Liver-specific Loss of Lipolysis-Stimulated Lipoprotein Receptor Triggers Systemic Hyperlipidemia in mice

Prachiti Narvekar¹, Mauricio Berriel Diaz¹*, Anja Krones-Herzig¹*, Ulrike Hardeland¹, Daniela Strzoda¹, Sigrid Stöhr² Marcus Frohme³, and Stephan Herzig¹

¹Emmy Noether and Marie Curie Research Group Molecular Metabolic Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. ²Department of Animal Physiology, Philipps University Marburg, 35043 Marburg, Germany. ³Technische und forschende Hochschule Wildau, Bahnhofstrasse 1, 15745 Wildau, Germany.

*Authors contributed equally to the work presented.

Correspondence and requests for materials should be addressed to:
Stephan Herzig, Ph.D., German Cancer Research Center, DKFZ-ZMBH Alliance, Molecular Metabolic Control, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
E-mail: s.herzig@dkfz.de

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.

Copyright American Diabetes Association, Inc., 2009
ABSTRACT

Objective: In mammals, proper storage and distribution of lipids in and between tissues is essential for the maintenance of energy homeostasis. In contrast, aberrantly high levels of triglycerides (TG) in the blood (“hypertriglyceridemia”) represent a hallmark of the Metabolic Syndrome and type II diabetes. As hypertriglyceridemia has been identified as an important risk factor for cardiovascular complications, this study aimed at the identification of molecular mechanisms in aberrant TG elevation under these conditions.

Research Design and Methods: To determine the importance of hepatic lipid handling for systemic dyslipidemia, we profiled the expression patterns of various hepatic lipid transporters and receptors under healthy and type II diabetic conditions. A differentially expressed lipoprotein receptor was functionally characterized by generating acute, liver-specific loss- and gain-of-function animal models.

Results: Here we show that the hepatic expression of lipid transporter lipolysis-stimulated lipoprotein receptor (LSR) is specifically impaired in mouse models of obesity and type II diabetes, and can be restored by leptin replacement. Experimental imitation of this pathophysiological situation by liver-specific knockdown of LSR promotes hypertriglyceridemia and elevated apolipoprotein (Apo) B and E serum levels in lean wild-type and ApoE knockout mice. In contrast, genetic restoration of LSR expression in obese animals to wild-type levels improves serum TG levels and serum profiles in these mice.

Conclusions: The dysregulation of hepatic LSR under obese and diabetic conditions may provide a molecular rationale for systemic dyslipidemia in type II diabetes and the Metabolic Syndrome, and represent a novel target for alternative treatment strategies in these patients.
According to recent estimates, 200-300 million people worldwide will be diagnosed with obesity-related type II diabetes in 2010 (1). As part of the so-called Metabolic Syndrome, chronic hyperglycemia and dyslipidemia represent major causes for vascular complications in type II diabetic patients and result from defects in endocrine control systems that under normal conditions strictly balance glucose and lipid homeostasis within narrow limits (2).

The dyslipidemia as associated with diabetic metabolism and the Metabolic Syndrome is characterized by a so-called pro-atherogenic blood lipid profile, comprising low levels of high-density lipoproteins (HDL), increased low-density lipoproteins (LDL), and strongly increased levels of serum TG associated with very-low-density lipoproteins (VLDL). Indeed, hepatic VLDL release is increased in diabetes and thought to drive other aspects of the dyslipidemia associated with this disorder (3). In fact, hypertriglyceridemia is considered to represent an important risk factor for atherosclerosis and subsequent cardiovascular complications in type II diabetic patients (4).

The regulation of plasma TG levels is conferred through a complex interplay between different tissues and cell-types (5). Dietary TG within chylomicrons are hydrolyzed by adipose tissue and skeletal muscle lipoprotein lipase (LPL), thereby effectively delivering free fatty acids to these peripheral tissues. The remaining particles, so-called chylomicron remnants, are subsequently internalized by the liver. In addition to chylomicron-derived remnant particles, also TG-rich VLDL are converted to remnants and returned to the liver. While the ultimate fate of remnant particles has been clearly shown to be mediated by the liver (6), the identity and relative contribution of individual receptors involved in this process are still less clear. Thus far, the LDL receptor (LDLR), the LDL receptor-related protein (LRP) 1, and scavenger receptor (SR)-B1 have been found to play only secondary roles in remnant clearance (7-11). In addition, based on a series of biochemical studies and effects of whole-body heterozygosity in mice, Bihain and colleagues suggested that the lipolysis-stimulated receptor (LSR) serves as a remnant receptor (12-16).

Interestingly, liver-selective insulin resistance was found to be sufficient to cause hypercholesterolemia and increase the susceptibility to atherosclerosis (17), suggesting a tight connection between endocrine control of hepatic metabolism and systemic lipid metabolism. However, it remains unclear to which extent endocrine circuits control hepatic lipoprotein receptor expression and/or function, thereby contributing to the observed dyslipidemia during obesity-related, insulin-resistant type II diabetes.

By profiling the expression of various lipid transporters in livers of healthy and diabetic mice under distinct nutritional conditions, this study discovered the dysregulation of lipolysis-stimulated lipoprotein receptor (LSR) (15) in the liver as a common feature of various mouse models of obesity-related type II diabetes, and demonstrated the importance of hepatic LSR action for the prevention of hypertriglyceridemia under physiologic conditions.

RESEARCH DESIGN AND METHODS

Recombinant adenoviruses. An adenovirus expressing the LSR cDNA and a corresponding empty CMV control virus was cloned using a modified pAd-BLOCK-iT™ vector system (Invitrogen, Karlsruhe, GER). LSR cDNA was cloned by PCR standard procedures using primers directed against sequences deposited under GenBank™ accession no. NM_017405. Adenoviruses
expressing LSR-specific or non-specific control oligonucleotides were produced using the BLOCK-iT™ Adenoviral RNAi expression system (Invitrogen, Karlsruhe, GER) according to the manufacturer’s instructions and purified by cesium chloride gradients (18).

Animal experiments. Male 8-12-week old C57BKS, C57Bl/6J, db/db, ob/ob, New Zealand Black (NZB), New Zealand Obese (NZO), and apolipoprotein E (ApoE) knockout mice were obtained from Charles River Laboratories (Brussels, BEL) and maintained on a 12-hour light-dark cycle with unrestricted access to food. For starvation experiments, animals were fasted for 24 h with free access to water or fasted and refed for the following 6 h. For virus injections, 1x10⁹ plaque-forming units per recombinant virus were administered via tail vein injection. In each experiment seven animals received identical treatments. Mice were sacrificed 7 days after adenovirus injection in the refed state. Insulin tolerance tests were performed as described previously (19). In high-fat diet experiments, C57Bl6 mice were either fed a standard chow diet (10 energy % from fat, Research diets D12450B, New Brunswick, USA) or a high-fat diet (45 energy % from fat, Research diets D12451) for a period of 16 weeks (samples kindly provided by S. Kersten, Wageningen). Mice carrying a liver-specific knockout of the insulin receptor (LIRKO) have been described previously (19) (samples kindly provided by R. Kulkarni, Boston). To deplete insulin-producing beta cells, C57Bl/6J mice were treated with streptozotocin as described (20) (samples kindly provided by J.C. Brüning, Cologne). For leptin replacement studies, wild-type C57Bl/6J and ob/ob mice were daily injected i.p. with recombinant mouse leptin (5 µg/g body weight) (R&D Systems, Wiesbaden, GER) for 21 days. Organs including liver, epididymal fat pads, small intestine, and gastrocnemius muscles, were collected after the corresponding time periods, weighed, snap-frozen and used for further mRNA, protein or metabolic analysis. Total body fat content was determined by an Echo MRI body composition analyzer (Echo Medical Systems, Houston, TX). All animal procedures have been approved by local authorities and are in accordance with NIH guidelines.

Blood metabolites. Serum levels of glucose, TG, cholesterol, ketone bodies, and free fatty acids were determined by using an automatic glucose monitor (One Touch, Lifescan) or commercial kits, respectively (Sigma, Munich, GER; RANDOX, Crumlin, NIR; WAKO, Neuss, GER, respectively).

Hepatic VLDL release. VLDL production was determined after tyloxapol (SIGMA, Munich, GER) injection as described (21).

Lipid load tests. For an oral lipid load test, mice were fasted for 16 h and gavaged with 200 µl olive oil. Alternatively, mice were fasted for 16 h and 100 µl of a 2.6% (v/v) intralipid emulsion in saline (Sigma, Munich, GER) was administered intravenously. Serum samples were collected at various time points and TG levels were determined by commercial kits as above. Clearance was calculated by determining the areas under the curves for each experimental group.

Fast protein liquid chromatography. Serum from 7 mice per experimental group was pooled and subjected to fast protein liquid chromatography as previously described (22). Cholesterol and TG were measured in the eluted fractions using commercial kits as above.

Tissue lipid extraction. Hepatic lipids were extracted as described previously (23) and TG and total cholesterol contents were determined using commercial kits as above. Values were calculated as micromoles (TG) or mg (cholesterol) per gram frozen tissue.

LPL activity. LPL activity measurements were performed as described (24) using frozen adipose tissue samples.
Quantitative Taqman RT-PCR. Total RNA was extracted from homogenized mouse liver using the Qiazol reagent (Qiagen, Hilden, GER) kit. cDNA was prepared by reverse transcription using Oligo dT primer (Fermentas, St. Leon-Rot, GER). cDNAs were amplified using assay-on-demand kits and an ABI PRISM 7700 Sequence detector (Applied Biosystems, Darmstadt, GER). RNA expression data was normalized to levels of TATA-box binding protein RNA.

Protein analysis. Denatured SDS protein extracts from frozen liver homogenates or serum samples were loaded onto a 8% SDS-polyacrylamide gel, 4-12% gradient gels (Invitrogen, Karlsruhe, GER), and blotted onto nitrocellulose membrane. Western blot assays were performed as described (25) using antibodies against valosin-containing protein (VCP) (Abcam, Cambridge, UK), ApoB, ApoE, ApoAI (Santa Cruz, Heidelberg, GER), or a mouse monoclonal antibody generated against the C-terminal fragment (aa 383-591) of murine LSR by standard procedures.

RNA interference. Oligonucleotides targeting mouse LSR (GenBank™ accession no. NM_017405) (5'--GCACCTACCAGATGAGCAATA--3') were annealed and cloned into pENTR RNAi vector (Invitrogen, Karlsruhe, GER). Non-specific oligonucleotides (5'--GATCTGATCGACACTGTAATG--3') with no significant homology to any mammalian gene sequence were used as non-silencing controls in all experiments.

Cell culture. Primary mouse hepatocytes were isolated and cultured as described (26). Cells were treated with insulin (100 nM) for 30 min to 24 h and harvested for mRNA expression analysis.

Statistical Analysis—Statistical analyses were performed using a 2-way analysis of variance (ANOVA) with Bonferroni-adjusted post-tests, or t-test in one-factorial designs, respectively. The significance level was at p = 0.05 or p = 0.01.

RESULTS

The importance of hepatic lipid handling for systemic lipidemia prompted us to profile the expression patterns of various lipid transporters/receptors under healthy and diabetic conditions. To this end, we analyzed cDNAs from wild-type C57BKS and db/db diabetic mice (27) under both fasted and refeed conditions using quantitative real-time PCR. mRNA expression of fatty acid transporter CD36 and fatty acid transporter (FATP) 4 was induced in diabetic animals under refeed and fasted or fasted conditions only, respectively, whereas FATP 5 was mildly elevated in diabetic mice in the refeed state (Fig. 1A and B). Members of the ATP-binding cassette (ABC) cholesterol transporter family, ABCA1, ABCG1, and ABCG5 as well as bile salt export pump (BSEP), SR-BI (28), and FATP 3 showed no major differences in relative gene expression levels between healthy and diabetic conditions (Fig. 1A and B). ABCA1 and ABCG1 were found to be induced 3- to 4-fold by fasting under wild-type and diabetic conditions (Fig. 1A). Within the group of lipoprotein receptors, expression of LRP1 was not changed between fasting and refeeding or under diabetic conditions as compared to wild-type controls, respectively (Fig. 1C). In contrast, mRNA expression of the LDLR was repressed in diabetic animals in the refeed state (Fig. 1C). Furthermore, in the db/db diabetic state both fasting and refeeding LSR mRNA levels were substantially decreased as compared to wild-type control animals (Fig. 1C), indicating that the loss of this hepatic receptor represents a specific feature of diabetic lipid metabolism. As no liver-specific loss- or gain-of-function for LSR has been reported to date, these results prompted us to extend the analysis of LSR to additional models of type II diabetes and dyslipidemia. Consistent with results
from db/db mice, hepatic LSR mRNA levels were diminished in ob/ob (29) as well as New Zealand Obese mice, the latter representing a multigenic model for type II diabetes (30), as compared to corresponding controls (Fig. S1A and S1B), and also tended to decrease upon feeding wild-type mice a high-fat diet (Fig. S1D, left). Noteworthy, LSR mRNA levels in the small intestine, a second major tissue expressing this receptor (31), remained unaltered under all conditions (Fig. S1A and S1B). Importantly, the loss of hepatic LSR mRNA expression in diabetic and obese db/db, ob/ob, and NZO animals was confirmed at protein level as demonstrated by Western Blot using a mouse monoclonal antibody against LSR (Fig. 1D, compare lanes 1-4 to lanes 5-8, respectively), while intestinal LSR protein levels were unchanged in these models (Fig. S1C).

Insulin plays an important role in hepatic lipid metabolism (32), suggesting that defective insulin signaling could be responsible for the inhibition of LSR expression in diabetic mice. However, LSR mRNA levels were not changed in mice carrying a liver-specific knockout of the insulin receptor (LIRKO) (19) or in an insulin-deficient mouse model for type I diabetes as compared to control littermates (Fig. S1D, middle and right), indicating that not insulin per se is responsible for the observed inhibition of LSR expression in the other models. Indeed, insulin treatment of primary mouse hepatocytes did not influence LSR mRNA expression in these cells (data not shown).

In addition to defective insulin signaling, obesity in mice and humans is characterized by leptin resistance (33; 34). To test the hypothesis that leptin deficiency and/or resistance as exemplified by the ob/ob (29) or db/db (27) and NZO (35) models, respectively, are triggers for LSR inhibition under obese and diabetic conditions, we performed leptin replacement studies in ob/ob mice as a model for absolute leptin deficiency (29). Daily leptin administration over a 3-week period substantially reduced food intake (Fig. S1E), body weight (Fig. 1E), and whole-body fat content (Fig. S1F) in ob/ob mice. Remarkably, leptin replacement completely restored hepatic LSR protein expression in ob/ob animals to wild-type levels (Fig. 1F, upper panel, compare lanes 7-8 to lanes 1-2), but left intestinal LSR protein levels unaffected (Fig. 1F, lower panel). Furthermore, hepatic LSR protein levels correlated significantly with body weight in both leptin- or saline-treated wild-type and ob/ob mice (Fig. 1G), suggesting that functional leptin signaling and action represent critical signals for the maintenance of hepatic LSR expression in lean, healthy animals. Together, these results indicated that the loss of hepatic LSR expression in turn represents a common feature of obesity-related, leptin-resistant type II diabetes.

To address the potential functional consequences of hepatic LSR inhibition for the pathophysiological phenotype in the above described diabetes mouse models, we generated adenoviral constructs expressing LSR-specific or non-specific shRNAs and delivered these constructs into healthy, wild-type mice via tail vein injection. As shown in Figure 2, LSR-specific shRNA delivery reduced hepatic LSR expression to 10% of control mRNA levels and almost completely eliminated hepatic LSR protein expression as shown by Western Blot analysis (Fig. 2A and 2B, upper panel). In contrast, no effect of the LSR shRNA adenovirus on LSR mRNA and protein expression levels in adipose tissue, skeletal muscle, or small intestine could be observed (Fig. 2A and 2B, lower panel). These experiments validated the previously reported liver-specificity of this gene delivery technology (25) and, furthermore allowed the exploration of liver-specific LSR functions for systemic metabolism in the absence of potentially confounding effects of LSR
ablation in other tissues as reported recently (16). Importantly, LSR shRNA adenovirus did not affect the mRNA and/or protein expression of related lipoprotein receptor genes, LDLR, LRP1, and SR-B1 (Fig. 2C and S2A), thereby excluding compensatory effects of these receptors in response to acute LSR gene knockdown.

Phenotypic analysis of liver-specific LSR knockdown animals demonstrated that the loss of hepatic LSR resulted in an almost 3-fold induction of serum TG levels as compared to control littermates and significantly elevated serum total cholesterol already 7 days after adenovirus delivery (Fig. 2D). In contrast, hepatic TG stores were found to be lowered by 75% upon hepatic LSR knockdown, and hepatic cholesterol content was also significantly diminished (Fig. 2D). Importantly, these effects of LSR knockdown were only observed in the refed state but not under fasting conditions (Fig. S2B), suggesting that LSR specifically affects postprandial lipid homeostasis. LSR deficiency had no effect on systemic insulin sensitivity as determined by an insulin tolerance test (Fig. S2C). In addition, body weight (Fig. S2D), serum glucose (Fig. S2E), free fatty acids (FFA) (Fig. S2F), total serum ketone body levels (Fig. S2G), whole-body fat content (Fig. S2H), and adipose tissue LPL activity (Fig. S2I) remained unchanged, showing that hepatic LSR deficiency specifically determines hepatic and systemic TG handling. Indeed, liver-specific LSR knockdown significantly delayed systemic TG clearance in an intravenous lipid load test and also tended to delay clearance of an oral lipid load (Fig. 2E and 2F). In contrast, analysis of hepatic VLDL secretion rates demonstrated that LSR-specific shRNA treatment had no effect on liver VLDL output as compared to control littermates (Fig. S2J), further supporting the notion that hepatic LSR activity is particularly involved in the clearance and uptake of circulating serum TG.

Thus, we next sought to explore the basis for the observed hypertriglyceridemia in liver-specific LSR knockdown animals in more detail. To this end, we performed fast protein liquid chromatography analysis of serum samples from LSR knockdown and control littermates. Consistent with the induction of total serum TG levels, LSR-deficiency promoted a significant increase in TG associated with the VLDL/chylomicron and LDL lipoprotein fractions (Fig. 3A). In addition, LSR shRNA treatment caused an increase in VLDL/chylomicron and HDL cholesterol content as compared to control shRNA-treated littermates (Fig. 3B). In accordance with these profiles, the levels of ApoB and ApoE, the major lipoproteins of VLDL, intermediate-density lipoproteins (IDL), and chylomicrons, were increased in serum of liver-specific LSR knockdown mice as compared to controls, whereas ApoAI remained unchanged (Fig. 3C). Thus, liver-specific LSR deficiency produced hypertriglyceridemia with TG-enriched VLDL particles and elevated ApoB/E serum levels as commonly associated with type II diabetes and the Metabolic Syndrome.

We next aimed to explore the relative importance of ApoB and ApoE particles for the LSR-mediated effects on systemic TG levels. To this end, we employed ApoE knockout mice (ApoE-/-) as a standard model for systemic dyslipidemia and total ApoE deficiency (36). Adenoviral LSR shRNA delivery efficiently inhibited both mRNA and protein expression of LSR in livers of ApoE-/- mice (Fig. 4A and 4B), but left intestinal LSR expression levels unaffected (Fig. 4A). As shown for wild-type mice before (Fig. 2), hepatic knockdown of LSR increased total serum TG levels in ApoE-/- mice by 2-fold (Fig. 4C) and lowered hepatic TG stores in these animals (Fig. 4C). Indeed, FPLC analysis revealed a substantial increase in the VLDL-related serum TG fraction upon LSR knockdown in ApoE-/- mice (Fig. 4D),
indicating that LSR exerts its regulatory impact on circulating TG mainly through the interaction with ApoB with secondary rises in ApoE in response to hepatic LSR deficiency in wild-type mice (Fig. 2). Consistent with a specific effect of LSR on TG metabolism, loss of hepatic LSR expression produced no effects on body weight (Fig. S3A), serum glucose (Fig. S3B), FFA (Fig. S3C), and total ketone body levels (Fig. S3D). In addition, LSR knockdown in ApoE-/- mice slightly influenced on serum cholesterol (Fig. S3E) but had no effect on liver cholesterol levels (Fig. S3F), as well as apolipoprotein-associated cholesterol serum profiles as determined by FPLC analysis (Fig. S3G).

These results favored the hypothesis that LSR-dependent ApoB clearance from the circulation counteracts hypertriglyceridemic dyslipidemia in ApoE-/- mice. To verify this assumption independently, we employed an adenovirus carrying the LSR cDNA to specifically overexpress LSR in livers of wild-type or ApoE-/- animals (Fig. 4E and S4A). To this end, LSR adenovirus left intestinal LSR mRNA and protein levels unaffected (Fig. 4E and S4B). In agreement with previous results (Fig. 2), LSR overexpression did not influence body weight (Fig. S4C), serum glucose (Fig. S4D), FFA (Fig. S4E), total ketone body levels (Fig. S4F), as well as total serum or liver cholesterol levels and/or serum distribution (Fig. S4G, S4H and S4I). However, hepatic LSR overexpression significantly decreased serum TG levels in ApoE-/- mice (Fig. 4F), and substantially reduced VLDL-associated TG in hyperlipidemic ApoE-/- animals (Fig. 4G), substantiating the conclusion that LSR counteracts systemic hypertriglyceridemia via the induction of ApoB-dependent TG clearance from the circulation.

The data thus far demonstrated that the hepatic TG receptor LSR represents a critical checkpoint for systemic TG metabolism, and that the absence of LSR in the liver promotes a hypertriglyceridemic shift towards TG-rich, ApoB/ApoE-containing lipoproteins in lean mice. The downregulation of LSR in animals with obesity-related, leptin resistant type II diabetes (Fig. 1), therefore, suggested that the reduction of LSR expression might contribute to the pathophysiological phenotype of these animals and promote aberrant TG metabolism under these conditions.

To finally test this hypothesis, we delivered the LSR overexpression adenovirus into ob/ob mice (29). Adenoviral gene delivery restored hepatic expression of LSR in ob/ob mice to physiological wild-type amounts at mRNA (Fig. 5A) and protein (Fig. 5B) levels. At day 7 after virus injection, LSR reconstitution in ob/ob mice had no effects on body weight (Fig. S5A), serum glucose (Fig. S5B), FFA (Fig. S5C), and total body fat content (Fig. S5D) as compared to control-injected littermates. Intriguingly, LSR restoration in ob/ob livers triggered a significant reduction in serum TG and cholesterol levels (Fig. 5C), again demonstrating the specificity of LSR action for hepatic and systemic lipid metabolism even under obese conditions. To this end, genetic LSR reconstitution in ob/ob mice reduced VLDL/chylomicron and LDL TG levels, while simultaneously decreasing circulating LDL/HDL1 (37) and HDL cholesterol levels in these animals (Fig. 5D). Interestingly, hepatic TG and cholesterol content remained unchanged in response to LSR overexpression (Fig. 5C), suggesting intra-hepatic compensation for increased TG uptake. Indeed, correlating with significantly increased serum ketone body levels (Fig. S5E), mRNA levels of genes in the fatty acid oxidation pathway but not in the lipogenic program were found to be induced in LSR-overexpressing ob/ob mice (Fig. S5G and S5H), which was further associated with an increase in hepatic VLDL release (Fig. S5F).

Together, these data indicate that the lipid receptor LSR represents a key checkpoint in
hepatic and systemic TG metabolism. The downregulation of LSR during the manifestation of leptin-resistant, obesity-related type II diabetes may, thereby, contribute to the commonly observed hypertriglyceridemia in diabetic and obese subjects, and may further aggravate the risk for cardiovascular complications under these conditions.

DISCUSSION

Detailed molecular mechanisms in the pathogenesis of clinically severe aberrations in circulating lipid levels as associated with obesity and type II diabetes have still not been completely defined. Here, we identify an unexpected loss-of-function of the remnant lipoprotein receptor LSR as a common feature of obesity-related type II diabetic conditions in mouse models.

LSR has been initially found to be involved in the degradation of LDL in fibroblasts from a subject homozygous for familial hypercholesterolemia and thus lacking the LDL receptor (38). Genetic inactivation of the LSR gene leads to embryonic lethality (31), and studies on phenotypic consequences of whole-body LSR heterozygosity demonstrated effects on systemic TG metabolism (16). While extrahepatic functions of LSR remain unclear, our studies now provide the first evidence for a tissue-specific function of LSR in the liver. Our functional analysis of liver-specific LSR deficiency suggested that LSR plays a critical role in the clearance of TG-rich, ApoB-containing VLDL particles, especially in the postprandial phase (Fig. 2), as loss of LSR function in both wild-type and ApoE/-/- mice promoted the occurrence of an aberrant blood lipid profile with high serum TG and ApoB/ApoE levels (Fig. 2 and 3). The fact that our liver-specific LSR knockdown displayed a more severe TG phenotype than the hypertriglyceridemia in LSR heterozygous mice (16) indicates that the liver indeed represents the major site of LSR action. This is supported by the absence of changes in intestinal LSR expression levels in diabetes models (Fig. 1) as well as the liver LSR-dependent clearance of intravenous lipid challenges (Fig. 2F). In line with these in vivo data, cellular studies in isolated hepatocytes have shown an important role of LSR in ApoB/E-containing lipoprotein uptake in vitro (12; 16; 39), its high affinity for TG-rich lipoproteins, and its inhibition by ApoCIII (15). It is tempting to speculate that the observed hypertriglyceridemia in ApoCIII transgenic mice –at least in part- can be explained by its inhibitory effect on LSR function (40).

In addition to ApoB-containing remnant clearance, elevated HDL cholesterol along with unaltered ApoAI (Fig. 2G and H) levels and significantly reduced HDL cholesterol in LSR-overexpressing ob/ob mice (Fig. 5D) imply a role of LSR also in the clearance of HDL cholesterol. Indeed, similar effects have been observed in mice deficient in the HDL receptor, SR-BI (28), and overexpression of SR-BI results in reduced plasma concentrations of HDL cholesterol (41). Whether the mechanisms of clearance of TG-rich lipoproteins and a potential role of LSR in reverse cholesterol uptake are regulated by a common upstream signal needs to be further investigated.

This study provides evidence for a unique and specific role of hepatic LSR in systemic lipid homeostasis. Furthermore, our pharmacologic and genetic reconstitution studies demonstrate that liver-specific restoration of LSR is sufficient to improve VLDL TG levels in obese and ApoE/-/- mice, promoting the notion that the inhibition of LSR expression in liver represents a critical determinant of pathophysiological lipid homeostasis in obesity-related type II diabetes. Indeed, leptin resistance as frequently observed under these conditions (33; 34) seems to provide the endocrine
explaining for the downregulation of LSR during obesity and/or weight gain (Fig. 1F-H) as long-term restoration of functional leptin signaling is sufficient to maintain hepatic LSR levels, thereby correlating with improved body weight (Fig. 1G). Further studies will be necessary to clarify the role of LSR as a molecular checkpoint for long-term complications of dyslipidemia, such as cardiovascular damage and atherosclerosis. In this regard, the development of compounds that specifically modulate LSR function in the liver may provide useful adjunct anti-dyslipidemic therapy for patients with obesity and type II diabetes.

ACKNOWLEDGEMENTS

We thank Tobias Dick, Susanne Heck, Allan Jones, Philipp Kulozik, Dagmar Metzger, Lars Weingarten, H. Zentgraf, and Anja Ziegler for experimental advice and technical support, and J.C. Brüning (Cologne, GER), S. Kersten (Wageningen, NL), and R. Kulkarni (Boston, MA) for providing reagents. This work was supported by a grant from the Deutsche Forschungsgemeinschaft He3260/2-1 and a Marie Curie Excellence Grant (European Commission) to S.H.

REFERENCES

7. Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK: Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. Embo J 7:4119-4127, 1988
class B type I accelerates chylomicron metabolism in C57BL/6J mice. *J Lipid Res* 46:1172-1181, 2005

LSR and hyperlipidemia

30. Leiter EH, Reifsnyder PC: Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes. *Diabetes* 53 Suppl 1:S4-11, 2004

Figure 1. Hepatic LSR expression is repressed in leptin-resistant type II diabetes. A, B, C, Quantitative PCR analysis of cholesterol/bile acid transporter (A) (ATP-binding cassette, ABC; bile salt export pump, BSEP), fatty acid transporter (B) (scavenger receptor B1, SR-B1; fatty acid transporter, FATP), and TG/cholesterol transporter (C) (low density lipoprotein receptor, LDLR; LDL receptor-related protein 1, LRPI; lipolysis-stimulated lipoprotein receptor, LSR) mRNA levels in livers of C57BKS (wt) or db/db diabetic (db) mice under fasted (24 h) or refed (24 h fasted, 6 h refed) conditions as indicated (n=4). (means ± SEM). *, p ≤ 0.05. **, p ≤ 0.01. D, Western blot of liver extracts from four representative wt or db/db (upper panel), ob/ob (middle panel), and New Zealand Black (NZB) or New Zealand Obese (NZO) mice under refed conditions using LSR or valosin-containing protein (VCP) antibodies. E, Relative changes in body weight in wild-type (wt) and ob/ob mice treated daily with leptin (5 µg/g body weight) for a period of 21 days. (means ± SEM). F, Western blot of liver (upper panel) and intestinal (lower panel) extracts from same mice as in (E) using LSR or VCP antibodies. Two representative animals per group shown. G, Pearson correlation coefficient shown for relative hepatic LSR protein levels versus body weight in same mice as in E.
LSR and hyperlipidemia

C

Relative mRNA level

- Refed
- Fasted

wt db wt db wt db
LDLR LRP1 LSR

D

[

E

% change in body weight

Leptin

wt Saline
wt Leptin
ob Saline
ob Leptin

% change in body weight

0 2 4 6 8 10 12 14 16 18 20 22

Day

F

Liver

ob/ob

Intestine

ob/ob

G

Relative LSR protein

R = 0.7633

Body weight [g]
Figure 2. Liver-specific loss of LSR promotes hypertriglyceridemia. A, Quantitative PCR analysis of LSR mRNA levels in livers, white adipose tissue (WAT), skeletal muscle, and small intestine of C57Bl/6J mice injected with control or LSR-specific shRNA adenovirus at day 7 after virus delivery (n=7). B, Western blot of liver (upper panel) and intestinal (lower panel) extracts from 4 and two representative control (Ctrl shRNA) or LSR shRNA–injected C57Bl/6J mice using LSR or valosin-containing protein (VCP) antibodies at day 7 after virus delivery. C, Quantitative PCR analysis of LDLR, LRP1, and SR-B1 mRNA levels in livers of same mice as in A (n=7). D, Serum and liver triglyceride (TG) and cholesterol (CHOL) levels in same mice as in A (n=7). Values are shown for the refed state. E, Intravenous lipid load test (ILLT) in same mice as in A. Mice were intravenously injected with 100 µl of a 2.6 % lipid emulsion and serum TG levels were followed for 2 h. Average area under the curve arbitrary units shown (n=7). (means ± SEM). **, p ≤ 0.01. F, Oral lipid load test (OLLT) in same mice as in A. Mice received an oral load of 200 µl olive oil and serum TG levels were followed for 6 h. Average area under the curve arbitrary units shown (n=7) (means ± SEM).
Figure E: ILLT

- Control shRNA
- LSR shRNA

Figure F: OLLT

- Control shRNA
- LSR shRNA

** p = 0.09
Figure 3. Hepatic LSR deficiency specifically affects VLDL TG and ApoB/E levels. A, TG content of serum fractions from control or LSR shRNA–injected C57Bl/6J mice at day 7 after injection. Serum pools of n=7 animals per group were separated by FPLC. Individual fraction numbers indicated. B, Cholesterol (CHOL) content of serum fractions from same mice as in A. C, Western blot of serum samples from two representative control (Ctrl shRNA) or LSR shRNA–injected C57Bl/6J mice using ApoB, ApoE, or ApoAI antibodies at day 7 after virus delivery. Chylo, chylomicrons.
Figure 4. Hepatic LSR controls TG levels in ApoE/-/- mice. A, Quantitative PCR analysis of LSR mRNA levels in livers and small intestine of ApoE knockout (ApoE/-/-) mice injected with control or LSR-specific shRNA adenovirus at day 7 after virus delivery (n=7). (means ± SEM). **, p ≤ 0.01. B, Western blot of liver extracts from four representative control (Ctrl shRNA) or LSR shRNA–injected ApoE-/- mice using LSR or valosin-containing protein (VCP) antibodies at day 7 after virus delivery. C, Serum and liver triglyceride (TG) levels in same mice as in A (n=7). (means ± SEM). *, p ≤ 0.05. **, p ≤ 0.01. D, TG content of serum fractions from control or LSR shRNA–injected ApoE-/- mice at day 7 after injection. Serum pools of n=7 animals per group were separated by FPLC. Individual fraction numbers indicated. Chylo, chylomicrons. E, Western blot of liver (upper panel) and intestinal (lower panel) extracts from two representative wild-type (wt) and ApoE knockout (ApoE-/-) mice injected with control (Ad-CMV) or LSR overexpression (Ad-LSR) adenovirus, respectively, using LSR or valosin-containing protein (VCP) antibodies at day 7 after virus delivery. F, Serum and liver triglyceride (TG) levels in same mice as in E (n=7). (means ± SEM). *, p ≤ 0.05. **, p ≤ 0.01. G, TG content of serum fractions from same mice as in E. Serum pools of n=7 animals per group were separated by FPLC. Individual fraction numbers indicated. Chylo, chylomicrons.
Figure 5. Hepatic LSR restoration lowers serum TG in obese mice. A, Quantitative PCR analysis of LSR mRNA levels in livers of C57Bl/6J and ob/ob mice injected with control (Ad-CMV) or LSR-expressing (Ad-LSR) adenovirus at day 7 after virus delivery (n=7). (means ± SEM). *, p ≤ 0.05. B, Western blot of liver extracts from two representative control (Ad-CMV) or LSR expressing (Ad-LSR) adenovirus–injected C57Bl/6J and ob/ob mice using LSR or valosin-containing protein (VCP) antibodies at day 7 after virus delivery. Labels indicate Flag-tagged LSR expression by adenovirus delivery, co-migrating with the endogenous 68 kDa LSR subunit, and endogenous LSR levels representing the 56 kDa subunit in mice receiving control virus. C, Serum and liver triglyceride (TG) and cholesterol (CHOL) levels in ob/ob mice as in A and B, injected with control (Ad-CMV) or LSR-expressing (Ad-LSR) adenovirus (n=7). (means ± SEM). *, p ≤ 0.05. D, Triglyceride (TG) (upper panel) and cholesterol (CHOL) (lower panel) content of serum fractions from same mice as in C. Serum pools of n=7 animals per group were separated by FPLC. Individual fraction numbers indicated. Chylo, chylomicrons.
LSR and hyperlipidemia

D

![Graph showing lipoprotein profiles](image-url)