-ATTAC mice before dimerizer administration. For OGTT, n = 6 per group. For insulin content, n = 5 of WT and n = 4 of PANIC-ATTAC. A representative immunofluorescent image for insulin (green), glucagon (red) and nuclei (blue) is shown. Scale bar = 50 μm. NS, not significant.

B: OGTT and pancreatic insulin content of WT and hemizygous PANIC-ATTAC mice 8 days after administration of dimerizer (time of onset hyperglycemia). In glucose measurement during OGTT, all comparisons including WT (n = 5) vs. L-PANIC (n = 3), L-PANIC vs. H-PANIC (n = 6) and WT vs. H-PANIC are statistically significant except WT vs. L-PANIC at time 180 min. For the analysis of insulin levels during OGTT, the differences between WT and L-PANIC at 15 min, WT and H-PANIC at 15 min, WT and H-PANIC at 30 min are significant. For insulin content, n = 5 of WT, n = 4 of L-PANIC and n = 3 of H-PANIC. A representative immunofluorescent image for insulin (green), glucagon (red) and nuclei (blue) is shown. Scale bar = 50 μm. * P < 0.05, ** P < 0.001, NS, not significant.

C: OGTT and pancreatic insulin content of WT and hemizygous PANIC-ATTAC mice 64 days after administration of dimerizer when serum glucose returns to normal level. For glucose measurements during OGTT, the comparisons between WT (n = 3) vs L-PANIC (n = 4), WT vs. H-PANIC (n = 4) show significant differences at time 30 min, 60 min and 120 min. For insulin measurements during OGTT, the differences between WT (n = 3) and L-PANIC (n = 3), WT and H-PANIC (n = 3) during the entire course are significant. For insulin content, n = 8 of WT, n = 4 of L-PANIC and n = 5 of H-PANIC. A representative immunofluorescent image for insulin (green), glucagon (red) and nuclei (blue) is shown. Scale bar = 50 μm. * P < 0.05, ** P < 0.001, NS, not significant.

D: Fasting glucose levels of WT, L-PANIC and H-PANIC mice before dimerizer treatment, at the onset of hyperglycemia and after recovery. At least 3 animals were recorded per group. ** P < 0.001, NS, not significant.

E: Fasting glucose profile of WT (n = 8), L-PANIC (n = 5) and H-PANIC (n = 3) mice during the entire recovery period. * P < 0.05, ** P < 0.001, NS, not significant.
FIG. 3. Exendin-4 treatment improves the pancreatic β cell recovery after ablation.

A: Conversion rate of hemizygous PANIC-ATTAC mice into L-PANIC and H-PANIC after high fat diet (HFD) treatment of 0, 5 and 10 weeks. n = 6-22 per group.

B: Glucose profile of WT and PANIC-ATTAC mice with vehicle and exendin-4 treatments. WT and hemizygous PANIC-ATTAC mice were on HFD for 4 weeks and hyperglycemia was induced by dimerizer injection. Postprandial blood glucose levels were recorded. Significant differences are found between PANIC-vehicle and PANIC-10 μpk groups at day 7, 12 and 16. In each WT group, 5 animals were used and 7 animals were used per PANIC-ATTAC group. * P < 0.05, ** P < 0.001.
C: OGTT of WT and PANIC-ATTAC with vehicle and exendin-4 treatments. Significant differences are seen between vehicle and exendin-4 treatments over the entire course for PANIC-ATTAC. WT-vehicle, \(n = 5 \), WT-10 \(\mu \)pk, \(n = 5 \), PANIC-vehicle, \(n = 7 \), PANIC-10 \(\mu \)pk, \(n = 7 \). Note that exendin-4 treatment in WT animals also shows significant differences at time 30 min and 60 min compared to vehicle. * \(P < 0.05 \).

D: Insulin levels during OGTT for WT and PANIC-ATTAC mice of vehicle and exendin-4 groups. The same animals of (C) were analyzed. Note that significant difference is seen between WT and PANIC-ATTAC mice independent of exendin-4 treatment. * \(P < 0.05 \).

E: Pancreatic insulin content of WT and PANIC-ATTAC after vehicle and exendin-4 treatments. Significant difference was found between vehicle and exendin-4 treatments (10 \(\mu \)pk) for PANIC-ATTAC. At least 3 animals were recorded per group. * \(P < 0.05 \).

F: Immunofluorescent staining for insulin (green), glucagon (red) and nuclei (blue). Scale bar = 50 \(\mu \)m.
FIG. 4. Characterization of the homozygous PANIC-ATTAC mice.

A: Oral glucose tolerance test (OGTT) and pancreatic insulin content of WT and homozygous PANIC-ATTAC (P/P) mice before administration of dimerizer. For OGTT, $n = 6$ per group. For pancreatic insulin content, $n = 4$ of WT and $n = 3$ of P/P. A representative immunofluorescent image for insulin (green), glucagon (red) and nuclei (blue) is shown. Scale bar = 50 μm. NS, not significant.

B: OGTT and pancreatic insulin content of WT and P/P mice 8 days after a single treatment of dimerizer. For glucose measurements during OGTT, 7 animals were used per experimental group. The same animals were used for insulin analysis. For the pancreatic insulin content measurement, $n = 6$ of WT, $n = 7$ of P/P. A representative immunofluorescent image for insulin (green), glucagon (red) and nuclei (blue) is shown. Scale bar = 50 μm. * $P < 0.05$, ** $P < 0.001$.

C: OGTT and pancreatic insulin content of WT and P/P mice 64 days after administration of dimerizer. For glucose measurements during OGTT, $n = 4$ for WT and $n = 3$ for P/P. Insulin measurements were performed on the same mice. For pancreatic insulin content, $n = 5$ of WT, $n = 3$ of P/P. A representative immunofluorescent image for insulin (green), glucagon (red) and nuclei (blue) is shown. Scale bar = 50 μm. * $P < 0.05$, ** $P < 0.001$, NS, not significant.

D: Dose-dependent ablation of β cells with dimerizer administration. Dimerizer was injected at different concentrations into WT and P/P animals (low, 0.05 μg/g, medium, 0.2 μg/g, high, 0.5 μg/g of body weight). After 8 days, pancreatic insulin content was determined. More than 3 animals were recorded per treatment. ** $P < 0.001$, NS, not significant.

E: Fasting glucose levels of WT and P/P mice before dimerizer treatment, at the onset of hyperglycemia (day 8) and after recovery (day 64). At least 3 animals were monitored in each group. ** $P < 0.001$, NS, not significant.

F: Fasting glucose profile of WT and P/P animals during recovery period. More than 3 animals were used per group. * $P < 0.05$, ** $P < 0.001$, NS, not significant.

G: Visualization of apoptotic β cells by TUNEL staining in WT, hemizygous and homozygous PANIC-ATTAC mice 4 h and 24 h post treatment. Insulin-positive β cells are showed in green and apoptotic cells are shown in red. Scale bar = 50 μm.
FIG. 5. PPAR-γ agonist and sitagliptin treatments improve the recovery of PANIC-ATTAC mice.

A: Fasting glucose in homozygous PANIC-ATTAC mice with vehicle and PPAR-γ agonist (COOH) treatments. Hyperglycemia was induced by single dose of dimerizer and the food admix treatment of COOH was initiated on day 8. Vehicle, n = 3, COOH, n = 4. ** P < 0.001.

B: OGTT of vehicle and COOH treated PANIC-ATTAC mice on day 48. Vehicle, n = 3, COOH, n = 4. * P < 0.05, ** P < 0.001, *** P = 0.05.

C: Insulin secretion from OGTT analysis. No significant difference was found over the entire course. NS, not significant.

D: Pancreatic insulin content of vehicle and COOH treated PANIC-ATTAC mice from day 48. Vehicle, n = 3, COOH, n = 4. NS, not significant.

E: ITT of vehicle and COOH treated PANIC-ATTAC mice on day 48. Vehicle, n = 4, COOH, n = 4. * P < 0.05, *** P = 0.05, NS, not significant.
The PANIC-ATTAC mouse model

F: Active GLP-1 levels are increased after sitagliptin treatment in homozygous PANIC-ATTAC mice compared to vehicle group. A total of 11 animals were recorded per group. * $P < 0.05$.

G: Sitagliptin treatment improves glucose tolerance in homozygous PANIC-ATTAC mice compared to vehicle treatment. Significant differences were found at time 15, 30, 60, 90 and 120 min. A total of 11 mice were used in each group. * $P < 0.05$, ** $P < 0.001$, NS, not significant.

H: A representative image is shown for insulin (green), glucagon (red) and nuclei (blue) of vehicle and sitagliptin treated homozygous PANIC-ATTAC animals. Scale bar = 50 μm.
FIG. 6. PANIC-ATTAC mice display improved insulin sensitivity and increased population of Glut2+/insulin− cells after recovery.

A: ITT on hemizygous PANIC-ATTAC mice after recovery. Significant differences are seen between WT vs. L-PANIC and WT vs. H-PANIC at time 15, 60, 90 and 120 min. There is no difference between L-PANIC and H-PANIC during the entire course. WT, n = 3, L-PANIC, n = 3, H-PANIC, n = 6. * P < 0.05, ** P < 0.001.

B: ITT on homozygous PANIC-ATTAC mice (P/P) after recovery. Significant differences are found between WT (n = 4) and P/P (n = 3) mice at time 30 and 60 min. * P < 0.05.

C: Glucose profile of vehicle and streptozotocin (STZ)-treated animals. Vehicle, n = 4, STZ, n = 5. ** P < 0.001.

D: Immunofluorescent staining of insulin (green), Glut2 (red) and nuclei (blue) in recovered homozygous PANIC-ATTAC mice. Arrows indicate Glut2+/insulin− cells. Note that there are more Glut2+/insulin− cells present in recovered PANIC-ATTAC animals compared to WT control.
mice. In STZ-treated group, very few insulin positive cells are left and the islet architecture is disrupted. Scale bar = 50 μm.

E: Immunohistochemistry staining for Glut2 in WT, homozygous PANIC-ATTAC and STZ-treated mice. Note that the membrane-bound Glut2 is restored in PANIC-euglycemic group while hyperglycemic PANIC-ATTAC mice show intracellular localization of Glut2 despite the relative normalization of the total signal. Scale bar = 50 μm.