Association testing of novel type 2 diabetes risk-alleles in the
JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and
NOTCH2 loci with insulin release, insulin sensitivity and obesity in
a population-based sample of 4,516 glucose-tolerant middle-aged
Danes

Niels Grarup, MD¹, Gitte Andersen, PhD¹, Nikolaj T. Krarup, MB¹, Anders Albrechtsen,
MSc², Ole Schmitz, DMSc³,⁴, Torben Jørgensen, DMSc⁵, Knut Borch-Johnsen, DMSc¹,⁵,⁶,
Torben Hansen, PhD¹, Oluf Pedersen, DMSc¹,⁶.

¹ Steno Diabetes Center, Copenhagen, Denmark; ² Department of Biostatistics,
University of Copenhagen, Denmark; ³ Department of Endocrinology and Diabetes,
Aarhus University Hospital, Aarhus, Denmark; ⁴ Department of Clinical Pharmacology,
University of Aarhus, Aarhus, Denmark; ⁵ Research Centre for Prevention and Health,
Glostrup University Hospital, Glostrup, Denmark; ⁶ Faculty of Health Sciences, University
of Aarhus, Aarhus, Denmark.

Corresponding author:
Niels Grarup
Steno Diabetes Center
Niels Steensens Vej 1, NLC2.14
2820 Gentofte
Denmark
E-mail: ngrp@steno.dk

Received 30 March 2008 and accepted 16 June 2008.
Objective: We evaluated the impact on diabetes-related intermediary traits of common novel type 2 diabetes-associated variants in the JAZF1 (rs864745), CDC123/CAMK1D (rs12779790), TSPAN8 (rs7961581), THADA (rs7578597), ADAMTS9 (rs4607103), and NOTCH2 (rs10923931) loci which were recently identified by meta-analysis of genome-wide association data.

Research design and methods: We genotyped the six variants in 4,516 middle-aged glucose-tolerant individuals of the population-based Inter99 cohort who were all characterized by an oral glucose tolerance test (OGTT).

Results: Homozygous carriers of the minor diabetes risk G-allele of the CDC123/CAMK1D rs12779790 showed an 18% decrease in insulinogenic index (95% CI 10-27%; P=4x10^{-5}), an 18% decrease in corrected insulin response (CIR) (8.1-29%; P=4x10^{-4}), and a 13% decrease in the ratio of area under the serum-insulin and plasma-glucose curves during an OGTT (AUC-insulin/AUC-glucose) (5.8-20%; P=4x10^{-4}). Carriers of the diabetes-associated T-allele of JAZF1 rs864745 had an allele-dependent 3% decrease in BIGTT-AIR (0.9-4.3%; P=0.003). Furthermore, the diabetes-associated C-allele of TSPAN8 rs7961581 associated with decreased levels of CIR (4.5% [0.5-8.4]; P=0.03), of AUC-insulin/AUC-glucose ratio (3.9% [1.2-6.7]; P=0.005), and of insulinogenic index (5.2% [1.9-8.6%]; P=0.002). No association with traits of insulin release or insulin action was observed for the THADA, ADAMTS9 or NOTCH2 variants.

Conclusions: If replicated, our data suggest that type 2 diabetes at-risk alleles in the JAZF1, CDC123/CAMK1D, and TSPAN8 loci associate with various OGTT-based surrogate measures of insulin release, emphasizing the contribution of abnormal pancreatic β-cell function in the pathogenesis of type 2 diabetes.
Recent discoveries using genome-wide association (GWA) studies have led to progression in the understanding of the molecular genetic background of type 2 diabetes, dramatically increasing the number of common validated type 2 diabetes loci with modest impact on relative diabetes risk (1-5). The DIAGRAM consortium recently reported the outcome of a meta-analysis of data from three GWA studies. Six additional type 2 diabetes loci reaching genome-wide significance levels were identified in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci; all modestly affecting disease risk with odds ratios between 1.09 and 1.15 (6).

As for most other findings obtained from GWA studies, little is known about the function of the putative regional candidate genes thought to be affected by the at-risk variants. Recent studies have, however, shown that many validated type 2 diabetes risk-variants confer an impaired pancreatic β-cell function which seems to be the case for risk-alleles in the CDKAL1, SLC30A8, HHEX/IDE, CDKN2A/2B, IGF2BP2, TCF7L2, and KCNJ11 loci (2,7-9). Indeed, only the PPARG Pro12Ala variant has so far displayed a diabetogenic potential through affecting peripheral insulin sensitivity (10) and variants in FTO by increasing fat accumulation (11). Of the six novel type 2 diabetes loci (6), the biological function of NOTCH2 points to an impact on pancreatic β-cell function due to its critical role in fetal pancreatic development (12), yet, little or no prior implication in the pathogenesis of type 2 diabetes or diabetes-related phenotypes can be claimed for genes in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, or ADAMTS9 regions.

Given the sparse knowledge of the biological functions of the six novel type 2 diabetes-associated variants, we have characterized the influence of these variants on quantitative surrogate measures of oral glucose-stimulated insulin release, insulin sensitivity and body fat accumulation in a population-based study of normal glucose-tolerant middle-aged Danes who all had undertaken an oral glucose tolerance test (OGTT).

Methods
Subjects
Studies of quantitative metabolic traits were performed in the Inter99 cohort which is a population-based, randomized, non-pharmacological intervention study of 6,784 middle-aged subjects for the prevention of ischemic heart disease, conducted at the Research Centre for Prevention and Health in Glostrup, Copenhagen (ClinicalTrials.gov ID-no: NCT00289237) (13). An OGTT was performed in all participants with measurements of plasma-glucose and serum-insulin at fasting and at 30 and 120 minutes and 6,083 subjects with available DNA were subsequently classified as individuals with normal glucose tolerance (NGT) (n=4,516), impaired fasting glycemia (n=503), impaired glucose tolerance (n=692), screen-detected and treatment-naïve type 2 diabetes (n=253) or previously diagnosed type 2 diabetes (n=119). In the analysis of quantitative diabetes-related phenotypes, we included 4,516 subjects with NGT (2,101 men/2,415 women, age 45.2±7.9 years and BMI...
25.5±4.1 kg/m² [mean±SD]). Type 2 diabetes was diagnosed according to WHO 1999 criteria.

Informed written consent was obtained from all participants. The study was conducted in accordance with the Declaration of Helsinki II and was approved by the local Ethical Committee of Copenhagen.

Biochemical and anthropometrical measures

Height and weight were measured in light indoor clothing and without shoes. Waist circumference was measured in the upright position midway between the iliac crest and the lower costal margin. Blood samples were drawn after a 12-h overnight fast. Plasma-glucose was analyzed by a glucose oxidase method (Granutest; Merck, Darmstadt, Germany). Serum-insulin (excluding des(31, 32) and intact proinsulin) was measured using the AutoDELFIA insulin kit (Perkin-Elmer, Wallac, Turku, Finland).

Indices of insulin release and insulin sensitivity

Oral glucose-stimulated insulin release was reported as the insulinogenic index, the corrected insulin response (CIR), the ratio of the area under the curve (AUC) of insulin to the AUC of glucose during the OGTT (AUC-insulin/AUC-glucose), and the BIGTT-acute insulin response (AIR) index. The insulinogenic index was calculated as:
\[
(\text{serum-insulin}_{30\ min} - \text{serum-insulin}_{0\ min\ [pmol/l]}) / \text{plasma-glucose}_{30\ min\ [mmol/l]}
\]
CIR was calculated as:
\[
100 \times \frac{\text{serum-insulin}_{30\ min}}{(\text{plasma-glucose}_{30\ min} - 3.89)}
\]
(14). Indices of insulin sensitivity were reported as the insulin sensitivity index (ISI), calculated as the reciprocal of homeostasis model assessment of insulin resistance (22.5 / (plasma-glucose_{0\ min} [mmol/l] × serum-insulin_{0\ min\ [pmol/l]]) (15), and as the OGTT-derived BIGTT-SI. The BIGTT indices apply information on sex and BMI combined with plasma-glucose and serum-insulin during an OGTT to provide indices for AIR and SI which are highly correlated with indices obtained during an intravenous glucose tolerance test and were calculated as reported (16). In order to construct OGTT-based disposition indices we multiplied the CIR index with ISI, as these measures are not intrinsically interdependent. Furthermore, we multiplied the BIGTT-SI index with the BIGTT-AIR index.

Genotyping

The six gene variants (rs864745, rs12779790, rs7961581, rs7578597, rs4607103, rs10923931) were genotyped by TaqMan allelic discrimination (KBiosciences, Hoddesdon, UK). All genotyping success rates were above 96% and all mismatch rates below 1% in 1,090 duplicate samples. The distributions of genotypes for all variants were in Hardy-Weinberg equilibrium (all P>0.05).

Statistical analysis

General linear statistical methodology was used to test quantitative traits in relation to genotype applying additive, dominant and recessive models while adjusting for the effect of age (BIGTT-SI and BIGTT-AIR), age and sex (BMI and waist) or age, sex, and BMI (all other traits), respectively. BMI and all values of plasma-glucose and serum-insulin and derived indices of insulin release and insulin sensitivity were logarithmically transformed prior to analysis. In the main text parameter estimates (95% CI) of associated quantitative traits are given while data in tables are unadjusted.
medians or means. The multivariate method, Hotelling’s T^2, was applied to test the simultaneous effect of genotype on insulin release and insulin sensitivity. A P-value of less than 0.05 was considered significant. All analyses were performed using RGui, version 2.6.1 (http://www.r-project.org).

Estimation of statistical power
Statistical power for the quantitative traits was estimated using simulations. We assumed an additive genetic model for both the simulation of the data and for testing the data using a linear model. We used the empirical variance of the observed traits to simulate phenotypes from a normal distribution so that variance across genotypes is drawn from the estimated variance. Because we also include adjustment factors in our analysis we estimated the variance from the residuals of a linear model containing the adjustment factors. Thus, we assume that the genotype and the adjustment factors are independent. The power was estimated using 5,000 simulations and a significance threshold of 0.05. Based on the allele frequencies of the six examined gene variants and a sample size of 4,516 subjects we estimated the effect sizes per allele of quantitative traits for which we had 80% and 90% statistical power, respectively, to detect an association. Depending on allele frequency (range 9.5-48.0%) and assuming an additive model we had 80% power to detect an allele-dependent difference of 0.8-1.4% in BMI, 2.2-3.8% in BIGTT-AIR, 3.2-5.4% in insulinogenic index, and 3.0-5.0% in ISI. Similarly, we had 90% statistical power to detect a 1.0-1.7% change per allele in BMI, 2.6-4.3% in BIGTT-AIR, 3.7-6.2% in insulinogenic index, and 3.4-5.9% in ISI, respectively.

Results
We investigated the JAZF1 rs864745, CDC123/CAMK1D rs12779790, TSPAN8 rs7961581, THADA rs7578597, ADAMTS9 rs4607103, and NOTCH2 rs10923931 variants for association with type 2 diabetes-related quantitative traits in a population-based sample of 4,516 glucose-tolerant subjects. Assuming an additive genetic model carriers of the major diabetes-associated T-allele of JAZF1 rs864745 had a 0.21 kg/m2 decreased BMI (0.048-0.39 kg/m2; $P=0.02$), a 0.47 cm decreased waist circumference (0.03-0.90 cm; $P=0.04$), and a 2.6% (0.9-4.3%; $P=0.003$) decreased insulin release per allele as assessed by the BIGTT-AIR index. The variant did not associate with other measures of insulin release (Table 1). Homozygous carriers of the minor diabetes-risk G-allele of the CDC123/CAMK1D rs12779790 showed a 15% decreased serum-insulin at 30 minutes during OGTT (7.8-23%, $P=8 \times 10^{-5}$), an 18% decreased insulinogenic index (10-27%; $P=4 \times 10^{-5}$), an 18% decreased CIR (8.1-29%; $P=4 \times 10^{-4}$), and a 13% decreased AUC-insulin/AUC-glucose (5.8-20%; $P=4 \times 10^{-4}$) (Table 2). When applying a dominant genetic model the minor diabetes-risk C-allele of the TSPAN8 rs7961581 associated with a modest decrease in serum-insulin at 30 minutes during OGTT (4.9% [1.9-7.9]; $P=0.001$), a decrease in CIR (4.5% [0.5-8.4]; $P=0.03$), a decrease in AUC-insulin/AUC-glucose (3.9% [1.2-6.7]; $P=0.005$), and a decrease in insulinogenic index (5.2% [1.9-8.6%]; $P=0.002$) (Table 3).

The THADA rs7578597 did not associate with measures of obesity (BMI:
$P=0.4$), insulin response (insulinogenic index: $P=0.4$), or insulin sensitivity (BIGTT-S_i: $P=1$) (Supplementary Table 1). Similarly, the \textit{ADAMTS9} rs4607103 and \textit{NOTCH2} rs10923931 variants did not significantly associate with measures of oral glucose-stimulated insulin response (all $P \geq 0.5$), insulin sensitivity ($P \geq 0.1$) or obesity ($P \geq 0.1$) in the Inter99 cohort (Supplementary Tables 2 and 3).

Similar results were found when including all 5,964 treatment-naïve individuals from the Inter99 cohort (data not shown).

As the insulin response to glucose is highly dependent on the level of insulin sensitivity we constructed two OGTT-based disposition indices by combining existing indices of insulin response and insulin sensitivity and tested association with the six genotyped variants. Homozygous carriers of the \textit{CDC123/CAMK1D} diabetes-associated G-allele showed a nominal association with a 13% decrease in a disposition index based on CIR and ISI (1.1-24%; $P=0.03$). A disposition index based on BIGTT-AIR and BIGTT-S_i did, however, not differ significantly between genotype groups for any of the six variants, although a tendency towards an allele-dependent decrease in minor G-allele carriers of the \textit{CDC123/CAMK1D} variant was observed ($P=0.05$).

In order to further evaluate the relationship between insulin release, insulin sensitivity, and genetic predispositions of the type 2 diabetes-associated variants we applied the multivariate Hotelling’s T^2 method to simultaneously test the effect of genotype on a combination of CIR and ISI as well as BIGTT-AIR and BIGTT-S_i (Figure 1). We demonstrated statistically significant multivariate associations of the \textit{JAZF1} and \textit{CDC123/CAMK1D} variants with the combination of CIR and ISI ($P_{\text{ADDITIVE}}=0.04$ and $P_{\text{RECESSIVE}}=0.002$, respectively). Furthermore, borderline association was observed for the \textit{TSPAN8} variant ($P_{\text{DOMINANT}}=0.09$ and $P_{\text{RECESSIVE}}=0.05$). The multivariate analysis did not show any influence of genotype on the combination of BIGTT-AIR and BIGTT-S_i (data not shown).

\textbf{Discussion}

We report the association testing of six recently discovered type 2 diabetes risk-variants (6) with intermediary diabetes-related phenotypes. Our results, if replicated in independent and statistically well-powered studies, suggest an impairment of pancreatic β-cell function for diabetes risk-alleles in or near \textit{JAZF1}, \textit{CDC123/CAMK1D}, and \textit{TSPAN8} since these variants were associated with various surrogate measures of insulin release during an OGTT. Further support of the role of the \textit{CDC123/CAMK1D} and \textit{TSPAN8} variants in altered pancreatic β-cell function was provided when analyzing an OGTT-based disposition index and for \textit{JAZF1} and \textit{CDC123/CAMK1D} variants when doing multivariate analysis of estimates of insulin sensitivity and insulin release. The observed associations for all three variants are concordant with an impaired oral glucose-stimulated insulin release in subjects carrying the reported type 2 diabetes risk-alleles (6).

In the analyses we primarily focused on glucose-tolerant subjects to avoid the confounding influence of disturbances in glucose homeostasis and to circumvent the risk that associations with especially impaired insulin response were driven by the known association with type 2
rs864745 resides in intron 1 of the JAZF1 (juxtaposed with another zinc finger gene 1) gene, which encodes a transcriptional repressor of the nuclear receptor subfamily 2, group C, member 2 (NR2C2) gene (17). NR2C2 (also known as TR4) is a member of the nuclear hormone receptor family and acts as a ligand-activated transcription factor (18). NR2C2 is widely expressed and Nr2c2−/− knock-out mice display a phenotype of growth retardation, hypoglycemia, and reduced gluconeogenesis by decreased activation of PEPCK (19,20); however, no obvious involvement in pancreatic ß-cell function has been demonstrated. Yet, since JAZF1 is expressed in the pancreas (17) one might speculate that a gain-of-function variant in JAZF1 may lead to post-natal growth restriction also affecting pancreatic ß-cell mass and function.

rs12779790 is located ~90 kb from CDC123 and ~63.5 kb from CAMK1D. CDC123 (cell division cycle 123 homolog (S. cerevisiae)) encodes a protein involved in cell cycle regulation and nutritional control of gene transcription with no known relation to type 2 diabetes pathogenesis (21). Since CAMK1D (calcium/calmodulin-dependent protein kinase I delta) regulates granulocyte function (22) it is also possible that a causative variant in this region is related to CAMK1D and affects pancreatic ß-cell function through increased apoptosis.

Lastly, rs7961581 resides ~110 kb upstream of TSPAN8 (tetraspanin 8), which encodes a widely expressed cell-surface glycoprotein known to complex with integrins to regulate cell motility in cancer cell lines (23). Since α6-integrin binding to laminin has been shown to negatively affect pancreatic ß-cell mass maintenance (24) it is possible that variation in TSPAN8 biologically influences pancreatic ß-cell function.

In this report we have performed a thorough evaluation of a range of OGTT-based surrogate estimates of insulin release and insulin sensitivity. The associations of examined gene variants to various measures of pancreatic ß-cell function highlight the need for cautious interpretation of outcomes. Variants in the CDC123/CAMK1D and TSPAN8 regions associate with the insulinogenic index, the corrected insulin response and the ratio of AUC-insulin to AUC-glucose, which are widely used and well-documented estimates of insulin release (25,26), yet not with the recently described BIGTT-AIR index (16) and the opposite is true for the JAZF1 variant. These discrepancies may be caused by different accuracy and/or sensitivity of the applied surrogate indices or the possibility that the different indices capture particular and diverse roles of the encoded proteins in specific steps of insulin biosynthesis, insulin secretion or insulin elimination. However, we can not exclude that the associations to various measures are caused by statistical type I or II errors. Although we analyzed a range of OGTT-based surrogate indices of insulin release we acknowledge that application of more precise measures of insulin release, such as estimates based on an intravenous glucose tolerance test, may have modified the outcome of our analyses.
Type 2 diabetes-associated variants in the \textit{THADA}, \textit{ADAMTS9}, and \textit{NOTCH2} loci did not associate with metabolic traits in the Inter99 cohort. Lack of statistical power is a possible explanation, since these variants confer modestly increased risk of type 2 diabetes. Based on 95% confidence intervals of effect size estimates we can with confidence exclude an allele-dependent effect in the current study on BMI, insulinogenic index, BIGTT-AIR, and ISI above 4.5% for \textit{THADA} rs7578597, 3% for \textit{ADAMTS9} rs4607103, and 4% for \textit{NOTCH2} rs10923931. However, we are unable to estimate potential associations below these effect sizes.

We recognize that since no correction for multiple hypothesis testing was applied the present results are of an explorative nature and call for validation in statistically powered and well-characterized cohorts. If, however, stringent Bonferroni correction for multiple testing (252 tests) was performed, only the associations of the \textit{CDC123/CAMK1D} rs1277790 variant with measures of insulin response (insulinogenic index and serum-insulin at 30 minutes during the OGTT) would remain statistically significant, underlining the need for replication. Based on the effect sizes of the current study we estimate that approximately 3,300, 6,100, and 3,900 subjects are needed for future studies to achieve 80% statistical power to replicate associations of \textit{JAZF1} rs864745 with BIGTT-AIR (additive model), \textit{CDC123/CAMK1D} rs127779790 with insulinogenic index (recessive model), and \textit{TSPAN8} rs7961581 with insulinogenic index (dominant model), respectively.

In conclusion, we report data suggesting an impaired pancreatic β-cell function in glucose-tolerant carriers of novel type 2 diabetes risk-alleles in the \textit{JAZF1}, \textit{CDC123/CAMK1D}, and \textit{TSPAN8} regions. No associations of common variants in \textit{THADA}, \textit{ADAMTS9}, and \textit{NOTCH2} with quantitative measures of insulin release or insulin sensitivity could be shown in the cohort of middle-aged people.

\textbf{Acknowledgements}

We are thankful to Dr. Mark McCarthy, Dr. Michael Boehnke, Dr. David Altshuler, Dr. Leif Groop, and Dr. Francis Collins from the DIAGRAM consortium for prepublication information on the identity of novel type 2 diabetes genes and loci. The authors wish to thank A. Forman, I.-L. Wantzin and M. Stendal for technical assistance and G. Lademann for secretarial support. The study was supported by grants from the Lundbeck Foundation Centre of Applied Medical Genomics for Personalized Disease Prediction, Prevention and Care (LUCAMP), the Danish Health Research Council, The European Union (EUGENE2, grant no. LSHM-CT-2004-512013), Danish Council for Strategic Research (DanORC, grant no. 2101-06-0005), the Faculty of Health Sciences of Aarhus University, the Danish Clinical Intervention Research Academy, and the Danish Diabetes Association and Novo Nordisk. We acknowledge all the members of the Inter99 team. The steering committee of the Inter99 study comprises: T. Jørgensen (PI), K. Borch-Johnsen (co-PI), H. Ibsen, T. Thomsen, C. Pisinger and C. Glümer. The study was financial supported by The Danish Medical Research Council, The Danish Centre for
References

Figure 1: Two-dimensional standard error of the mean of logarithm of insulin sensitivity index (ISI) and logarithm of corrected insulin response (CIR) stratified according to genotype of **JAZF1** rs864745, **CDC123/CAMK1D** rs12779790, and **TSPAN8** rs7961581 in 4,516 subjects from the Inter99 cohort with normal glucose tolerance. Assuming bivariate normal distribution we constructed standard error ellipses around the means of each genotype level. Numbers of subjects are: rs864745: TT: 1,039, TC: 2,020, CC: 898; rs12779790: AA: 2,588, AG: 1,229, GG: 153; rs7961581: TT: 2,181, TC: 1,518, CC: 289. The multivariate method, Hotelling T^2, was applied to test the simultaneous effect of genotype on the two traits of insulin release and insulin sensitivity and association was found for the **JAZF1** rs864745 and **CDC123/CAMK1D** rs12779790 ($P_{\text{ADDITIVE}}=0.04$ and $P_{\text{RECESSIVE}}=0.002$, respectively). Furthermore, borderline association was observed for **TSPAN8** rs7961581 ($P_{\text{DOMINANT}}=0.09$ and $P_{\text{RECESSIVE}}=0.05$).
Table 1 Unadjusted quantitative metabolic traits in the population-based Inter99 cohort including 4,377 middle-aged subjects with normal glucose tolerance stratified according to genotype of JAZF1 rs864745.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>N (men/women)</th>
<th>Age (years)</th>
<th>BMI (kg/m²)</th>
<th>Waist (cm)</th>
<th>Fasting s-insulin (pmol/l)</th>
<th>S-insulin at 30 min (pmol/l)</th>
<th>S-insulin at 120 min (pmol/l)</th>
<th>Fasting p-glucose (mmol/l)</th>
<th>P-glucose at 30 min (mmol/l)</th>
<th>P-glucose at 120 min (mmol/l)</th>
<th>Insulin sensitivity index</th>
<th>BIGTT-Ś</th>
<th>AUC (insulin) / AUC (glucose)</th>
<th>CIR</th>
<th>Insulinogenic index</th>
<th>BIGTT-AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 (CC)</td>
<td>996 (453/543)</td>
<td>45.5±8</td>
<td>25.7±4.3</td>
<td>84±13</td>
<td>33 (23-48)</td>
<td>246 (180-359)</td>
<td>142 (92-219)</td>
<td>5.3 (5.0-5.6)</td>
<td>8.2 (7.2-9.1)</td>
<td>5.7 (4.9-6.4)</td>
<td>0.13 (0.09-0.18)</td>
<td>10.2±3.8</td>
<td>28.0 (20.8-38.3)</td>
<td>760 (477-1220)</td>
<td>26.1 (18.1-39.1)</td>
<td>1790 (1370-2150)</td>
</tr>
<tr>
<td>12 (CT)</td>
<td>2,238</td>
<td>45.2±7.8</td>
<td>25.6±4.1</td>
<td>84±12</td>
<td>32 (23-46)</td>
<td>250 (182-347)</td>
<td>141 (87-212)</td>
<td>5.3 (5.1-5.6)</td>
<td>8.1 (7.2-9.2)</td>
<td>5.6 (4.7-6.4)</td>
<td>0.13 (0.09-0.19)</td>
<td>10.3±3.6</td>
<td>27.6 (20.8-37.8)</td>
<td>749 (487-1210)</td>
<td>26.3 (18.5-38)</td>
<td>1690 (1350-2120)</td>
</tr>
<tr>
<td>22 (TT)</td>
<td>1,143 (513/630)</td>
<td>45.1±7.7</td>
<td>25.2±3.9</td>
<td>83±12</td>
<td>31 (22-44)</td>
<td>235 (168-341)</td>
<td>134 (87-209)</td>
<td>5.3 (5.1-5.6)</td>
<td>8.2 (7.2-9.2)</td>
<td>5.6 (4.8-6.3)</td>
<td>0.14 (0.09-0.19)</td>
<td>10.5±3.7</td>
<td>26.5 (19.3-36.9)</td>
<td>747 (462-1150)</td>
<td>25.5 (17-37)</td>
<td>1610 (1320-2060)</td>
</tr>
</tbody>
</table>

Data are median (25%-75% range) or mean ± standard deviation (BMI, waist and BIGTT-Ś). Values of BMI, plasma-glucose, serum-insulin and derived indices were logarithmically transformed before statistical analysis. Calculated P-values were adjusted for age (BIGTT-Ś and BIGTT-AIR), age and sex (BMI and waist), or age, sex, and BMI (all other traits), assuming an additive, dominant or recessive model. Indices of insulin release and insulin sensitivity were calculated as described in Methods. 1: type 2 diabetes protective allele; 2: diabetes-associated allele; AIR, acute insulin release; AUC, area under the curve; CIR, corrected insulin response; P, plasma; S, serum.
Table 2 Unadjusted quantitative metabolic traits in the population-based Inter99 cohort including 4,395 middle-aged subjects with normal glucose tolerance stratified according to genotype of *CDC123/CAMK1D* rs12779790.

<table>
<thead>
<tr>
<th></th>
<th>11 (AA)</th>
<th>12 (AG)</th>
<th>22 (GG)</th>
<th>\textit{P}_{\text{additive}}</th>
<th>\textit{P}_{22+12 \text{ vs } 11}</th>
<th>\textit{P}_{22 \text{ vs } 12+11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) (men/women)</td>
<td>2,859 (1,324/1,535)</td>
<td>1,365 (620/745)</td>
<td>171 (88/83)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>45.2±7.8</td>
<td>45.3±7.9</td>
<td>45.2±8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>25.5±4.1</td>
<td>25.5±4.0</td>
<td>25.8±4.6</td>
<td>0.8</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>94±12</td>
<td>84±12</td>
<td>85±12</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Fasting s-insulin (pmol/l)</td>
<td>32 (23-46)</td>
<td>32 (23-47)</td>
<td>31 (21-49)</td>
<td>0.7</td>
<td>0.7</td>
<td>0.06</td>
</tr>
<tr>
<td>S-insulin at 30 min (pmol/l)</td>
<td>246 (178-351)</td>
<td>246 (180-347)</td>
<td>217 (159-299)</td>
<td>0.02</td>
<td>0.3</td>
<td>8×10^{-5}</td>
</tr>
<tr>
<td>S-insulin at 120 min (pmol/l)</td>
<td>138 (87-212)</td>
<td>141 (92-216)</td>
<td>139 (80-190)</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Fasting P-glucose (mmol/l)</td>
<td>5.3 (5.0-5.6)</td>
<td>5.4 (5.1-5.6)</td>
<td>5.3 (5.1-5.6)</td>
<td>0.1</td>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>P-glucose at 30 min (mmol/l)</td>
<td>8.2 (7.2-9.2)</td>
<td>8.2 (7.2-9.1)</td>
<td>8.2 (7.4-9.3)</td>
<td>1</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>P-glucose at 120 min (mmol/l)</td>
<td>5.6 (4.7-6.3)</td>
<td>5.7 (4.9-6.4)</td>
<td>5.8 (4.8-6.4)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.3</td>
</tr>
<tr>
<td>Insulin sensitivity index</td>
<td>0.132 (0.09-0.189)</td>
<td>0.131 (0.09-0.188)</td>
<td>0.131 (0.084-0.201)</td>
<td>0.9</td>
<td>0.6</td>
<td>0.08</td>
</tr>
<tr>
<td>BIGTT-(S)</td>
<td>10.4±3.7</td>
<td>10.2±3.7</td>
<td>10.4±3.7</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>AUC (insulin) / AUC (glucose)</td>
<td>27.6 (20.5-37.7)</td>
<td>27.2 (20.3-38.1)</td>
<td>25.4 (18.7-31.7)</td>
<td>0.1</td>
<td>0.6</td>
<td>4×10^{-4}</td>
</tr>
<tr>
<td>CIR</td>
<td>753 (480-1190)</td>
<td>752 (483-1240)</td>
<td>614 (402-926)</td>
<td>0.07</td>
<td>0.5</td>
<td>4×10^{-4}</td>
</tr>
<tr>
<td>Insulinogenic index</td>
<td>26.0 (18.3-38.3)</td>
<td>26.1 (18.2-37.7)</td>
<td>23.1 (15.3-30.4)</td>
<td>0.01</td>
<td>0.2</td>
<td>4×10^{-5}</td>
</tr>
<tr>
<td>BIGTT-AIR</td>
<td>1680 (1350-2120)</td>
<td>1670 (1350-2120)</td>
<td>1620 (1310-2040)</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Data are median (25%-75% range) or mean ± standard deviation (BMI, waist and BIGTT-\(S\)). Values of BMI, plasma-glucose, serum-insulin and derived indices were logarithmically transformed before statistical analysis. Calculated \(P\)-values were adjusted for age (BIGTT-\(S\) and BIGTT-AIR), age and sex (BMI and waist), or age, sex, and BMI (all other traits), assuming an additive, dominant or recessive model. Indices of insulin release and insulin sensitivity were calculated as described in Methods. 1: type 2 diabetes protective allele; 2: diabetes-associated allele; AIR, acute insulin release; AUC, area under the curve; CIR, corrected insulin response; P, plasma; S, serum.
Table 3 Unadjusted quantitative metabolic traits in the population-based Inter99 cohort including 4,410 middle-aged subjects with normal glucose tolerance stratified according to genotype of TSPAN8 rs7961581

<table>
<thead>
<tr>
<th></th>
<th>11 (TT)</th>
<th>12 (TC)</th>
<th>22 (CC)</th>
<th>P_total</th>
<th>P_22+12 vs 11</th>
<th>P_22 vs 11+11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (men/women)</td>
<td>2,404 (1,129/1,275)</td>
<td>1,686 (771/915)</td>
<td>320 (147/173)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>45.3±7.7</td>
<td>45.2±7.9</td>
<td>44.6±8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.5±4.1</td>
<td>25.5±4.1</td>
<td>25.6±4.3</td>
<td>0.9</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>84±12</td>
<td>84±12</td>
<td>84±12</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Fasting s-insulin (pmol/l)</td>
<td>32 (23-47)</td>
<td>32 (23-46)</td>
<td>31 (22-44)</td>
<td>0.05</td>
<td>0.2</td>
<td>0.03</td>
</tr>
<tr>
<td>S-insulin at 30 min (pmol/l)</td>
<td>251 (181-352)</td>
<td>238 (175-343)</td>
<td>245 (173-359)</td>
<td>0.003</td>
<td>0.001</td>
<td>0.3</td>
</tr>
<tr>
<td>S-insulin at 120 min (pmol/l)</td>
<td>141 (88-217)</td>
<td>137 (87-202)</td>
<td>140 (90-225)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Fasting p-glucose (mmol/l)</td>
<td>5.3 (5.1-5.6)</td>
<td>5.3 (5.1-5.6)</td>
<td>5.3 (5.1-5.6)</td>
<td>0.6</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>P-glucose at 30 min (mmol/l)</td>
<td>8.1 (7.2-9.1)</td>
<td>8.2 (7.2-9.3)</td>
<td>8.2 (7-9)</td>
<td>0.3</td>
<td>0.7</td>
<td>0.08</td>
</tr>
<tr>
<td>P-glucose at 120 min (mmol/l)</td>
<td>5.6 (4.8-6.3)</td>
<td>5.6 (4.8-6.4)</td>
<td>5.6 (4.7-6.4)</td>
<td>0.4</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Insulin sensitivity index</td>
<td>0.134 (0.089-0.192)</td>
<td>0.133 (0.092-0.193)</td>
<td>0.136 (0.095-0.211)</td>
<td>0.05</td>
<td>0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>BIGTT-Ś</td>
<td>10.3±3.7</td>
<td>10.4±3.6</td>
<td>10.2±3.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>AUC (insulin) / AUC (glucose)</td>
<td>27.9 (20.4-38.2)</td>
<td>26.6 (20.3-36)</td>
<td>28.2 (20.1-39.0)</td>
<td>0.02</td>
<td>0.005</td>
<td>0.7</td>
</tr>
<tr>
<td>CIR</td>
<td>754 (494-1210)</td>
<td>738 (464-1130)</td>
<td>741 (469-1330)</td>
<td>0.1</td>
<td>0.03</td>
<td>0.4</td>
</tr>
<tr>
<td>Insulinogenic index</td>
<td>26.7 (18.3-38.6)</td>
<td>25.1 (17.8-36.7)</td>
<td>25.4 (18.3-39.3)</td>
<td>0.01</td>
<td>0.002</td>
<td>1</td>
</tr>
<tr>
<td>BIGTT-AIR</td>
<td>1670 (1360-2130)</td>
<td>1660 (1330-2080)</td>
<td>1720 (1330-2140)</td>
<td>0.4</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Data are median (25%-75% range) or mean ± standard deviation (BMI, waist and BIGTT-Ś). Values of BMI, plasma-glucose, serum-insulin and derived indices were logarithmically transformed before statistical analysis. Calculated P-values were adjusted for age (BIGTT-Ś and BIGTT-AIR), age and sex (BMI and waist), or age, sex, and BMI (all other traits), assuming an additive, dominant or recessive model. Indices of insulin release and insulin sensitivity were calculated as described in Methods. 1: type 2 diabetes protective allele; 2: diabetes-associated allele; AIR, acute insulin release; AUC, area under the curve; CIR, corrected insulin response; P, plasma; S, serum.