Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice

Running Title: A role for Th17 cells in autoimmune diabetes

Juliet A. Emamaullee1, Joy Davis1, Shaheed Merani1, Christian Toso1, John F. Elliott2, Aducio Thiesen3, and A.M. James Shapiro1,4

1Department of Surgery, University of Alberta, Edmonton, AB Canada;
2Departments of Medicine and Medical Microbiology and Immunology, University of Alberta, Edmonton, AB Canada
3Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, AB Canada;
4Clinical Islet Transplant Program, University of Alberta, Edmonton, AB Canada

*Corresponding Author:
Juliet Emamaullee Ph.D.
Email: juliete@ualberta.ca

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

Submitted 14 August 2008 and accepted 3 March 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://diabetes.diabetesjournals.org
Introduction: The ‘Th17’ population, a subset of CD4+ T-cells that secrete IL-17, has been implicated in autoimmune diseases, including multiple sclerosis and lupus. Therapeutic agents that target the Th17 effector molecule IL-17 or directly inhibit the Th17 population (IL-25) have shown promise in animal models of autoimmunity. The role of Th17 cells in type 1 diabetes has been less clear. The effect of neutralizing anti-IL-17 and recombinant IL-25 on the development of diabetes in NOD mice, a model of spontaneous autoimmune diabetes, was investigated in this study.

Results: While treatment with either anti-IL-17 or IL-25 had no effect on diabetes development in young (<5 weeks) NOD mice, either intervention prevented diabetes when treatment was started at 10 weeks of age (p<0.001). Insulitis scoring and immunofluorescence staining revealed that both anti-IL-17 and IL-25 significantly reduced peri-islet T-cell infiltrates. Both treatments also decreased GAD65 autoantibody levels. Analysis of pancreatic lymph nodes revealed that both treatments increased the frequency of regulatory T-cells. Further investigation demonstrated that IL-25 therapy was superior to anti-IL-17 during mature diabetes, as it promoted a period of remission from new onset diabetes in 90% of treated animals. Similarly, IL-25 delayed recurrent autoimmunity following syngeneic islet transplantation, while anti-IL-17 was of no benefit. GAD65-specific ELISPOT and CD4+ adoptive transfer studies showed that IL-25 treatment resulted in a T-cell mediated dominant protective effect against autoimmunity.

Conclusions: These studies suggest that Th17 cells are involved in the pathogenesis of autoimmune diabetes. Further development of Th17-directed may be of benefit in this disease.

Abbreviations:
T1D: type 1 diabetes
MS: multiple sclerosis
RA: rheumatoid arthritis
EAE: experimental autoimmune encephalomyelitis
Treg: regulatory T-cells
A role for Th17 cells in autoimmune diabetes

Type 1 diabetes (T1D) is an autoimmune condition associated with the T-cell mediated destruction of pancreatic β-cells. Detailed investigations using the NOD mouse, a model of spontaneous T1D, have indicated that Th1 populations, which are associated with the transcription factor T-bet and the secretion of cytokines including IFN-γ and IL-2, are key mediators of β-cell autoreactivity (reviewed in (1)). Conversely, induction of Th2 populations, which are associated with the transcription factor GATA-3 and cytokines including IL-4 and IL-10, results in a dominant protective effect against autoimmunity in this model (1). This paradigm is not specific to T1D; in fact, the relative pathogenic contributions of Th1 cells and protective effects of Th2 cells have been described as a common feature of other organ-specific autoimmune diseases including multiple sclerosis (MS) and rheumatoid arthritis (RA) (2-4).

More recently, a new subpopulation of CD4+ T-cells has been characterized, the so-called Th17 cells, which are associated with the transcription factor RORγT and secretion of the pro-inflammatory cytokines IL-17 (IL-17A) and IL-17F (5; 6). These cells appear to play a central role in early inflammation and eosinophil recruitment, and their common requirement for TGF-β during activation suggests that this population has evolved to counteract the inhibitory properties of the Treg population (7; 8). While the Th17 population contributes to the normal inflammatory response, it can become dysregulated in the presence of IL-23, which enhances the stability and survival of this subpopulation, a feature that has been implicated in the development of autoimmunity (8). Indeed, studies using IL-17 as a surrogate marker of Th17 activity have repeatedly associated high levels of IL-17 with most autoimmune conditions in humans and animal models, including RA (9), inflammatory bowel disease (10), and MS (11). The relative contribution of Th17 cells in T1D has been less evident. High levels of the IL-17 transcript have been found within insulitic lesions in NOD mice, and increasing levels of serum IL-17 were associated with the development of diabetes in T-cell receptor transgenic NOD model with accelerated disease progression (12). More recently, studies have demonstrated that therapeutic intervention with an antigen-specific agent that protects against diabetes in NOD mice is associated with a decrease in Th17 populations (13). However, the specific contribution of Th17 cells to the natural progression of T1D in the NOD mouse remains to be fully characterized.

In an effort to both understand the impact of, and reduce the negative effects of the Th17 subpopulation, a number of studies have been carried out using neutralizing anti-IL-17 antibodies. A single injection of anti-IL-17 antibody prevented inflammation and bone erosion and reduced Th17 populations in experimental RA (14), while multiple doses of anti-IL-17 over two weeks dramatically reduced inflammatory lesions and neurological symptoms in experimental autoimmune encephalomyelitis (EAE), a model of MS (15). Based on these studies, anti-IL-17 antibodies (AIN457, Novartis and AMG827, Amgen) are currently being investigated clinically in autoimmune diseases including RA, psoriasis, and Crohn’s disease (16). Another approach to interfere with Th17 populations involves the use of the cytokine IL-25 (IL-17E), a naturally occurring cytokine within the IL-17 family that has been shown to potently inhibit Th17 cells and instead
promote the development of Th2 responses (17-19). IL-25 knockout mice are highly susceptible to autoimmunity, with a dramatic increase in Th17 cells using the EAE model (18). This study also demonstrated that both IL-25 knockout and wild-type animals could be protected from the deleterious effects of Th17 cells in EAE when recombinant IL-25 was administered.

Since Th17 subsets are increasingly considered to be a key mediator of all autoimmune disease, therapeutic strategies designed to inhibit these cells are likely to be applicable in T1D. The purpose of the present study was to investigate the role of Th17 cells in T1D using both neutralizing anti-IL-17 antibodies and recombinant IL-25 in the NOD mouse model.

MATERIALS AND METHODS

Animals. NOD/LtJ and NOD-RAG-/- mice (NOD.129S7-Rag1tm1Mom/J) were obtained from Jackson Labs (Bar Harbor, ME). For remission and transplant studies, spontaneously diabetic NOD females were identified by monitoring our colony 2-3 times per week, with animals considered diabetic following two consecutive blood glucose readings >18 mmol/L or one reading >25 mmol/L with a One Touch Ultra Glucometer (Lifescan, Mississauga, ON). All animals were cared for according to the guidelines of the Canadian Council on Animal Care, and ethical approval was obtained from the animal welfare committee at the University of Alberta.

Drug therapy. A mouse anti-IL-17 monoclonal antibody (clone 50104), mouse IgG2A isotype control antibody, and IL-25 (IL-17E) were all obtained from R&D Systems (Minneapolis, MN). Diabetes prevention- For studies examining IL-17 neutralization, anti-IL-17 or isotype control was administered at 100 µg i.p. on alternating days over a 12 day period (6 total injections). For studies using IL-25, the recombinant cytokine was administered at 1 µg s.c. daily for 25 days (an equivalent volume of saline was given to vehicle treated animals). Diabetes remission- Spontaneous diabetic mice were assigned randomly to one of the following treatment groups: Anti-IL-17 (100 µg i.p. every other day), IL-25 (1 mg s.c. daily), or control (IgG at 100 µg i.p. for anti-IL-17 and vehicle for IL-25). Treatment was continued until 8 consecutive daily readings >25 mmol/L were obtained, after which point the experiment was terminated. Diabetes recurrence following syngeneic islet transplantation- For anti-IL-17 studies, transplanted animals received either anti-IL-17 or isotype control treatment (100 µg i.p.) on days 0, 4, 8, 12, and 16 post-transplant. For IL-25 studies, transplanted animals received either IL-25 (1 µg s.c.) or vehicle daily through day 15 post-transplant.

Insulitis scoring. One month following the completion of treatment, pancreatic tissue was harvested, fixed in formaldehyde, processed and embedded in paraffin (20). Sections (10 µm) were stained using hematoxylin and eosin (H&E). All samples were blinded prior to being scored by a single pathologist using the scheme outlined by Yoon et al. (21). Representative islets were photographed using a Zeiss microscope at 200x magnification.

Immunofluorescence. Prior to immunostaining, cryostat sections (10 µm) of pancreata were fixed in acetone and blocked using 20% goat serum. Rat anti-mouse CD4 (clone GK1.5, Ebioscience, Mississauga, ON), rat anti-mouse CD8 (clone 53-6.7, Ebioscience), rat anti-mouse Foxp3 (clone FJK-16s, Ebioscience), and polyclonal guinea pig anti-insulin (Dako Canada, Mississauga, ON) were used as primary antibodies. To detect bound antibodies, biotinylated goat
A role for Th17 cells in autoimmune diabetes

anti-rat antibodies (for CD4, CD8, and Foxp3; Cedarlane) and TRITC-labeled goat anti-guinea pig antibodies (1:200, for insulin; Cedarlane) were used. Polyclonal rabbit anti-IL-17 (Cedarlane Labs, Mississauga, ON) was used to detect IL-17 on formalin-fixed sections. All slides were mounted using ImmunoGold Mounting Medium with DAPI for nuclear counterstaining (Invitrogen Canada, Mississauga, ON).

GAD65 autoantibody assays. Recombinant GAD65 was prepared as previously described and kindly provided by Dr. John Elliott (22). Serum was harvested via tail vein bleeds from treated animals, and GAD65 autoantibody levels were determined using the method described by Ma et al. (23). Serum samples were diluted 1:50 in blocking buffer. Reactions were stopped after 20 min. using 1 M H2SO4 and immediate analyzed at 450 nm wavelength.

Islet transplantation studies. Mouse islets were isolated using established methods (24). Spontaneously diabetic NOD females were maintained on daily insulin injections for 2-3 weeks to collect a sufficient cohort to transplant, with insulin withdrawal the day prior to islet transplantation. 500 NOD-RAG-/- islets (syngeneic but without insulitis) were transplanted under the left kidney capsule.

Flow cytometry, ELISA, and ELISPOT assays. An ELISA for TGF-β1 and ELISPOT kits for IFN-γ, IL-4, and IL-17 were purchased from Ebioscience. One month following the completion of treatment, splenocytes were harvested and purified with lympholyte-M. CD4+ T-cells were extracted from splenocyte suspensions using magnetic beads (Negative selection; Miltenyi Biotec Canada, Mississauga, ON) and confirmed to be >90% pure by flow cytometry (data not shown). Naïve NOD-RAG-/- males received either 1x10^7 splenocytes from a spontaneously diabetic NOD mouse ("diabetic splenocytes"), 1x10^7 diabetic splenocytes combined with 2x10^6 CD4+ splenocytes from normoglycemic NOD mice previously treated with anti-IL-17, or 1x10^7 diabetic splenocytes combined with 2x10^6 CD4+ splenocytes from normoglycemic NOD mice previously treated with IL-25. Blood glucose levels were monitored three times per week thereafter.

Statistics. All statistical analysis in this study were carried out using SigmaPlot 10 and SigmaStat 3.5 (Systat, Inc.), and results are expressed as mean±SEM. Mann-Whitney Rank Sum tests were used, and an analysis of variance (ANOVA) performed on ranks
with Bonferroni post-hoc analysis was used to analyze multiple groups. Kaplan-Meier survival analyses were compared using the Log Rank test.

RESULTS

Inhibition of Th17 cells prevents progression to diabetes in pre-diabetic animals. To explore the potential contribution of Th17 cells to the natural development of T1D, either neutralizing anti-IL-17 antibodies or IL-25 were administered to 5-week old NOD females to investigate the role of this population in the initiation phase of autoimmunity and to 10 week old NOD females to investigate the role of Th17 cells during the effector phase of autoimmunity. Dosing regimens for anti-IL-17 (100 µg i.p. days on alternating days for two weeks) and IL-25 (1 µg s.c. each day for 25 days) were based upon results obtained in the EAE model that effectively controlled antigen-specific Th17 cells (15; 18). As shown in Figure 1A, IL-17 neutralization did not alter diabetes progression when treatment was initiated at 5 weeks of age, and a similar result was obtained using IL-25 beginning at 5 weeks of age (Fig. 1C). In contrast, both anti-IL-17 (Fig. 1B) and IL-25 (Fig. 1D) prevented diabetes development in the majority of treated animals by 6 months of age when treatment was initiated at 10 weeks of age (p=0.001 by Log Rank for each group vs. controls; N=10 per group). These data suggest that Th17 cells are involved in the natural progression of T1D, particularly during the effector phase of disease development.

Anti-IL-17 and IL-25 treatment reduces islet inflammation. To further understand the mechanism of diabetes prevention using anti-IL-17 or IL-25 treatment during the effector phase of T1D development, detailed histological analysis was carried out in normoglycemic animals one month following the completion of treatment (serial sections from 6-8 animals per group). Insulitis scoring by a pathologist using blinded samples indicated that both treatment strategies significantly reduced the degree of islet inflammation (Figure 2). The majority of the pancreata in normoglycemic control animals had destructive insulitis (mean score of 2.6±0.3), while insulitis was significantly reduce in both anti-IL-17 treated (mean score 2.0±0.3) and IL-25 treated animals (mean score 1.5±0.3) (p<0.05 for anti-IL-17 and p<0.02 for IL-25 vs. controls; representative H&E sections from each cohort are shown in Figure 2B-D). To determine the contribution of different T-cell populations within the peri-islet infiltrates in both anti-IL-17 and IL-25 treated animals, immunofluorescence staining for CD4, CD8, Foxp3, and IL-17 was carried out in combination with insulin staining and compared to control animals. As shown in Figure 3, insulitic lesions in normoglycemic control NOD mice were composed primarily of CD4+ cells, with a smaller proportion of CD8+ lymphocytes and low Foxp3 staining. Examination of multiple sections of control NOD pancreata for IL-17 staining consistently showed a small number of IL-17+ cells within the peri-islet infiltrates, regardless of the degree of insulitis. Pancreatic sections from normoglycemic animals treated with either anti-IL-17 or IL-25 demonstrated a reduced level of insulitis that was composed primarily of CD4+ cells, a reduced number of CD8+ cells, and enrichment in Foxp3+ cells as compared to control animals. Very few IL-17+ cells were observed in anti-IL17 treated animals, with only a small proportion of inflamed islets staining positive for IL-17 (representative sections in Fig. 3). Analysis of multiple sections from IL-25 treated animals for IL-17 staining did not reveal any IL-17+ cells (representative section in Fig. 3). Overall,
these data indicate that inhibition of Th17 cells with both anti-IL-17 and IL-25 treatment regimens significantly reduces islet-specific inflammatory T-cell infiltration and increases the proportion of Foxp3+ cells around the islets.

Anti-IL-17 and IL-25 treatment prevents GAD65 autoantibody formation. Inhibition of Th17 populations in other models of autoimmunity has resulted in a measurable reduction in autoantibody formation (25; 26). To determine the impact of anti-IL-17 and IL-25 therapies on autoreactive B-cells in NOD mice, serum samples were analyzed for anti-GAD65 autoantibodies, a later stage marker of autoimmunity in this model (27). Initially, serum samples obtained from anti-IL-17 and IL-25 treated animals one month following the completion of treatment (effector phase) were analyzed, and a significant reduction in GAD65-autoantibodies was observed in both anti-IL-17 (mean OD 1.11±0.02) and IL-25 treated (mean 1.03±0.03) animals as compared to controls (mean OD 1.34±0.08; p<0.02 vs. anti-IL-17 and p<0.005 vs. IL25 by ANOVA; Figure 4A). Based on these data, we chose to prospectively monitor IL-25 treated animals for GAD65 autoantibody levels to determine whether this observation persisted over time (serum samples were not collected prospectively in anti-IL-17 studies and thus could not be analyzed). Animals treated with IL-25 exhibited a persistent reduction in GAD65 autoantibody formation up to 90 days following the completion of treatment (p<0.001 vs. control by ANOVA). These data indicate that inhibition of Th17 cells in T1D can prevent autoantibody formation.

IL-25, but not anti-IL-17, treatment restores euglycemia in newly diabetic mice and delays recurrent autoimmunity following syngeneic islet transplantation. In the NOD mouse model, the initiation and effector phases of disease, prior to the onset of hyperglycemia, carry the lowest threshold for disease prevention (reviewed in (28)). However, once the autoimmune response has matured and resulted in hyperglycemia, reversal of diabetes and prevention of recurrent autoimmunity following β-cell replacement represent significant barriers, with only a handful of therapeutic strategies regulating T1D in the NOD mouse at these late stage disease time points (28). Thus, to understand the role of Th17 cells after the development of overt diabetes, a series of experiments were conducted in two different models: at the time of diabetes onset (attempt to reverse new onset diabetes) and after a period of rest following diabetes onset with subsequent β-cell replacement via syngeneic islet transplantation (recurrent autoimmunity). Data in Figure 5A illustrates that anti-IL-17 had no effect once diabetes was established, with all animals remaining persistently diabetic throughout the treatment period. However, daily treatment with IL-25 resulted in remission in 90% of treated animals, versus none of the controls (Fig. 5B; p<0.0001 by ANOVA and P=0.002 by Fisher’s exact test). Ultimately, most animals returned to hyperglycemia by 10 days following initiation of treatment, despite ongoing therapy, although one animal did exhibit persistent normoglycemia for >100 days even after IL-25 treatment withdrawal at day 30 (data not shown). This enhanced efficacy of IL-25 as compared to anti-IL-17 was also observed in recurrent autoimmunity following syngeneic islet transplantation, where IL-25 nearly doubled islet graft survival time from 4.2±0.8 days in control animals to 7.2±0.2 days in treated animals (p=0.0013 by Log Rank). These studies indicate that IL-25, which is known to directly inhibit Th17 populations, is superior to IL-17.
neutralization in regulating a mature autoimmune response following the onset of hyperglycemia.

IL-25 treatment reduces the frequency of autoreactive Th2 and Th17 T-cells and results in the development of a Treg enriched CD4+ T-cell population that dominantly protects against disease transfer. While both anti-IL-17 and IL-25 therapies were able to reduce the incidence of T1D during the effector phase leading into T1D, only IL-25 therapy was able to control diabetes once the disease was established. To further investigate the different mechanisms by which these two therapies function, splenocytes from normoglycemic treated animals in the prevention studies (Fig. 1) were examined ex vivo for autoreactive T-cell populations using GAD65-stimulated ELISPOT assays at one month following the completion of treatment. While no difference in IFNγ-secreting GAD65-responsive splenocytes were observed as compared to controls (Fig. 6A), a significant reduction in IL-4 secreting GAD65-responsive splenocytes was observed in IL-25 treated animals as compared to both anti-IL-17 treated and control animals (p<0.02; Fig. 6B). Paradoxically, anti-IL-17 treatment resulted in an increased frequency of IL-17 secreting GAD65-responsive splenocytes, while the opposite occurred following IL-25 treatment, where a significant reduction in this autoreactive Th17 population was observed (p<0.001 for anti-IL-17 vs. control and IL-25 and p<0.05 by ANOVA for IL-25 vs. control; Fig. 6C).

Next, a series of adoptive transfer experiments was carried out using immunodeficient NOD-RAG-/- recipients. In this model, transfer of 1x10^7 splenocytes from a recent onset diabetic NOD mouse results in hyperglycemia in all recipients (control mean diabetes onset at 42.8±2.3 days post-transfer, Fig. 6D). To evaluate whether the protective effects of anti-IL-17 or IL-25 treatment could dominantly control autoreactive T-cell populations, 2x10^6 purified CD4+ splenic T-cells, harvested from either anti-IL-17 or IL-25 treated animals one month following the completion of treatment, were co-injected with 1x10^7 diabetic splenocytes into naïve normoglycemic NOD-RAG-/- recipients. In these experiments, co-transfer of CD4+ splenocytes from animals previously treated with anti-IL-17 resulted in no delay in diabetes development (anti-IL-17 mean diabetes onset at 41.8±4.8 days), demonstrating that anti-IL-17 treatment does not alter the CD4+ T-cell compartment sufficiently to regulate effector diabetogenic splenocytes. In contrast, CD4+ splenocytes harvested from animals previously treated with IL-25 exerted a dominant protective effect against diabetogenic splenocytes, resulting in diabetes prevention in 70% of reconstituted recipients by 80 days post-transfer (Fig. 6D).

Based upon the results obtained in these adoptive transfer studies, further experiments were conducted to characterize the splenic and pancreatic lymph node derived lymphocyte populations in animals previously treated with either anti-IL-17 or IL-25. Flow cytometric analysis of these different lymphocyte sources revealed a significant increase in CD4+CD25+Foxp3+ Treg cells as compared to vehicle treated controls (Figure 7), while no difference in the relative frequency of CD8+ T-cells was observed (data not shown). To further understand the function of these lymphocytes, splenic and pancreatic lymph node derived lymphocytes were incubated with GAD65 for 48 hours, and afterward the supernatant was assayed for TGF-β1 activity, a key cytokine that drives expansion of the Treg population.
Data in Figure 7C demonstrates that prior treatment with either anti-IL-17 or IL-25 resulted in a significant increase in TGF-β1 activity from pancreatic lymph node lymphocytes, with IL-25 treatment resulting in a greater TGF-β1 activity even when compared to animals previously treated with anti-IL-17. No difference in TGF-β1 activity was observed among splenocyte populations within the three treatment groups. Taken together, these experiments indicate that IL-25 treatment alters the T-cell repertoire in NOD mice, reducing the frequency of autoreactive GAD65-responsive Th2 and Th17 cells and promoting the development of a dominantly protective CD4+ T-cell population with a relative enrichment in Treg populations.

DISCUSSION

The recently characterized pathogenic Th17 population has been linked to a number of organ-specific autoimmune diseases (29) and is currently being investigated as a clinical therapeutic target in autoimmunity. The present study demonstrates for the first time that inhibition of Th17 cells, either with neutralizing anti-IL-17 or with recombinant IL-25, can impact the course of diabetes in NOD mice, indicating that the Th17 population is a major contributing factor in this model. Initially, the impact of these treatments was investigated in two age groups that correlate with different stages in the development of autoimmunity. The impact on diabetes was most evident when treatment with anti-IL-17 or IL-25 was introduced during the active phase of autoimmunity preceding the development of overt disease. The observation that these treatments could reduce autoimmune β-cell destruction was confirmed by scoring of insulitis and measurement of GAD65 autoantibodies, which was significantly reduced in both anti-IL-17 treated and IL-25 treated animals. Taken together, these data indicate that the Th17 population is less involved in the initiation of autoimmune diabetes and primarily contributes to the active phase of disease development in this model.

Further characterization of the peri-islet T-cell infiltrates revealed that both anti-IL-17 and IL-25 treatments reduced the degree of CD4+ and CD8+ infiltrate while increasing the proportion of Foxp3+ cells, a marker of the regulatory T-cell population (Fig. 3). These data were confirmed by flow cytometric analysis of splenocytes and pancreatic lymph node lymphocytes, which revealed that either treatment resulted in a relative increase in the Treg population (Fig. 7). Interestingly, the frequency of Th17 cells within the pancreas was very low at all stages of disease, with only a small fraction of the peri-islet mononuclear cell infiltrate staining positive for IL-17, the characteristic marker of this population (Fig. 3). We observed that treatment with anti-IL-17 reduced the frequency of peri-islet IL-17+ cells even further, while treatment with IL-25 resulted in no identifiable IL-17+ infiltrating cells (Fig. 3). The relatively low frequency of Th17 cells within the insulitic lesions suggests that this population is more involved in directing an immune response in the secondary lymphoid tissues rather than participating directly in β-cell destruction. This concept is supported by data using the EAE model, which demonstrates that pathogenic Th17 cells facilitate the development of autoreactive effector T-cells during antigenic priming within cervical draining lymph nodes, and that the Th17 population remains dominant within this compartment throughout the course of disease (30; 31). Our finding that inhibition of Th17 cells with anti-IL-17 or IL-25 leads to enrichment in peri-islet Foxp3+ cells and pancreatic lymph node
lymphocytes is also consistent with the Th17/Treg paradigm, as it is known that these populations exert mutually opposing effects (7). Thus, our data suggests that inhibition of Th17 cells allows the Treg population to expand and counteract the development of autoimmunity in this model.

To explore the impact of Th17 inhibition on the autoimmune response in more detail, B- and T-cell reactivity to the later stage auto-antigen GAD65 was analyzed (27). Previous treatment with either anti-IL-17 or IL-25 prevented GAD65 autoantibody formation, and this effect was durable over time (Fig. 4). This result is in keeping with data generated in a mouse model of inducible autoimmune myasthenia gravis, which demonstrated that IL-17 knockout animals are resistant to autoantibody formation primarily as a result of the loss of help signals from Th17 cells during the generation of autoreactive B-cells (32). Data in the present study also indicates that inhibition of the Th17 population resulted in a similar effect on autoreactive T-cells. Ex vivo analysis of splenocytes from animals previously treated with anti-IL-17 or IL-25 using ELISPOT assays established that inhibition of Th17 cells alters the frequency of GAD65-responsive T-cell populations (Fig. 6). Surprisingly, no difference was observed in the frequency of GAD65-responsive IFNy-secreting splenocytes between both treatment groups and controls, despite the marked difference in disease outcomes as observed in Figure 1. Our data indicates that treatment with these Th17 inhibitory therapies resulted in enrichment in Treg populations, which likely control the pathogenic effects of autoreactive Th1 cells in the vicinity of the islet.

As expected, treatment with IL-25 significantly reduced the frequency of GAD65-responsive, IL-17 secreting cells (Fig. 6C), which is consistent with previous studies illustrating that this cytokine can inhibit formation of the Th17 population (18). The opposite effect was observed in splenocytes harvested from animals previously treated with anti-IL-17, which possessed a significant increase in the number of GAD65-responsive, IL-17 secreting cells (Fig. 6C). The relative importance of this expanded Th17 population in these anti-IL-17 treated animals is unclear, since this treatment prevented diabetes development (Fig. 1B). A possible explanation for these data is the finding that IL-17 secretion exerts autocrine and paracrine effects on Th17 cells, sending a negative feedback signal to inhibit proliferation (33). Thus, IL-17 neutralization could in theory remove that negative signaling event and enhance the development of Th17 cells. If this were the only effect of anti-IL-17 treatment, one would anticipate that autoimmunity would be accelerated in treated animals, rather than prevented as shown in this study and others (9; 14; 15). Another possibility involves the “Sprent Effect”, where anti-cytokine monoclonal antibody treatment paradoxically results in enhanced receptor signaling (34). Further investigation of the mechanism of anti-IL-17 therapy on autoimmunity in animal models and ongoing clinical trials will likely reveal the dominant pathway involved in modulation of autoimmunity using this approach.

The most intriguing finding in the present study relates to the potent effect of IL-25 treatment on the mature autoimmune response in NOD mice, following the onset of hyperglycemia. It is well known that therapeutic interventions that can prevent diabetes in this model rarely mediate late stage autoimmunity, resulting in reversal of disease (28). We explored the impact of both anti-IL-17 and IL-25 treatment using two different models of mature autoimmune responses, either immediately following
disease onset or after a period of rest and subsequent syngeneic islet transplantation. As shown in Figure 5, IL-25 therapy restored normoglycemia in newly diabetic animals and significantly delayed recurrent autoimmunity following islet transplantation, while anti-IL-17 had no effect in either setting. These findings were particularly surprising given the short serum half-life of IL-25 following s.c. injection, with a peak concentration at one hour and no detectable levels by 6 hours post-injection (see the Supplemental Figure A1 available in the online appendix at http://diabetes.diabetesjournals.org). It is likely that the therapeutic effect of IL-25 treatment persists longer, since it inhibits Th17 populations and thus may result in a protracted immunological impact. Measuring this effect ex vivo following IL-25 treatment directly would be challenging; however, adoptive transfer studies using CD4+ splenocytes harvested from animals previously treated with IL-25 indicated that IL-25 induces the formation of a dominant protective T-cell population that can control the mature autoimmune response, even after treatment withdrawal (Fig. 6D). Our data indicates that this result was likely due to a reduction in Th17 cells, expansion of Tregs, and/or combination of both effects. The fact that anti-IL-17 had no effect on the mature autoimmune response in the present study is not all that surprising, given that it only neutralizes the effector molecule of the Th17 population without sending any direct negative signals. Thus, if the Th17 population has already developed and expanded, neutralizing the effector molecule IL-17 will have minimal impact on the course of disease. In fact, as mentioned previously, IL-17 has been shown to exhibit negative feedback to the Th17 population (33), so neutralizing this cytokine at later disease points may be disadvantageous.

In summary, the present study indicates that the Th17 population is involved in the pathogenesis of autoimmune diabetes in the NOD mouse and that intervention with treatments that inhibit this subset can alter the course of disease, even after the autoimmune response has evolved into overt diabetes. Based upon these data, further exploration of this subset in the NOD model and in patients with T1D is warranted. The present study also indicates that further ongoing development of agents like IL-25 that can directly inhibit the Th17 population will be superior to approaches using IL-17 neutralization in autoimmune diabetes. While recombinant IL-25 may not represent the best therapeutic molecule due to its short half-life and potential role in allergic airway inflammation (35), this study and others provides proof of concept that this therapeutic target should be developed further for use in autoimmune disease (18).

ACKNOWLEDGEMENTS

J.E. is supported by fellowships from the American Society for Transplantation, Juvenile Diabetes Research Foundation (JDRF), Alberta Heritage Foundation for Medical Research (AHFMR), and by the Rhind Autoimmunology Award. S.M. is supported by studentship awards from the AHFMR and the Canadian Institutes for Health Research. C.T. is the recipient of a grant from the Swiss National Science Foundation, the FS Chia Scholarship, and an AHFMR fellowship. A.M.J.S is an AHFMR scientist, and supported through grants from the JDRF and National Institutes of Health.

Funding Sources: JDRF Clinical Center Grant # 4-2001-920
REFERENCES
A role for Th17 cells in autoimmune diabetes

22. Elliott JF, Qin HY, Bhatti S, Smith DK, Singh RK, Dillon T, Lauzon J, Singh B: Immunization with the larger isoform of mouse glutamic acid decarboxylase (GAD67) prevents autoimmune diabetes in NOD mice. *Diabetes* 43:1494-1499, 1994

A role for Th17 cells in autoimmune diabetes

Figure Legends

Figure 1: Inhibition of Th17 cells with either neutralizing anti-IL-17 or IL-25 has no effect when treatment is initiated during the initiation stage of autoimmune diabetes, but significantly reduces the incidence of diabetes when treatment occurs during the effector stage. The impact of a neutralizing anti-IL-17 antibody as well as the Th17-inhibitory cytokine IL-25 was investigated during two phases of diabetes development in NOD mice. Treatment was initiated at either 5 weeks of age, which represents the initiation stage of autoimmunity as characterized by mild insulitis, or at 10 weeks of age, when the effector phase of autoimmunity is occurring and the majority of NODs will have invasive insulitis. Anti-IL-17 (100 µg i.p. on days 0, 2, 4, 6, 8, 10) did not alter the course of diabetes when treatment was initiated at 5 weeks of age (A), while treatment initiation at 10 weeks of age resulted in a significant increase in the number of non-diabetic animals (B; p=0.001 by Log Rank). Similar results were obtained with recombinant IL-25, which had no effect when treatment was started at 5 weeks of age (C) but significantly increased diabetes-free survival (D; p=0.001 by Log Rank).

Figure 2: Both anti-IL-17 and IL-25 reduced the degree of insulitis in treated animals. (A) Pancreata from anti-IL-17 treated, IL-25 treated and control animals were harvested one month following the completion of treatment and H&E stained. The slides were blinded and scored by a pathologist according to the following scale (based upon >50% of the islets in that section exhibiting the associated pattern): 0 (no infiltrate), 1 (mild peri-islet infiltrate), 2 (invasive insulitis with 25-50% islet destruction), and 3 (destructive insulitis with >50% islet destruction). Both anti-IL-17 (mean score 2.03±0.33) and IL-25 (mean score 1.50±0.33) treatment markedly reduced insulitis as compared to controls (mean score 2.63±0.26; p<0.05 for anti-IL-17 vs. control and p<0.02 for IL-25 vs. control by ANOVA). (B) Representative H&E stained islets from each cohort are presented at 200x magnification.
Figure 3: Treatment with anti-IL-17 or IL-25 reduced the degree of peri-islet T-cell infiltration and was associated with an increase in the frequency of Foxp3+ cells. Pancreata were collected from anti-IL-17 treated, IL-25 treated, and control animals one month following the completion of treatment. Tissue sections were stained for either CD4, CD8, Foxp3, or IL-17 (each in green) in combination with insulin (red) and nuclei (DAPI in blue). Treatment with either anti-IL-17 or IL-25 reduced the frequency of both CD4+ and CD8+ T-cells and increased the number of Foxp3+ regulatory T-cells in the peri-islet infiltrate as compared to controls. IL-17+ staining was only visible in a small proportion of cells present within the insulitic lesion in control animals, and this frequency was further reduced following treatment with anti-IL-17 or IL-25. CD4, CD8, and Foxp3 staining was completed on cryosections, while IL-17 staining was completed on fixed sections, resulting in a difference in appearance on photography. Pancreata harvested from N=6-8 normoglycemic animals from each treatment group were analyzed, and representative sections from each combination of staining are shown at 200x magnification.

Figure 4: Treatment with anti-IL-17 or IL-25 prevents GAD65 autoantibody formation. Serum samples were collected in anti-IL-17, IL-25, and control animals one month following the completion of treatment and analyzed for GAD65 autoantibodies using an ELISA. (A) Both anti-IL-17 and IL-25 treatment regimens were associated with a significant reduction in the number of GAD65 IgG antibodies when compared to control animals (p<0.02 for anti-IL-17 vs. control and p<0.005 for IL-25 vs. control by ANOVA). (B) Animals treated with IL-25 were followed prospectively for GAD65 autoantibody development, and this treatment effectively prevented autoantibody formation >90 days following the initiation of treatment (p<0.001 by ANOVA). A minimum of N=4 animals were analyzed at each time point.

Figure 5: Treatment with IL-25, but not anti-IL-17, can reverse new onset diabetes and delay recurrent autoimmunity following syngeneic islet transplantation. Naïve spontaneously diabetic (blood glucose >18 mmol/L) NOD mice were randomly assigned to receive either anti-IL-17 (100 µg IP every other day), IL-25 (1 µg SC daily), or control (IgG for anti-IL-17, vehicle for IL-25). (A) Treatment with anti-IL-17 did not reverse hyperglycemia following new onset diabetes in NOD mice. (B) Treatment with IL-25 resulted in a period of normoglycemia (mean 8.53±2.77 days) in 9/10 animals, while none of the controls returned to normoglycemia (p<0.0001 by ANOVA). One IL-25 treated animal experienced permanent remission beyond 100 days and following the discontinuation of IL-25 treatment at day 30 (data not shown). (C) While anti-IL-17 treatment did result in prolongation of syngeneic islet graft survival in 2/5 animals, no significant difference in recurrent autoimmunity was observed when compared to IgG treated controls. (D) Treatment with IL-25 delayed recurrent autoimmunity following syngeneic islet transplantation (mean survival time of 7.2±0.2 days in IL-25 treated animals vs. 4.2±0.8 days in vehicle treated animals; p=0.0013 by Log Rank).

Figure 6: IL-25 treatment reduces the frequency of autoreactive Th2 cells and Th17 cells and leads to the formation of a CD4+ splenocyte population that can prevent T1D development in an adoptive transfer model. One month following the completion of treatment, splenocytes were harvested from either anti-IL-17 treated, IL-25 treated, or control animals (N=3-4 animals per treatment group; all normoglycemic)
that had been previously treated beginning at 10 weeks of age. Purified splenocytes were analyzed using cytokine ELISPOT assays or adoptively transferred into NOD-RAG-/- recipients. (A) No difference in the frequency of GAD65-responsive, IFNγ secreting splenocytes was observed in either treatment group vs. controls. (B) IL-25 treatment resulted in a reduction in the number of GAD65-responsive, IL-4 secreting splenocytes as compared to both anti-IL-17 treated animals (p<0.02 for IL-25 vs. anti-IL-17 and control by ANOVA), suggesting that IL-25 treatment can reduce the frequency of autoreactive Th2 cells. (C) While IL-25 treatment was associated with a reduction in the number of GAD65-responsive, IL-17 secreting splenocytes (p<0.05 vs. control by ANOVA), anti-IL-17 treatment significantly increased the frequency of this population (p<0.001 by ANOVA vs. control and IL-25). (D) CD4+ lymphocytes were further purified from these splenocyte preparations using magnetic beads. Naïve NOD-RAG-/- males received either 1x10^7 splenocytes harvested from spontaneously diabetic NOD mice (‘diabetic splenocytes’) combined with 2x10^6 CD4+ splenocytes isolated from mice previously treated with anti-IL-17 (“anti-IL17”), 1x10^7 diabetic splenocytes combined with 2x10^6 CD4+ splenocytes from mice previously treated with IL-25 (“IL-25”), or 1x10^7 diabetic splenocytes with no CD4 supplementation (“Control”). Animals were monitored three times per week thereafter for diabetes onset. Supplementation with CD4+ cells harvested from mice previously treated with IL-25 resulted in a significant dominant protective effect, preventing diabetes development in 75% of the animals in this group (P<0.005 vs. anti-IL-17 and control by Log Rank). Supplementation with CD4+ cells from animals previously treated with anti-IL-17 had no effect, with 100% of the animals becoming diabetic within 60 days post-transfer, which was comparable to the diabetes incidence observed in the control group.

Figure 7: Treatment with anti-IL17 or IL-25 increases the frequency of Treg cells within pancreatic lymph nodes. One month following the completion of treatment, pancreatic draining lymph nodes or spleens were harvested from either anti-IL-17 treated, IL-25 treated, or control animals (N=3-4 animals per treatment group), and lymphocytes were extracted. Purified lymphocytes were analyzed using flow cytometry and TGF-β1 ELISA to quantify the Treg activity present in each immune compartment. (A) Representative flow cytometry panels from pancreatic lymph node cells harvested from each treatment group are shown. Each panel was first gated on lymphocytes and CD4+ cells, and the dot plots shown compare CD25 staining (y-axis) versus FoxP3 staining (x-axis). (B) The percentage of CD4+CD25+FoxP3+ Treg cells derived from spleen and pancreatic lymph nodes are shown. Treatment with either anti-IL17 or IL-25 resulted in a significant increase in the proportion of Treg cells present in both the spleen and the pancreatic lymph node. (C) Following purification, 2x10^5 cells from each animal in each treatment group were incubated with GAD65 for 48 hr, and the supernatants were subsequently harvested for analysis using TGF-β1 ELISA. Treatment with anti-IL17 or IL-25 resulted in a significant increase in TGF-β1 among pancreatic lymph node derived lymphocytes as compared to controls, while no difference was observed in splenic lymphocytes.
A role for Th17 cells in autoimmune diabetes

Figure 1
Figure 2
Figure 3

A role for Th17 cells in autoimmune diabetes
A role for Th17 cells in autoimmune diabetes

Figure 4

![Graph A](image1)

![Graph B](image2)

Figure 4
A role for Th17 cells in autoimmune diabetes

Figure 5
Figure 6
Figure 7