Lessons from the First Comprehensive Molecular Characterization of Cell Cycle Control in Rodent Insulinoma Cell Lines.

Irene Cozar-Castellano PhD, George Harb PhD, Karen Selk MS, Karen Takane PhD, Rupangi Vasavada PhD, Brian Sicari BS, Brian Law PhD, Pili Zhang PhD, Donald K. Scott PhD, Nathalie Fiaschi-Taesch PhD, Andrew F. Stewart MD

From the Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL.

¶Both authors contributed equally to this manuscript.

Address correspondence and reprints requests to:
Irene Cozar-Castellano, PhD,
Division of Endocrinology and Metabolism,
E1140 BST,
200 Lothrop Street,
University of Pittsburgh,
Pittsburgh, PA, United States, 15261.
E-mail: cozari@dom.pitt.edu

Key words: Insulinoma cell lines, beta cell proliferation, cell cycle, cdks and cyclins.

Received 19 March 2008 and accepted 17 July 2008.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopiedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
ABSTRACT

Objective: Rodent insulinoma cell lines may serve as a model for designing continuously replicating human beta cell lines, and provide clues as to the central cell cycle regulatory molecules in the beta cell.

Research Design and Methods: We performed a comprehensive G1/S proteome analysis on the four most widely studied rodent insulinoma cell lines, and defined their flow cytometric profiles and growth characteristics.

Results: a) Despite their common T-Antigen-derived origins, MIN6 and BTC3 cells display markedly different G1/S expression profiles; b) despite their common radiation origins, RINm5F and INS1 cells display striking differences in cell cycle protein profiles; c) phosphorylation of pRb is absent in INS1 and RINm5F cells; d) cyclin D2 is absent in RINm5F and BTC3 cells, and therefore apparently dispensable for their proliferation; e) every cell cycle inhibitor is upregulated, presumably in a futile attempt to halt proliferation; f) among the G1/S proteome members, seven are pro-proliferation molecules: cdks-1, 2, 4, and 6, cyclins A, E and D3; and, g) overexpression of the combination of these seven converts arrested proliferation rates in primary rat beta cells to those in insulinoma cells. Unfortunately, this therapeutic overexpression appears to mildly attenuate beta cell differentiation and function.

Conclusions: These studies underscore the importance of characterizing the cell cycle at the protein level in rodent insulinoma cell lines. They also emphasize the hazards of interpreting data from rodent insulinoma cell lines as modeling normal cell cycle progression. Most importantly, they provide seven candidates targets for inducing proliferation in human beta cells.
utrients, growth factors and physiological states such as obesity and pregnancy can induce beta cell replication. However, the molecular pathways, which regulate DNA synthesis and mitosis in beta cells have only recently begun to be elucidated. Most insight into pancreatic beta cell cycle control is derived from studies in mice with targeted mutations in either the inhibitors or activators of cell cycle progression. For example, inactivating mutations in several cell cycle control molecules have revealed roles for p27, p18, p16, menin, pRb, p53, cyclin D1, cyclin D2, cdk4, E2F1 and E2F2 (1, 2). These studies suggest that the G1/S checkpoint is especially important for the control of the cell cycle in pancreatic beta cells.

Other attractive models in which to study beta cell cycle replication are rodent insulinoma cell lines, which are widely used as models for beta cell signaling, function and replication (3). The four cell lines most widely used in beta cell research are MIN6, BTC3, INS1 and RINm5F cells. MIN6 and BTC3 cells are related lines that were generated by transgenic overexpression of the large T-antigen of the SV40 virus in mouse beta cells (3, 6, 7). INS1 and RINm5F are also related cell lines that were derived from radiation-induced tumors in rats (3-5). These cell lines vary in characteristics, but all are at least partially differentiated and proliferate more rapidly than normal beta cells. Surprisingly, despite their extensive use in the field of beta cell biology, there is almost no information regarding the mechanisms that lead to their loss of normal cell cycle control (3-7).

The lack of a continuously growing human beta cell line suggests the possibility that lessons learned from rodent insulinoma lines may offer clues on to how to generate corresponding human beta cell lines which may be useful for research as well as for cell replacement therapy of diabetes. We therefore examined the “G1/S proteome” of these four rodent insulinoma cell lines and compared them to primary islets, hoping that these cell lines might reveal common mechanisms that lead to continuous proliferation of insulin-secreting cells, as well as potential targets to induce proliferation in normal beta cells.

As has been described in most human cancers (8-10), comprehensive analysis revealed multiple abnormalities in G1/S control in each of the four cell lines. Interestingly, despite their common origins (X-radiation in the rat cell lines, or T-antigen overexpression in the mouse lines), insulinomas of common origin display very different G1/S profiles. In addition, several molecules that appear to be critical in maintaining arrest or allowing cell cycle progression in normal rodent islets, e.g. cyclin D2, are entirely dispensable in mouse and rat insulinoma lines. Finally, seven G1/S molecules which are capable of stimulating beta cell cycle progression were identified. These observations have important cautionary implications for the use of the four cell lines as models of “normal” beta cell replication. They also suggest strategies for developing continuously growing human beta cell lines.

RESEARCH DESIGN AND METHODS

Cell lines. BTC3, MIN6, INS1 and RINm5F cells were obtained from Dr. Lydia Aguilar-Bryan (PNRI, Seattle, WA), Susumu Seino (Kobe University, Japan), Dr. Doris Stoffer (University of Pennsylvania) and ATCC, respectively. They were uniformly studied at 80% confluence. Each cell line was cultured in its standard tissue culture medium: BTC3 and MIN6 in DMEM (20 mM glucose with 10% fetal calf serum (FCS)); and INS1 and RINm5F in RPMI (Invitrogen, Carlsbad, CA) (11 mM and 5.5 mM glucose, respectively, 10% FCS). MIN6 cells require 50 μM β-mercaptoethanol and INS1 cells require 10 mM Hepes, 2mM glutamine, 1mM sodium pyruvate and 50 μM β-mercaptoethanol.

Cell cycle distribution and cell growth. Trypsinized cells from cell lines and isolated islets were fixed with 70% ethanol and analyzed using flow cytometry (FACS). On the day of FACs, fixed cells were pelleted, and resuspended in a PBS solution containing 50 μg/mL propidium iodide (Sigma,
St. Louis, MO), 100 U/mL RNase A (Sigma), and 1 g/L glucose. Stained cells were filtered through a 30-µm nylon mesh, and DNA content was analyzed on a flow cytometer (Becton-Dickinson, Franklin Lakes, NJ). To examine growth, 10,000 cells were plated per well in 24-well tissue culture plates. Cells were counted using a hemocytometer in triplicate every day for six days after initial plating.

Adenoviral production. Adenoviruses (Ad.5 or pAd-Easy system) were prepared according to methods we have previously described in detail (11-14). Multiplicity of infection (MOI) was determined by both optical density at 260 nm (OD260) and by plaque assay.

Islet isolation, adenoviral transduction, and glucose-stimulated insulin secretion. All animal studies were performed in compliance with, and with approval of, the University of Pittsburgh Institutional Care and Use Committee. Islets were isolated from 8-10 week old Sprague-Dawley rats (Taconic, Germantown, NY) as well as 8-12 week old CD1 and C57Bl6 mice (Jackson Laboratories, Bar Harbor, ME) as previously described (14, 15). Isolated rat islets were cultured in RPMI medium supplemented with 10% FCS, 5.5 mM glucose and penicillin-streptomycin for 24 hours before adenoviral transduction. Islets were transduced in serum-free medium for 1 hour at 37°C with adenoviruses containing the cDNAs for green fluorescent protein (GFP) or human cdk-1, -2, -4, -6, or cyclin A, D1 and E individually or in combination ("Combo") as detailed in Results and the Figure Legends. Islets were then incubated for 72 hours in RPMI supplemented with 10% FCS and 5.5 mM glucose, unless otherwise stated. For glucose-stimulated insulin secretion, static assays were performed as described previously (11,14,16,17) using the ALPCO (Salem, NH) ultrasensitive insulin EIA. Matched islet equivalents were hand picked on the day of GSIS, 48 hours after adenoviral transduction.

Western-blot analysis. Protein extracts and immunoblotting of the four cell lines as well from mouse and rat islets (24 hours after isolation) were performed as reported previously (16, 17) using previously published primary and secondary antibodies. Fresh membranes were used for immunoblots for all G1/S members.

Quantification of beta-cell proliferation and cell death. BrdU (10 µg/mL) (Sigma, St. Louis, MO) was added to the culture media 24h before fixation. Islets were fixed in Bouin’s solution for 1 hour, washed with water, then stored in 10% neutral buffered formalin until embedding. To quantitate beta cell proliferation, 5 µm sections were double stained with anti-insulin (Dako, Carpinteria, CA) and anti-Ki-67 (Lab Vision Corporation, Fremont, CA) or anti-BrdU (Abcam, Cambridge, MA). To determine beta cell death, islet sections were stained for apoptotic cells using Terminal deoxynucleotidy-mediated dUTP Nick-End Labeling (TUNEL) (Roche, Indianapolis, IN) and anti-insulin.

Real time-PCR. Quantitative PCR was performed using standard methods and an ABI 7300 Real Time PCR System. The relative quantification for a given gene was corrected to the β-actin mRNA values. The sequences of the primers are included in Supplemental Table 1.

Islet transplant studies. Rat islets were transduced 24 hr after the isolation; 24 hr after transduction, the islets were transplanted into NOD-SCID mice using procedures previously described (11). One rat islet equivalent was defined as being 125 µm in diameter.

Statistics. For all studies, Student’s two-tailed unpaired T-test was performed using Microsoft Excel. P values <0.05 were considered to be significant. Bars in the figures indicate standard error.

RESULTS

Growth characteristics of BTC3, MIN6, INS1 and RINm5F cells. To confirm that the four insulinoma cell lines replicate more rapidly than normal rodent beta cells, the three cell cycle phases (G0/G1, S, G2/M) were examined by FACS. The two murine insulinoma lines (BTC3 and MIN6) were compared to isolated primary mouse islets, whereas the two rat lines (RINm5F and INS1)
were compared to isolated primary rat islet cells. Unlike primary islet cells which are arrested in G0/G1 (96%) (1,2,24), the insulinoma cell lines showed a decreased G0/G1 population, and an increased proportion (24-46%) of cells actively engaged in the cell cycle (S, G2/M) (Figure 1A).

This enhanced cell cycle progression was confirmed by analysis of the growth curves of the four cell lines (Figure 1B). By day six, the two rat cell lines were expanded 24-25-fold as compared to an only 4-6-fold increase for the mouse cell lines.

Comprehensive analysis of the G1/S proteome in the four insulinoma cell lines.

As detailed in Figure 2A, large T-antigen was expressed in the two mouse lines, BTC3 and MIN6 cells, consonant with the use of T-antigen to derive these cells (6, 7). As expected, the normal rat and mouse islets as well as the two rat insulinoma lines lacked T-antigen. The pocket proteins, pRb, p107 and p130, that serve as the final common pathway to G1/S control (middle left panel of Figure 2A), all were present in the four insulinoma cell lines. In contrast to an anticipated increase in pRb phosphorylation in all four lines, phospho-pRb was present in BTC3 cells and MIN6 cells and absent in INS1 and RINm5F cells. Moreover, pRb and p107 appeared to be expressed at higher levels in the insulinoma cell lines than normal islets. Higher molecular weight bands present in the p107 and p130 blots may represent phosphorylated forms. As can be seen in the lower left panel of Figure 2A, pRb in INS1 cells was readily phosphorylated by overexpression of cdk-4 and cyclin D1, indicating that there are no intrinsic abnormalities in pRb that prevent its phosphorylation. Thus, the pathophysiology underlying the changes in the pocket proteins remains unexplained for any of the four insulinoma cell lines.

Figure 2A, right panel, displays for the first time the E2F family in the four cell lines. All six appear to be present in the cell lines. Several, such as E2F2, 4 and 6, appear to be expressed at higher levels in the cell lines than in primary islets. Conversely, E2F1 appeared to be reduced in the murine cell lines as compared to normal islets.

The D-cyclins and their cognate cdks are shown in Figure 2B. Cyclin D1, reported to be increased in human insulinoma (18), was reduced in all four rodent cell lines. Cyclin D2, essential for the murine beta cell cycle progression (19, 20), was undetectable in two of the four cell lines, BTC3 and RINm5F cells. Interestingly, despite their common T-Antigen origins, the two murine cell lines displayed opposite cyclin D2 profiles: BTC3 lacked cyclin D2, whereas and MIN6 cells expressed easily detectable cyclin D2. Similarly, despite their common radiation-induced pathogenesis, the same was observed for INS1 vs. RINm5F cells. Finally, cyclin D3, generally felt to be the least important of the three D cyclins (20, 21), was substantially increased in the two rat cell lines.

Figure 2B also demonstrates that cdk-4 and cdk-6 are unequivocally increased in all four insulinoma cell lines. Figure 2C shows that the same is true for cdk-1 and cdk-2, as well as for their cognate partners, cyclin E and A. Thus, of the seven potential G1/S cyclins and cdks - cdk1, 2, 4, 6 and cyclins A, D and E - all seven are increased in each of the four cell lines.

The INK4 and KIP/CIP/WAF families are inhibitors of the cyclin-cdk proteins. **Figure 2D** demonstrates that many of these are increased in the four insulinoma cell lines. In addition, the beta cell cycle inhibitor, menin, which transcriptionally activates p18Ink4 and p27kip, is present, and is increased in the two rat cell lines. Similarly, the tumor suppressor p53 is increased in all four cell lines. Its E3 ligase, MDM2, was increased in the mouse lines, but unaltered in the rat lines (Figure 2E). Finally, the four Id proteins, which interact with the pocket proteins to regulate their DNA binding and differentiation (22), were variably present, but showed no consistent pattern.

The increase in the seven key G1/S molecules is independent of cell cycle phase. The seven “candidate cell cycle activators” in Figures 2BC served as the focus of the remainder of the study. In order to determine whether the increase in the seven key G1/S
molecules was an intrinsic feature on the insulinomas, or reflected only certain cell cycle phases in randomly cycling cells, we compared their level of expression in randomly cycling, starvation-arrested and resynchronized INS1 cells to levels observed in isolated rat islets. As can be seen in Figure 3, while there were minor changes among the former three conditions, under all conditions, levels were markedly higher in INS1 cells than in rat islets.

Effect of different glucose concentrations on the expression of the seven candidate cell cycle activators. Since each of the cell lines was grown using different glucose concentrations, and since glucose is known to drive rodent beta cell replication (25-30), it was important to determine whether any of the cdk or cyclin changes observed above reflected culture conditions rather than intrinsic insulinoma biology. We therefore compared the cell cycle distribution of the INS1 cells and primary rat islets cultured in 5.5 vs 11 mM glucose (Figure 4A). In normal rat islet cells, S phase was approximately doubled in 11 mM compared to 5.5 mM glucose, although this difference did not achieve statistical significance. Thus, as anticipated, higher glucose levels favor beta cell replication. The expression of cyclins and cdk's were studied in INS1 cells and rat islet cells in both glucose concentrations. Cyclins A, E and D3 were found to be upregulated in normal islet cells by higher glucose concentration, but the expression did not approach the levels of expression of these proteins observed in INS1 cells (Figure 4B). Thus, while glucose can stimulate proliferation, it is not the cause of the striking upregulation of the seven candidate cell cycle activators. Rather, these are intrinsic features of the four cell lines.

Overexpression of the seven candidate cell cycle activators mimics proliferation rates in INS1 cells. To determine if any of the seven was capable of inducing cell cycle progression, they were overexpressed individually in isolated primary rat islets using adenovirus. “Ad. cyclin D” in the experiments refers to cyclin D1. Figure 5A confirms that each of the seven proteins was overexpressed by the appropriate adenovirus. The effect of overexpression of each of the seven molecules on islet cell proliferation was studied by FACS. Modest but statistically significant increases in proliferation were observed when cyclin E or cyclin D were overexpressed individually, but not by the overexpression of the other proteins (Figure 5B). In contrast, the maximum rate of proliferation achieved using combinations of cell cycle agonists closely resembled that seen in INS1 cells (Figure 5C). Therefore, the seven cell cycle combination (Ad. Combo) was used for subsequent experiments. In a dose response study, the minimal moi of the Ad. Combo that was able to induce maximal proliferation was 250 or lower (Figure 5D).

Insulin and Ki-67 double immunofluorescent staining confirmed that proliferation was occurring in beta cells: an average of 26 ± 3.6% of beta cells were proliferating, a 13-fold increase compared to Ad.GFP or non-transduced controls (Figure 6A). In parallel, BrdU staining revealed comparable results: an average of 20 ± 4.1% of beta cells were BrdU-positive, a 7-fold increase compared to Ad.GFP control (Figure 6B).

Cell cycle-driven beta cell proliferation does not induce cell death. To establish if overexpression of the seven candidate activators induced apoptosis, we double-stained sections of rat islets transduced with Ad.GFP, Ad.Combo or non-transduced controls for TUNEL and insulin. The number of cells doubly positive for insulin and TUNEL was low: 1.03 ± 0.9, 1.34 ± 0.7, 0.85 ± 0.5 % in control, Ad.GFP or Ad.Combo transduced islets, respectively (Figure 7).

Accelerated beta cell proliferation may be associated with mild de-differentiation. To investigate whether cell cycle activators led to de-differentiation in rat beta cells (22, 23), we examined beta cell differentiation markers in rapidly proliferating Ad.Combo-transduced primary rat islets and compared them with Ad.GFP-transduced and non-transduced control islets. As shown in Figure 8A, of the five beta cell-specific mRNAs examined (insulin, Glut2, Pdx1, Sur1, Kir6.2) and
Glucagon, no significant differences were observed between Ad.Combo-transduced islets vs. Ad.GFP controls. However, adenoviral transduction itself did reduce Pdx1, Kir6.2 and glucagon in Ad-transduced islets.

Glucose-stimulated insulin secretion studies (Figure 8B) demonstrated robust insulin secretion from uninfected and Ad.GFP-transduced islets. Ad.combo-transduced islets displayed a trend towards higher basal insulin secretion and lower glucose-stimulated insulin secretion, but these differences from the two control groups were not significant.

Ad-combo-transduced islets function normally in vivo. The studies reported this far suggested that Ad.combo-transduced islets might be slightly de-differentiated (Figures 8A and 8B), or alternatively, because of their accelerated proliferation, might have an engraftment or functional advantage in vivo. To explore these possibilities more definitively, transplant of Ad-transduced rat islets into streptozotocin-diabetic NOD-SCD mice was performed (Figure 8C). Sham-transplanted animals displayed glucose in the 400-500 mg/dl range for the four weeks of the study. Animals receiving 200 control IE displayed near-normal postprandial glucose values, whereas those receiving 100 and 50 control IE displayed progressively poorer glycemic control. Importantly, animals receiving equivalent numbers (50, 100 or 200) of rat IE transduced with the Ad.combo performed neither better nor worse than control islets. These results can be interpreted to indicate that although Ad.combo did not enhance functional engraftment, there was no net increase or decrease in beta cell differentiation. However, without defining beta cell mass in the islet grafts, it is possible that Ad.combo-induced proliferation in vivo expanded beta cell mass substantially, masking a reduction in beta cell differentiation or function.

DISCUSSION

This study represents the first comprehensive molecular characterization of G1/S cell cycle regulation in continuously proliferating beta cell lines. We have: 1) identified striking differences in cell cycle control molecules in insulinoma cell lines compared to primary beta cells; 2) identified seven candidate cell cycle activators that may contribute to cell cycle progression in rodent insulinoma cell lines; 3) formulated a strategy to dramatically stimulate proliferation of primary rat beta cells to the level observed in insulinoma cell lines; 4) shown that this does not enhance cell death nor greatly impair differentiation or function in vitro; and, 5) shown that transduction with seven cell cycle activators neither enhances nor attenuates rat islet function in vivo. These observations may be directly applicable to efforts to create continuously growing human beta cell lines, and to expand human beta cell mass for beta cell replacement treatment of diabetes.

Despite the fact that rodent insulinoma cell lines were developed 20-30 years ago (3-7), the molecular events responsible for their ability to replicate continuously for decades remain entirely unknown. We have observed that the large majority of rat and mouse islet cells are in G0/G1, which agrees nicely with data published using other techniques, confirming the slow rate of normal beta cell proliferation (24). In contrast, for rodent insulinoma cells, a substantial proportion are not arrested, but are instead actively cycling. The rat lines, INS1 and RINm5F, replicate far more rapidly than the mouse lines, MIN6 and BTC3. Whether this difference in proliferation rate is due to the different species from which they are derived, from the different transformation processes (radiation versus T-Ag) through which they were generated, or other factors, remains unknown. Interestingly, the MIN-6 cells displayed a particularly large percentage of cells in G2/M (Figure 1A), consistent with either a particularly accelerated G1/S transition or a partial block at G2/M. Growth curves show that MIN6 cells grow at a rate comparable to BTC3 cells (Figure 1B), suggesting that MIN-6 cells have acquired additional mutations delaying the G2/M transition, in addition to those involved in G1/S transition described herein. Importantly, the marked abnormalities in cell cycle control in these insulinoma cell
lines mean that these cell lines must be used cautiously, if at all, as models of normal growth regulatory mechanisms.

We next comprehensively surveyed 32 regulatory proteins of the G1/S transition in each of the four insulinoma lines. This revealed important and unexpected findings. First, pRb was unexpectedly hypo-, and not hyper-, phosphorylated in both of the rat insulinoma cell lines, those that have the most rapid proliferation rate. We hypothesized that this might result from pRb mutations that rendered pRb non-phosphorylatable. However, we easily were able to induce pRb phosphorylation in these same INS1 cells by combined overexpression of cdk-4 and cyclin D1. This indicates that pRb phosphorylation is not required for cell cycle progression in these cell lines. Second, despite their common origin, the two rat lines displayed important differences. The most striking of these is the abundance of cyclin D2 in INS1 cells, but the complete absence of cyclin D2 in RINm5F cells. Similarly, for the two mouse lines, MIN6 cells contain abundant cyclin D2, yet BTC3 cells completely lack cyclin D2. These observations are particularly noteworthy since cyclin D2 has been described as being essential for cell cycle progression for normal mouse beta cell replication (19, 20). This clearly does not apply to rodent insulinomas. The existence of multiple molecular differences among cells that were derived from the similar or identical parental lines (MIN6 and BTC3; INS1 and RINm5F) is consonant with human cancers in which genomic instability with the consequent ongoing accumulation of multiple mutations is characteristic of transformed cells (8-10). It is also consistent with differing insertional mutagenic events in the separately derived RIP-Tag cell lines, and/or different radiation mutagenic events in the two rat insulinoma cell lines. Third, cell cycle progression in the four rodent cell lines is accelerated despite a generalized increase in the upstream cell cycle inhibitors (the three pocket proteins, the four INK4s and the three CIP/KIPs). We hypothesize that this reflects an eager, but futile, attempt to induce cell cycle arrest.

Fourth, and most importantly, this survey reveals a marked increase in seven very plausible mediators of cell cycle progression: cdk1, cdk2, cdk4, cdk6, cyclin A, cyclin E and cyclin D.

Importantly, despite the normal use of high glucose media for these cell lines, the upregulation of the seven proteins is not mediated by glucose levels: exposure to increased glucose concentrations induced mild upregulation of cyclin A, cyclin D3 and cyclin E in primary rat islets in agreement with previous reports (25), but not to the levels observed in insulinoma cell lines. Equally importantly, the changes observed in the rodent insulinoma cell lines were independent of cell cycle stage, occurring in randomly cycling cells, starvation-arrested cells and synchronized cells. Collectively, these observations indicate that the upregulation of the seven pro-cell cycle molecules is an intrinsic feature of these cells, independent of cell cycle stage or nutritional status.

Proliferation of primary rat beta cells could be stimulated to levels observed in INS1 cells by forced expression of the seven cell cycle activators in combination. This was confirmed using FACS, Ki-67 and BrdU immunostaining.

Gratifyingly, the induced increase in proliferation had no effect on beta cell death. However, subtle changes in differentiation markers and glucose-stimulated insulin secretion in vitro were suggestive of beta cell de-differentiation. To explore this issue more definitively, we introduced the Ad.combo into normal rat islets and observed their function in vivo. These studies can be interpreted in two ways. On one hand, Ad.combo did not adversely affect the apparent engraftment or net function of normal rat islets in vivo, suggesting that the Ad.combo was not intrinsically de-differentiating in overall terms. Of course, since beta cell mass was not measured in the grafts, it is possible that beta cell mass was higher in the Ad.combo-transduced grafts, and therefore that insulin secretion per beta cell was reduced. On the other hand, the proliferative advantage of the Ad.combo did not enhance the apparent overall function of the rat islets.
We interpret these in vitro and in vivo observations in several ways. First, while a combination of seven cell cycle molecules may be able to stimulate cell cycle progression in vitro, it is clear from Figure 5BC that the addition of fewer pro-cell cycle molecules may suffice to stimulate proliferation effectively. Indeed, we have recently reported that the addition of only two of these, cdk-6 and cyclin D1, clearly enhance the engraftment and function of human islets in the same in vivo model (31). Thus, evaluation of additional combinations of the seven cell cycle agonists in vitro and in vivo is warranted. This will be difficult, for the number of possible combinations is 7! (seven factorial), adjusted for random order, or approximately 120. Second, adenovirus delivered at 250 moi may have adversely affected beta cell function. Since cell cycle molecule-induced proliferation was maximized by 250 moi (Figures 5A,5D), it is possible that lower moi may permit the beneficial effects of cell cycle molecule delivery without the adverse effects. Third, while we have observed additivity among the seven members studied (Figure 5BC), we have not observed evidence of synergy among them: additional combinations may reveal such synergy. And fourth, aggressive replication rates may be unnecessary: slower replication rates may be perfectly satisfactory for expanding beta cell mass in vitro and in vivo while retaining differentiation/function. Indeed at a molecular level, the nature of a link between differentiation and proliferation, or even the existence of one in many cell types, is undefined. These observations suggest that there is an opportunity for further optimizing the moi and duration of the transduction conditions, and for further exploring the potential link between differentiation and proliferation in beta cells.

These studies increase available knowledge regarding cell cycle control in rodent insulinoma lines, but also leave a number of questions unanswered. For example, they are confined to G1/S control molecules, and leave unexplored other potential critically important pathways, such as telomere replication and extension, DNA stability, and signaling pathways upstream of the seven cell cycle molecules. Further, while each of the seven candidates is reproducibly increased in the insulinoma lines, and while overexpression of these seven in combination induces dramatic beta cell replication, these studies shed no light on which of these, if any, is actually responsible, or essential, for cell cycle progression in rodent insulinoma cell lines. Equally importantly, while each of the seven candidates is a normal cell cycle component, each has also been implicated in oncogenic contexts. An additional question relates to the use of adenovirus in particular, and gene therapy in general, as therapies for diabetes. Finally, and perhaps most importantly, it is unknown whether the findings described herein in rodent islets will apply to human beta cell replication. These areas represent fertile ground for future study.

ACKNOWLEDGEMENTS
We would like to acknowledge to Dr. Lydia Aguilar-Bryan (PNRI, Seattle, WA) for the BTC3 cells, to Dr. Doris Stoffer (University of Pennsylvania, Philadelphia, PA) for the INS1 cells and Dr. Susumu Seino (Kobe University, Japan) for the MIN6 cells. This work was supported by NIH grant R-01 55023 to AFS, and by the Kroh Family Foundation and the Don and Arleen Wagner Foundation to AFS.
REFERENCES

Figure 1. Proliferation rates for the four rodent insulinoma cell lines (A) Flow cytometric analysis of cell cycle distribution. Results (mean ± SE) display the percentage of cells in each phase of the cell cycle. Each figure is representative of five experiments. (B) Growth curves for
the four cell lines. Bars indicate SE. 10,000 cells were plated on day 0. Each line represents three separate experiments performed in triplicate (n=9).
B. D-Cyclins

<table>
<thead>
<tr>
<th>Cyclin</th>
<th>BTC3</th>
<th>MIN6</th>
<th>M isl.</th>
<th>INS</th>
<th>R IN</th>
<th>R isl.</th>
<th>actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Cdk-1 and -2

<table>
<thead>
<tr>
<th>Cdk-1</th>
<th>BTC3</th>
<th>MIN6</th>
<th>M isl.</th>
<th>INS</th>
<th>R IN</th>
<th>R isl.</th>
<th>actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdk-1/cdc2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cylin A and E

<table>
<thead>
<tr>
<th>Cylin A</th>
<th>BTC3</th>
<th>MIN6</th>
<th>M isl.</th>
<th>INS</th>
<th>R IN</th>
<th>R isl.</th>
<th>actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdk-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cylin E</th>
<th>BTC3</th>
<th>MIN6</th>
<th>M isl.</th>
<th>INS</th>
<th>R IN</th>
<th>R isl.</th>
<th>actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdk-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. The G1/S proteome of the four rodent insulinoma cell lines. MIN6 and BTC3 cell lines are compared with mouse islets (M isl). INS1 (INS) and RIN (RINm5F) lines are compared to rat islets (R isl). Actin blots are representative and demonstrate even loading. (A) Western-blot analysis of T-Ag, pocket proteins and the E2F transcription factor family. The lower left
panel shows induction of pRb phosphorylation in INS1 cells that have been transduced with the combination of the adenoviruses, Ad. cdk4 plus Ad. cyclin D1. (B) The cyclin D1, D2 and D3 and cdk-4 and -6 family. (C) The cdk-1/cdc2 and cdk-2, cyclin A and E family. (D) The INK4 family, the CIP/KIP family and the tumor suppressor, menin. (E) The tumor suppressor, p53, its regulatory protein MDM2, and the Id family. Each blot represents three to five immunoblots.

Figure 3. The effect of cell cycle phase on the seven key pro-cell cycle molecules in INS1 cells. (A) shows the FACS histogram of INS1 cells grown under randomly cycling non-synchronized (Non-Sync) conditions, under conditions of growth arrest (Arrested) induced by exposure to 2.8 mM glucose and serum withdrawal for 96 hours, and following release from arrest (Released) by the addition of complete medium (see Methods) for 24 hours. (B) shows representative immunoblots of the seven key G1/S molecules under each of these three conditions, compared to extracts of rat islets. As can be seen, whereas some changes do occur
in the G1/S molecules with growth arrest they are minor compared to their marked overexpression as compared to rat islets.

Figure 4. The effect of glucose on key cell cycle proteins in rat islets and INS1 cells. (A) Cell cycle distribution of rat islet cells and INS1 cells at 5.5 and 11 mM glucose. (B) The effect of glucose on the expression of the seven candidate cell cycle activators, plus cyclins D1 and D2. “5” and “11” refer to mM glucose concentrations. Each experiment was performed three times.
Figure 5. Consequences of cyclin-cdk overexpression in rat islets. (A) Documentation of overexpression of the seven candidate cell cycle activators. (B) The effect of individual overexpression of the seven cell cycle activators at 100 moi (left panel) or 700 moi (right panel) on rat islet cell proliferation as measured by flow cytometry. Asterisks indicate p<0.05. Each experiment was performed three times. (C) Flow cytometric analysis of the effect of combined overexpression of the seven cell cycle activators on rat islet cell proliferation. Each condition employed a maximum of 700 moi, with 100 moi of each virus shown on the x-axis. Asterisks indicate p<0.05 vs. Ad.GFP, and # indicates p<0.05 as compared to INS1 cells. Each experiment was performed 3-5 times. (D) The effect of three different adenovirus moi on rat islet cell proliferation. The numbers of moi used for these experiments were 250, 500 and 700 moi. Each bar represents four experiments.
Figure 6. The effect of combined overexpression of the seven cell cycle activators on rat beta cell proliferation. (A) Beta cell proliferation was measured by double staining for Ki-67 and insulin or; (B) BrdU and insulin. Representative examples are shown in the upper panels,
and quantitation in the lower panel and represented by percentage of double positives Ki-67/insulin or BrdU/insulin. “n” indicates the number of experiments performed.

Figure 7. The effect of combined overexpression of the seven cell cycle activators on rat beta cell death. Beta cell apoptosis was measured by double staining of TUNEL and insulin and represented by percentage of double positives for TUNEL/insulin. The conditions were the same as in Figure 4C and fixation was performed after 72 hours after transduction. “n” indicates number of experiments performed.
Rodent insulinoma cell cycle

A

B

Insulin [ng/mL/IE]

Glucose 2.0 mM 22.0 mM

Uninfected (n = 6) Ad.GFP (n = 6) Ad.Combo (n = 6)
Figure 8. The effect of combined overexpression of the seven cell cycle activators on rat islet cell differentiation markers, glucose-stimulated insulin secretion (GSIS) and islet transplantation.

(A) Quantitative PCR was performed on the RNA of five to six different preparations of isolated rat islets transduced with virus as indicated.

(B) GSIS in uninfected, Ad. GFP and Ad. combo transduced islets, exposed to 2.0 and 22 mM glucose concentrations.

“n” indicates the number of experiments performed, and each experiment was performed by triplicate.

The asterisk indicates p < 0.05.

(C) Transplantation of rat islets into streptozotocin-diabetic NOD-SCID mice. 50, 100 or 200-islet equivalents of normal non-transduced islets or Ad.GFP-transduced islets served as controls (CTL), and were compared to Ad.Combo-transduced (Combo). Islets were transplanted under the mouse kidney capsule. Uninephrectomy (UNX) was performed 28 days after the transplant. “Sham” indicates the blood glucose in mice that had identical surgery but did not receive islets.