Atf4 mutant mice are lean

Atf4 Regulates Obesity, Glucose Homeostasis, and Energy Expenditure

(Running Title: Atf4 mutant mice are lean)

Jin Seo¹, Edgardo S. Fortuno III ¹, Jae Myoung Suh ¹, Drew Stenesen¹, Wei Tang ¹, Elizabeth J. Parks ³, Christopher M. Adams ⁴, Tim Townes ⁵ and Jonathan M. Graff ¹,²,³

¹Department of Developmental Biology, ²Department of Molecular Biology, ³Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
⁴Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
⁵Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham
Birmingham, AL

Corresponding author:
Email: jon.graff@utsouthwestern.edu

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: We evaluate a potential role of Activating transcription factor 4 (Atf4) in invertebrate and mammalian metabolism.

Research Design and Methods: With two parallel approaches—a fat body-specific GFP enhancer trap screen in D. melanogaster and expression profiling of developing murine fat tissues—we identified Atf4 as expressed in invertebrate and vertebrate metabolic tissues. We assessed the functional relevance of the evolutionarily conserved expression by analyzing Atf4 mutant flies and Atf4 mutant mice for possible metabolic phenotypes.

Results: Flies with insertions at the Atf4 locus have reduced fat content, increased starvation sensitivity, and lower levels of circulating carbohydrate. Atf4 null mice are also lean and they resist age-related and diet-induced obesity. Atf4 null mice have increased energy expenditure potentially accounting for the lean phenotype. Atf4 null mice are hypoglycemic, even before substantial changes in fat content, indicating that Atf4 regulates mammalian carbohydrate metabolism. In addition, the Atf4 mutation blunts diet-induced diabetes as well as the hyperlipidemia and hepatosteatosis. Several aspects of the Atf4 mutant phenotype resemble mice with mutations in components of the TOR pathway. Consistent with the phenotypic similarities, Atf4 null mice have reduced expression of genes that regulate intracellular amino acid concentrations and lower intracellular concentration of amino acids, a key TOR input. Further, Atf4 mutants have reduced S6K activity in liver and adipose tissues.

Conclusions: Atf4 regulates age-related and diet-induced obesity and glucose homeostasis in mammals and has conserved metabolic functions in flies.
Atf4 mutant mice are lean

The ability to sense nutrient availability and regulate energy homeostasis is an ancient and fundamental process that, when disturbed, leads to significant metabolic derangements (1). Modern life has provided unparalleled access to food, contributing to unprecedented proportions of obesity, insulin resistance, and diabetes (1). Epidemiological evidence implicates not only increased fat consumption but also excess protein intake as causative in the intertwined epideimics of obesity and diabetes (2). Further, human trials show that amino acid infusions induce insulin resistance (3). Two evolutionarily conserved pathways, target of rapamycin (TOR) and the integrated stress response (ISR), play central roles in responding to amino acid availability (4, 5).

The mechanisms whereby surplus food consumption engenders insulin resistance are an area of intense scrutiny and several lines of evidence implicate TOR signaling as an important contributor (6). TOR signals, which couple amino acid supplies to translational efficiency, are in part conveyed through ribosomal S6 protein kinase (S6K) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) (4). Recent data indicate that this evolutionarily conserved cascade links nutrient excess to insulin resistance in flies and mammals (7-10). For example, flies with mutations in 4E-BP or TOR control fat metabolism and the TOR mutants have reduced lipid and glucose levels (7, 8). Similarly, strains of 4E-BP1 mutant mice and S6K mutant mice are lean and have increased energy expenditure (9, 10).

The integrated stress response (ISR) is another highly conserved pathway that is important in translational control, nutrient sensing, and glucose homeostasis (11-13). The ISR is one branch of a signaling system termed the unfolded protein response (UPR) (12). Described for its role in handling stress induced by high demand of protein translation, for example during anabolic states, recent studies illuminate the notion that the UPR has additional roles in metabolic physiology (11-13). For example, excessive UPR signaling leads to obesity, metabolic dysfunction and fatty liver (14). Atf4, a bZip transcription factor, is an important component of the ISR (5). In the liver, other bZip factors, C/EBPs, connect the ISR to several important metabolic functions, such as lipid, glucose, and glycogen biosynthesis, by increasing the expression of genes such as peroxisome proliferator-activated receptor γ (PPARγ) (14). The stress pathway is thought to have adaptive responses, but if prolonged or excess can lead to maladaptive metabolic changes. For example, a variety of animal studies indicate that excess stress, for example that induced by knockouts of components of the UPR that rectify stress can lead to obesity and fatty liver (15). Although the role of Atf4 in metabolic control is yet to be defined, it is known that Atf4 plays a central function in handling stress induced by amino acid imbalances (5). In addition, Atf4 regulates memory formation and is required for the appropriate development of cell lineages including blood and bone (16-18). The bone defects can be corrected by feeding the mutant animals a high protein diet, indicating that the roles of Atf4 in bone formation are nutritionally linked (19).

A variety of recent data indicate that the regulatory cascades controlling metabolism are conserved among evolutionarily diverse organisms such as worms, flies, and mammals (20). To attempt to isolate genes involved in metabolism, we characterized and compared the molecular signature of fly and murine developing metabolic tissues with the premise that conserved genes expressed in both organisms were plausible candidates. In D. melanogaster, we undertook an enhancer trap screen to isolate genes expressed in the larval fat body,
Atf4 mutant mice are lean

a central fly metabolic organ (21), and identified Atf4. We also found that Atf4 was expressed in the embryonic day 14.5 (E14.5) mammalian fat anlagen using a combinatorial transgenic-transcriptional profiling approach. The evolutionarily conserved expression may have functional relevance as both Atf4 mutant flies and Atf4 null mice are lean and have reduced levels of circulating carbohydrate. The Atf4 mutant mice resist diet-induced and age-dependent obesity and diabetes. Further, the Atf4 mutant mice have increased energy expenditure. Liver and adipose tissues, key metabolic organs, removed from the Atf4 mutant mice have reduced expression of genes controlling intracellular amino acid concentrations. Further, tissues of Atf4 mutants contained lower amino acid levels; thereby supporting the idea that changes in amino acid metabolism are present in vivo. These tissues also have decreased activity of the TOR signaling pathway, which responds to amino acid inputs. These data support the notion that Atf4 is a conserved regulator of metabolism and carbohydrate homeostasis, thus providing a mechanistic link between nutrients, insulin resistance, and diabetes.

RESEARCH DESIGN AND METHODS

Fly Studies. The X-linked enhancer trap P-element, PGawB, was mobilized to generate new insertions as described previously (22). Individual F1 larvae were screened for fat body GFP expression under a fluorescence dissecting microscope and fat body enhancer trap lines were established by crossing to balancer stocks. Adult fat body tissues were explanted under dissected microscopy, placed in PBS, and photographed with DIC or fluorescence microscopy as described (20). Insertion sites were identified by inverse PCR and/or plasmid rescue. Starvation and triglyceride assays were performed as described (20). For trehalose quantification, 2 µl of pooled hemolymph from L3 larvae was collected, diluted, heat-inactivated, and treated with porcine kidney trehalase (Sigma). Glucose concentration was measured using Infinity Glucose Reagent (ThermoElectron). For Nile Red staining, whole flies or dissected fat bodies were fixed in formalin, permeabilized in 0.2% Triton X-100 solution, stained with Nile Red, and documented under a fluorescence dissecting scope as described (20).

Mouse Studies. The aP2-GFP mice were generated by placing GFP into the 5.4 kb aP2 enhancer/promoter (23). Multiple transgenic lines were generated and screened for GFP expression in embryonic and adult fat depots with fluorescent microscopy. For this study, we selected the transgenic strain with the highest, most specific, and most consistent expression of GFP in embryonic and adult fat tissues. RNA was extracted from GFP negative and positive cells either after careful dissection or after dissociation and FACS. The Affymetrix microarrays were done by the UTSW Microarray Core Facility (http://microarray.swmed.edu). Atf4 heterozygous mice were backcrossed with pure inbred C57BL/6 mice, housed and analyzed as described (18, 20). Mice were fed either normal (4% fat, Teklad) or high fat chow (60% fat, Research Diets). Fat content was measured using a minispec mq10 NMR Analyzer (Bruker). For GTTs and ITT, 1.25mg glucose or 0.9mU Humulin R (Lilly) /1g mouse weight was injected intraperitoneally and blood glucose levels were measured at the indicated intervals as described (20). Veterinary care was provided by the Division of Comparative Medicine. All animals were maintained under the guidelines of the U.T. Southwestern Medical Center Animal Care and Use Committee according to current NIH guidelines.

Histological Studies. Tissues from Atf4 null and control mice were fixed with formalin solution, dehydrated with tissue processor (Microm), and embedded in paraffin. Five to eight micron sections were
Atf4 mutant mice are lean

cut and stained with hematoxylin and eosin. For *in situ* hybridizations, embryos were collected from C57BL/6 female mice at E14.5, fixed in formalin, dehydrated, embedded in paraffin, and five micron sections hybridized with α-32P-[UTP] labeled antisense aP2 or Atf4 probe.

RNA Extractions and Real-Time PCR. Total RNA was extracted using TRIzol (Invitrogen), DNaseI-treated, and reverse-transcribed with random hexamers. Gene expression was analyzed using 7500 Real-Time PCR System (Applied Biosystems) using SYBR Green Master Mix reagent (Applied Biosystems). The values for gene expression were normalized by β-actin expression. Primer sequences are available upon request.

Western Blotting and Antibodies. Immunoblotting was performed according to standard procedures. Protein samples were extracted using phosphoSafe Extraction Reagent (Calbiochem), boiled, and separated on denaturing polyacrylamide gels (percentage varied from 8 to 15%) prior to transfer onto nitrocellulose. The membrane was blocked and incubated with primary antibodies. Primary antibodies were purchased from the followings: β-actin (Sigma), SLC1A4 (Millipore), UCP1 and AARS (abcam), and all other antibodies (Cell Signaling Technology). Subsequently, the nitrocellulose membranes were washed and incubated with secondary antibodies conjugated with HRP (Jackson immunoresearch). Signals are detected with chemiluminescent kits (NEN).

Lipid Extraction, Gas Chromatography, and Fatty Acids Composition. Floating adipocytes were isolated from control and Atf4 mutants as described (24). Total lipids were extracted for lipid analysis. Trinonadecanoin and pentadecanoic acid were used as internal standards for analysis by gas chromatography (GC). Palmitoleate composition of the triglyceride fraction was determined by gas chromatography with flame-ionization detection and the identity was determined by retention time and compared with the internal standard for quantification.

Measurement of intracellular free amino acid concentration. Protein concentrations of plasma mixed with 5% TCA and homogenized HFD-fed tissues were determined and then the samples were centrifuged. The supernatant was filtered through 0.2µm PTFE centrifuge filter to remove precipitated proteins and tissue debris. Free amino acid concentrations of the samples were analyzed using a Hitachi L-8800 amino acid analyzer (25).

Measurement of intracellular cAMP. cAMP concentration was measured using Cyclic AMP Assay Kit (R&D) according to manufacturer’s protocol. Brown adipose tissue (BAT) was homogenized using phosphoSafe Extraction Reagent (Calbiochem). cAMP concentration of each BAT sample was determined by comparing to the cAMP standard curve with duplicates of each protein sample (50 µg).

RESULTS

dAtf4 is Expressed in the Developing and Adult *D. Melanogaster* Fat Body. To identify genes that might regulate metabolism, we characterized the molecular signature of the *D. melanogaster* larval fat body, a central fly metabolic organ. We performed a two-component (minimal promoter-Gal4; UAS-GFP) enhancer trap insertional screen (22) and isolated ~600 lines with fat body GFP expression. This produced a set of 587 genes including many previously reported to be fat body-specific (e.g., Adh, arg, vkg). Remarkably, although redundant insertions were quite uncommon, two of the fat body enhancer trap lines, E8 and G74, had insertions at the CG8669 locus, encoding the fly homolog of Atf4 (Fig. 1A) (26). In larvae,
E8 expression appeared relatively specific to the fat body while G74 also had ectoskeletal co-expression; both lines also displayed strong expression in adult metabolic tissues (Fig. 1B).

mAtf4 is Expressed in Embryonic and Adult Murine Fat Tissues. We also found that Atf4 was expressed in embryonic day 14.5 (E14.5) murine metabolic tissues in a screen combining fluorescent cell marking techniques, fluorescence activated cell sorting (FACS), and microarray technology. This was based upon the observations that aP2, a known marker of adult fat depots, had restricted expression in the E14.5 fat pad (Fig. 1C) (23) and that aP2-GFP transgenic mice had strong GFP expression in embryonic fat tissues (Fig. 1D). The latter facilitated isolation of pure populations of E14.5 GFP+ and GFP- cells using dissections and FACS. We performed a series of Affymetrix microarray experiments to identify genes upregulated in GFP+ cells compared to GFP- cells. We then compared those genes expressed in the E14.5 fat anlagen with those identified in the fly enhancer trap screen; **Atf4** was on both lists. In situ hybridizations and RT-PCR analyses showed that Atf4 was expressed in embryonic fat depots, in the developing liver, a key metabolic tissue, and also in adult fat depots (Fig. 1E and 1F).

Atf4 Mutant Flies are Lean and have Reduced Circulating Carbohydrate Levels. To determine whether the expression of Atf4 in fly metabolic tissues might have functional relevance, we examined the phenotype of the flies with P-element insertions at the **Atf4** locus and found that they had altered metabolism. For example, E8 and G74 insertion mutant flies had reduced fat content based upon Nile Red staining of fat body explants, lower triglyceride levels, and increased starvation sensitivity (Fig. 2A-C). These flies also had a trend of reduced circulating levels of trehalose, the fly glucose equivalent (Fig. 2D).

Atf4 Mutant Mice are Lean and Protected from Age-Related Obesity. The number of **Atf4** mutant offspring in the C57BL/6 (B6) background is reduced (8.9%, 15/168) compared to the expected Mendelian ratio but mice surviving over three month are healthy and 14% smaller body length (Control: 9.4±0.15 Cm, N=8; Mutant 8.1±0.22 Cm, N=6) (27). To evaluate a potential role of Atf4 in mammalian metabolism, we analyzed young adult cohorts (age 3 months) of **Atf4** null and control siblings on normal chow. Since aging is associated with increased insulin resistance and obesity (28, 29), we also studied older mice (age 12 months). Based upon appearance, NMR fat content analyses, and examination of adipose depots, the young adult **Atf4** mutants had modestly reduced fat mass compared to controls and this effect substantially increased with age (Fig. 3A-E), indicating that the **Atf4** mutants resist age-associated obesity. However, kidney and heart weights, normalized to lean body mass, approximated controls (Fig. 3F, supplement table 1 in the online appendix, which is available at http://diabetes.diabetesjournals.org). At young ages, **Atf4**-deficient adipocytes were of similar size to or in some cases even larger than control adipocytes (Fig. 3G). However they had a blunted hypertrophic response to age-associated obesity (Fig. 3G).

Atf4 Mutant Mice Resist Diet-Induced Obesity. To examine the potential role that Atf4 may play in diet-induced obesity (DIO), we provided a high-fat diet (HFD) to control and **Atf4** mutant littermates. During the 16 weeks of HFD, we followed the mice with weekly weights, normalizing them to starting weight, and found that **Atf4** mutants had a significantly blunted response to HFD (Fig. 4A). This resistance to diet-induced weight gain was accompanied by a marked decrease in fat accumulation as determined by NMR analyses as well as by
Atf4 mutant mice are lean

gross observation and weights of fat depot explants (Fig. 4B-E). However, the weights of other organs were not affected (data not shown). The differences in fat content are apparent in histological sections, which show that while control mice have significant fat, Atf4 null mice have a paucity of such deposition (Fig. 4F). In addition, the adipocytes are substantially smaller than observed in controls (Fig. 4F). Fatty liver, a leading cause of liver disease, is a manifestation of metabolic dysfunction that can be elicited by HFD (30). Consistent with that, we found that HFD led to significant fat deposition in the livers of wild-type mice (Fig. 4G, H). In contrast, Atf4 mutants were resistant to this pathology (Fig. 4G, H).

Atf4 Mutant Mice are Hypoglycemic. Next we examined control and Atf4 mutant siblings for aspects of glucose homeostasis and found that Atf4 regulated murine carbohydrate metabolism. For example, Atf4 mutants had lower random and fasting glucose levels and glucose tolerance tests (GTTs) showed that chow fed Atf4 null mice had improved glucose metabolism (Fig. 5A-C). Even at the young ages, the Atf4 mutant cohorts displayed glucose levels and GTTs that were reduced compared to controls (Fig. 5B) and seemingly out-of-proportion to the relatively modest changes in fat content observed at these ages (Fig. 3C). This may indicate that Atf4 has direct functions in glucose metabolism that are independent of the degree of fat reduction. In support of that notion, we found that insulin levels in chow-fed Atf4 mutants approximated control levels (Fig. 5D). This “normal” insulin level, in the setting of lowered blood glucose, indicates relative insulin excess and may be consistent with the previously identified role of the ISR in beta-cell apoptosis, proliferation, and insulin secretion (31-33).

The Atf4 mutation also ameliorated HFD-induced hyperglycemia (Fig. 5E). However, in this setting insulin levels were significantly lower than controls (Fig. 5F), pointing to roles of Atf4 in metabolism that are independent of the pancreas and potentially related to the lean phenotype described above. An insulin tolerance test indicated that the Atf4 mutant mice were insulin sensitive (Fig. 5G). Diet-induced and age-related obesity can provoke hyperlipidemia (1). The Atf4 mutation appeared to ameliorate this adverse consequence as the HFD Atf4 null mice and the 12-month old chow-fed mutants had improved lipid profiles compared to controls (Fig. 5H and 5I). Recent evidence indicates that the adipose generated lipid palmitoleate is a lipokine that regulates glucose homeostasis (34). This does not appear to be the mechanism whereby Atf4 impacts metabolism as control and Atf4 mutant fat depots had equivalent levels of this fatty acid (Fig. 5J).

Atf4 Mutant Mice Have Increased Energy Expenditure. To attempt to identify the basis of the lean phenotype, we examined eating behavior, activity, and metabolic rate comparing Atf4 nulls and control siblings on either normal chow or HFD. Food intake was equivalent in the Atf4 mutants and controls (Fig. 6A). The leanness was not due to increased activity as X-Y movement (walking) was equivalent in the two groups and Z-axis (rearing) activity was reduced by Atf4 deficiency (Fig. 6B). Atf4 null mice did have increased energy expenditure, displaying a higher rate (~15% increase) of oxygen consumption (VO2) in both light and dark phases that was accentuated by HFD (~30% increase) (Fig. 6C and 6D). Since adipose tissue, reduced in Atf4 mutants, and muscle have differential contributions to whole body VO2, we repeated the metabolic chamber analyses on additional cohorts of mice; and in these cases normalized energy expenditure using lean body mass. Again, Atf4 mutant mice had elevated energy expenditure (Fig. 6E and G). We also plotted the absolute
Atf4 mutant mice are lean

energy expenditure (a per mouse analysis, plotting lean mass versus VO\textsubscript{2}) of control and Atf4 mutants and the slopes are illustrated in Supplementary Figure 1 in the online appendix. Another indication of altered metabolism is the observation that Atf4 mutants had a substantially lower respiratory quotient (RQ, VCO\textsubscript{2}/VO\textsubscript{2}), a measure of the proportionate rates of substrate utilization, indicating higher fat oxidation (Fig. 6F). Core body temperature is an additional measure of energy expenditure. Consistent with the other metabolic studies, we found that Atf4 mutant mice had elevated core body temperature (Fig. 6H). Given the starvation sensitivity observed in the Atf4 mutant flies (Fig. 2C) we also measured RQ and VO\textsubscript{2} during the fed to fasted transition. Initially the RQs and VO\textsubscript{2}s became similar but with a sustained fast the mutant animal VO\textsubscript{2} dropped precipitously and the mutants become acutely ill. This indicates a potential defect in starvation resistance, reminiscent of fly starvation intolerance (Figs. 2C, 6F and 6G). Next we investigated potential energy expenditure defects molecularly. Levels of PGC-1\textalpha, UCP-1 and/or cAMP often reflect metabolic rate. So we determined their expression or concentration in adipose tissues. First we examined cAMP levels in brown adipose tissue, a major source of thermogenesis. We observed a trend toward increased cAMP concentrations in Atf4 mutant mice (Fig. 6I), possibly reflecting increased metabolic activity. Next we quantified mRNA levels in brown adipose tissue (BAT) and white adipose tissue (WAT) using qPCR. Expression of some genes involved in mitochondrial biogenesis and energy expenditure (e.g., PGC1-\alpha and UCP-1) was slightly increased in Atf4 mutant BAT and WAT (Fig. 6J). We then examined the levels of these two proteins using Western blots. We found that PGC1\textalpha, a key transcriptional regulator of oxidative capacity, was modestly increased in both tissues with a greater increase in WAT. Notably, the Westerns revealed a marked increased (~10-fold) in UCP-1 protein levels (often thought of as a marker of BAT) in Atf4 mutant white adipose tissues (Fig. 6K). Consistent with that observation, we found that Atf4 mutant mice contained multilocular adipocytes, characteristics of BAT, in white adipose depots (Fig. 6L).

\textit{Atf4} Mutant Mice Have Reduced TOR Activity. Several lines of evidence indicate that Atf4 regulates intracellular amino acid metabolism (5, 25). Notably, high intake of amino acids leads to both adiposity and insulin resistance (2, 3). In cellular assays, Atf4 siRNA reduces intracellular concentrations of amino acids (25). Since reduced amino acid availability could account for various aspects of the Atf4 mutant phenotype (35), we assessed expression of genes important in intracellular amino acid concentrations in control and Atf4 mutant mouse embryonic fibroblasts (MEFs) and adipose depots and livers as these two tissues are metabolically relevant and are affected by Atf4 deficiency. Based upon qPCR, we detected significantly reduced levels of genes regulating amino acid metabolism and transport was in Atf4 mutant MEFs (Fig. 7A and 7B). We also measured protein levels of some of the salient genes. We found that AARS was significantly reduced while SLC1A4 levels were equivalent. Both liver and adipose tissues from Atf4 mutant mice also showed the same trends as detected in the MEFs (Fig. 7C, and 7D). We extended the data by directly quantifying amino acid concentrations in plasma, liver, and adipose depots of control and Atf4 mutant siblings (Fig. 7E, Supplement Fig. 2 in the online appendix). Although plasma amino acid levels were comparable, the Atf4 mutant tissues displayed a trend toward reduced concentrations of amino acids. Several of the metabolic characteristics observed in the Atf4 deficient flies and mice mirror phenotypes
Atf4 mutant mice are lean and have reduced circulating carbohydrate levels.

Modernity has produced a marked increase in dietary protein intake, which in turn has epidemiological and experimental links to the current explosion of obesity and diabetes. Protein synthetic overload is often sensed in the endoplasmic reticulum (ER), an organelle in which newly-translated proteins are sorted and modified (13). The surplus in ER handling of proteins triggers the unfolded protein response (UPR), a central mechanism designed to handle ER stress (40). Accumulated evidence indicates that ER stress pathways couple obesity to metabolic dysfunctions such as diabetes (41, 42).

The UPR is composed of several different limbs; each handles different aspects of the stress response (11-13). One arm of the UPR increases the availability of ER chaperons, which in turn remodel misfolded proteins into the appropriate structure. Another arm of the UPR, the integrated stress response (ISR), reduces ER workload by inhibiting bulk protein translation. A few mRNAs, such as those encoding the bZIP class transcription factors Atf4, C/EBPα and C/EBPβ (14), respond to the ISR signal paradoxically thereby increasing their translation. In turn, these proteins affect transcriptional programs that increase the ability of the cell to handle stress (12, 42). Recent studies have illuminated a key role that these proteins and the ISR play in metabolism. For example, the ISR regulates pancreatic β-cell survival, proliferation, and insulin secretion, and the chow-fed insulin levels observed in the Atf4 mutants resonate with previous descriptions (33, 43).

That the ISR contributes to negative outcomes produced by overindulgence may have evolutionary connections all the way to yeast (12). The TOR pathway also regulates invertebrate and vertebrate metabolism (7-10). Here, we showed that tissues derived from Atf4 mutant mice have reduced TOR
Atf4 mutant mice are lean signaling, reduced expression of genes important in the intracellular concentration of amino acids and thereby, reduced concentration of amino acids, a major TOR input. These results underscore a potential intimate relationship between Atf4 function, the ISR, the TOR pathway, and metabolism that could be therapeutically exploited.

ACKNOWLEDGEMENTS
We thank Drs. Chul Ahn, Jawed Alam, Claude Desplan, Eiichi Hinoi, Xianxin Hua, Gerard Karsenty, David Ron, Bruce Spiegelman, and Charles Vinson for invaluable assistance with techniques, reagents, manuscript preparation, and for helpful discussions. We thank Tammy L. Lisi for excellent technical assistance and members of the Graff lab for expert technical assistance, reagents, and insights.

Author Information JMG is a founder of Reata Pharmaceuticals. The other authors declare no competing financial interests. Correspondence and requests for materials should be addressed to JMG (Jon.Graff@utsouthwestern.edu).
Atf4 mutant mice are lean.

References
Atf4 mutant mice are lean

Atf4 mutant mice are lean

Figure Legends

Figure 1. Atf4 is expressed in fly and mammalian metabolic tissues.
A) Schematic diagram of E8 and G74 insertions (green) at the CG8669 locus encoding the fly Atf4 homolog (dAtf4).
B) The E8 and G74 enhancer trap lines express UAS-GFP in the larval (top) and adult (bottom) fat body. Right bottom panels show DIC image of the adult fat body explants.
C) aP2 *in situ* hybridization on a parasagittal section of an E14.5 mouse embryo.
D) Dorsal view of an E14.5 aP2-GFP transgenic embryo viewed with fluorescence microscopy.
E) Atf4 *in situ* hybridization on E14.5 mouse embryo. The arrow highlights Atf4 expression in the E14.5 fat pad, and arrowhead identifies liver expression.
F) RT-PCR of cDNA derived from the embryonic fat tissue (EFT) of wild-type (left lane) and *Atf4* null mice (right lane) and adult inguinal wild-type white adipose tissue (IWAT, middle lane). HPRT serves as a loading control.

Figure 2. Atf4 regulates fly metabolism.
A) Photo of Nile Red stained (fat stains red) E8 *dAtf4* insertional mutant and control larval fat body.
B) Triglyceride levels of G74 *dAtf4* insertional mutants and controls (n ≥ 40).
C) Day 5 starvation survival of G74 *dAtf4* insertional mutants and controls (n ≥ 40).
D) Trehalose levels of E8 larvae of *dAtf4* insertional mutants and controls (n ≥ 40).
Error bars indicate standard error of the mean (SEM). Statistical significance was assessed by two-tailed Student’s t-Test. (* P < 0.05)

Figure 3. *Atf4* mutant mice are lean and resist age-associated obesity.
A) Serial weights of control and *Atf4* null mice on normal chow diet (NCD).
B) Photograph of 1-year old normal chow fed control (Cont) and *Atf4* null siblings.
C) NMR body fat analyses of 3-month old NCD (young) and 12-month old NCD (old) control and *Atf4* null mice (n ≥ 6).
D) Photograph of representative mesenteric white adipose tissue (MWAT) and inguinal (I) WAT depots from 12-month old chow fed control and *Atf4* null littermates.
E) Average weight expressed as percentage of lean body mass of IWAT, perigonadal (GWAT) and MWAT depots of 3-month (Y) and 12-month (O) *Atf4* null siblings (n ≥ 6).
F) Average weight normalized to lean body mass of kidney and heart of 3-month (young) and 1-year old (old) control and *Atf4* null mice (n ≥ 6).
G) Histology of IWAT of 3-month old and 1-year old chow control and *Atf4* mutant siblings. (Bar = 50 µm)
Error bars indicate SEM. Statistical significance was assessed by two-tailed Student’s t-Test or repeated-measures ANOVA followed by Bonferroni post-tests (A). (*P < 0.05, ** P < 0.01)

Figure 4. *Atf4* mutant mice are lean and resist age-associated and diet-induced obesity.
A) Serial weights of control and *Atf4* null siblings on high fat diet (HFD).
B) Photograph of representative control and *Atf4* mutant littermates after 16 weeks of HFD.
C) NMR body fat analyses 6-month old HFD-fed control and *Atf4* null mice (n ≥ 6).
D) Photograph of representative perigonadal white adipose tissue (GWAT), perirenal (R) and inguinal (I) WAT depots from HFD-fed control and Atf4 null littermates.
E) Average weights of IWAT, GWAT, and MWAT depots of 6-month old HFD control and Atf4 null siblings (n ≥ 6).
F) Histology of skin (S) WAT and IWAT of HFD control and Atf4 mutant siblings.
(Bar = 50 μm)
G) Liver weights of HFD control and Atf4 null siblings. (n = 8)
H) Representative liver histology of HFD control and Atf4 nulls. (Bar = 50 μm)
Error bars indicate SEM. Statistical significance was assessed by two-tailed Student’s t-Test or repeated-measure ANOVA followed by Bonferroni post-tests (A) (*P < 0.05, ** P < 0.01).

Figure 5. Atf4 deficiency alters glucose metabolism.
A) Random and fasting glucose levels of normal chow fed control and Atf4 null siblings (n ≥ 6).
B, C) Glucose tolerance tests of 3-month (young, B) and 1 year old (old, C) normal chow fed control and Atf4 mutants (n ≥ 6).
D) Insulin levels of young control and Atf4 null siblings on NCD (n ≥ 6).
E) Glucose tolerance tests of control and Atf4 mutants on HFD (n ≥ 6).
F) Insulin levels of control and Atf4 null siblings on HFD (n ≥ 6).
G) Insulin tolerance tests of control and Atf4 null siblings (n = 8).
H, I) Average plasma levels of non-esterified fatty acid (NEFA), cholesterol (Chol), and triglyceride (TG) in NCD (H) and HFD (I) control and Atf4 mutant littermates (n ≥ 6).
J) Palmitoleate ratio of adipocyte (isolated by floatation) TG of control and Atf4 nulls. (n=3)
Error bars indicate SEM. Statistical significance was assessed by two-tailed Student’s t-Test or repeated-measures ANOVA followed by Bonferroni post-tests (B,C,E, and G) (*P < 0.05, ** P < 0.01).

Figure 6. Atf4 mutant mice have increased energy expenditure.
A) Food intake of control and Atf4 null siblings (n = 12). Food intake was normalized by mouse body weight.
B) Activity of control and Atf4 null mice (n = 12).
C, D, E) Oxygen consumption of control and Atf4 null siblings provided a normal chow (C) or high fat diet (D, E) (n = 12). Oxygen consumption was normalized by total body weight (C,D) or by lean body mass (E).
F) Average respiratory quotient (RQ) of control and Atf4 null siblings fed a normal chow (NCD), high fat diet (HFD), and fast (n = 12) during the day (D) and the night (N).
G) Average oxygen consumption of control (WT) and Atf4 null siblings on a high fat diet or upon fasting (n = 12).
H) Core body temperature of control (WT) and Atf4 null siblings (n ≥ 6).
I) cAMP levels of control and Atf4 null siblings in brown adipose extracts (n = 6).
J) Relative expression of energy expenditure genes in WAT and brown adipose tissue (BAT) of Atf4 mutants compared to control siblings (n ≥ 6). Dotted line and arrowhead indicate wild type control expression.
K) Western blots of metabolic proteins in WAT and BAT extracts. Quantification, number below the band, was determined using Image J software and normalized to tubulin, a loading control.
L) Histology of MWAT of 1-year old NCD fed mice. (Bar = 50 μm)
Atf4 mutant mice are lean

Error bars indicate SEM. Statistical significance was assessed by two-tailed Student’s t-Test or repeated-measures ANOVA (C, D, and E) followed by Bonferroni post-tests (* P < 0.05).

Figure 7. Atf4 mutant mice have reduced TOR activity.
A, C, D) qPCR analyses of genes that regulate intracellular amino acid levels in mouse embryonic tissues (MEFs) (A), liver (C), and adipose tissue (D) extracts of control and Atf4 mutant siblings (n ≥ 6). Asparagines synthetase (ASNS) and phosphoserine aminotransferase 1 (PSAT-1) are amino acid biosynthetic enzymes; alanyl-tRNA synthetase (AARS) is amino acid synthetase; solute carrier family 1 (glutamate/neutral amino acid transporter), member 4 (Slc1A4), solute carrier family 7 (cationic amino acid transporter, y+system), member 1 solute carrier family 7 (cationic amino transporter, y+system), member 1 (Slc7A1) are amino acid transporters.
B) Western blots of MEFs using antibodies to AARS and SLC1A4. The band intensity was determined using Image J software. The intensity of each protein was normalized to tubulin, a loading control (n=4).
E) Total amino acid concentrations in liver (nmol/mg) and WAT (nmol/mg) extracts or plasma (nmol/ml) of control and Atf4 mutant siblings (n≥4). Asx = Asp and Asn; Glx = Glu and Gln
F) Total and phosphorylated S6K and S6 levels, assessed with Western blots, in two sets of control and Atf4 mutant siblings (n=4)
Figure 1

A

B

C

D

E

F

Figure 2

A

B

C

D

Atf4 mutant mice are lean
Atf4 mutant mice are lean
Figure 4

Atf4 mutant mice are lean
Figure 5

Atf4 mutant mice are lean
Figure 6

Atf4 mutant mice are lean
Figure 7

A

MEF

Cont

Null

Relative mRNA

B

Cont

Null

AARS

SLC1A4

Tubulin

C

Liver

Cont

Null

Relative mRNA

D

WAT

Cont

Null

Relative mRNA

E

Liver

WAT

Plasma

AA (mmol/mg protein)

Cont

Null

F

Cont

Null

Liver

WAT

pT389,S6K

S6K

pS235/236,S6

S6K

pS6

S6