ADIPOCYTE TURNOVER: RELEVANCE TO HUMAN ADIPOSE TISSUE MORPHOLOGY

Running head: Adipocyte turnover and adipose morphology

Erik Arner¹, Pål O Westermark², Kirsty L Spalding³, Tom Britton⁴, Mikael Rydén¹, Jonas Frisén³, Samuel Bernard⁵, Peter Arner¹

¹Department of Medicine, Karolinska Institutet at Karolinska University Hospital, 141 86, Stockholm, Sweden, ²Institute for Theoretical Biology (ITB), Humboldt University Berlin and Charité, Invalidenstrasse 43, 10115 Berlin, Germany, ³Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden, ⁴Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden, ⁵Institut Camille Jordan, CNRS UMR5208, University of Lyon, 69622 Villeurbanne, France

Correspondence:
Peter Arner, MD, PhD, Professor,
e-mail: peter.arner@ki.se

Submitted 26 June and accepted 8 October 2009.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: Adipose tissue may contain few large adipocytes (hypertrophy) or many small adipocytes (hyperplasia). We investigated factors of putative importance for adipose tissue morphology.

Research Design And Methods: Subcutaneous adipocyte size and total fat mass were compared in 764 subjects with body mass index 18-60 kg/m². A morphology value was defined as the difference between the measured adipocyte volume and the expected volume given by a curve-line fit, for a given body fat mass and was related to insulin values. In 35 subjects, in vivo adipocyte turnover was measured by exploiting incorporation of atmospheric ^14C into DNA.

Results: Occurrence of hyperplasia (negative morphology value) or hypertrophy (positive morphology value) was independent of gender and body weight but correlated with fasting plasma insulin levels and insulin sensitivity, independently from adipocyte volume (beta coefficient=0.3, p<0.0001). Total adipocyte number and morphology were negatively related (r=-0.66); i.e. the total adipocyte number was greatest in pronounced hyperplasia and smallest in pronounced hypertrophy. The absolute number of new adipocytes generated each year was 70% lower (p<0.001) in hypertrophy than in hyperplasia and individual values for adipocyte generation and morphology were strongly related (r=0.7; p<0.001). The relative death rate (about 10% per year) or mean age of adipocytes (about 10 years) was not correlated with morphology.

Conclusions: Adipose tissue morphology correlates with insulin measures and is linked to the total adipocyte number independently of gender and the body fat level. Low generation rates of adipocytes associate with adipose tissue hypertrophy whereas high rates associate with adipose hyperplasia.
Adipocyte turnover and adipose morphology

Adipose tissue expands by increasing the volume of pre-existing adipocytes (adipose hypertrophy), by generating new small adipocytes (hyperplasia) or both. Whilst the amount and the distribution of adipose tissue associate independently with insulin resistance, type 2 diabetes and other metabolic disorders (1), the size of adipocytes within the adipose tissue is also important (2). Increased adipocyte size correlates with serum insulin concentrations, with insulin resistance and with increased risk of developing type 2 diabetes (3-10). Obese subjects with few large adipocytes are more glucose intolerant and hyperinsulinaemic than those having the same degree of obesity and many small fat cells (5; 7; 9-14). Furthermore, adipocyte hypertrophy may impair adipose tissue function by inducing local inflammation, mechanical stress and altered metabolism (15-17). There is, however, a large inter-individual variation in adipocyte size among lean and obese individuals (10; 18; 19). Lean individuals can have larger adipocytes than obese and the other way around. Hitherto there is no straightforward method to assess adipose morphology. It is not valid to merely adjust fat cell size for body mass index (BMI) by linear regression because the relationship between BMI or fat mass and adipocyte size is curve-linear (10; 18; 19).

The mechanisms responsible for development of different forms of adipose morphology are unknown, however, adipocyte turnover may be involved. The turnover rate of adipocytes is high at all adult ages and body fat levels (18). About one-tenth of the total fat cell pool is renewed every year by ongoing adipogenesis and adipocyte death.

We presently investigated whether adipocyte turnover was involved in the different morphologies of subcutaneous adipose tissue (the body’s dominant fat depot). A method to quantitatively assess adipose morphology was developed. Based on the relationship between adipocyte size and total body fat, the subjects were categorized as having different degrees of either adipose hypertrophy or hyperplasia. Thereafter, we set the different forms of adipose morphology in relation to adipocyte turnover in vivo using previously generated data on incorporation of atmospheric 14C into adipocyte DNA (18). Finally, we correlated adipose morphology with fasting plasma insulin and insulin sensitivity in vivo.

RESEARCH DESIGN AND METHODS

Subjects: In a methodological study 207 men and 557 women (age 18-77 years) were recruited. 74 men and 172 women were lean (BMI < 25 kg/m2) and 86 men and 318 women were obese (BMI \geq 30 kg/m2). Total body fat was determined by a formula based on age, sex and BMI (20). In 555 of the subjects, body fat was also determined directly using bioimpedance as described (18). Fasting plasma levels of glucose and insulin were determined in 716 of the subjects to assess in vivo sensitivity by the HOMA index as described (21). The relation between adipose tissue morphology and adipocyte turnover was determined in 35 subjects investigated previously (18), who were not part of the methodological study. The studies were approved by the Regional Ethics Committee and explained in detail to each subject. Written informed consent was obtained.

Adipose Tissue Studies: In the methodological study an abdominal subcutaneous fat specimen was obtained by needle biopsy as described (22). Adipocytes were collagenase isolated and mean volume and total number of adipocytes in the body were determined as described (18). The total adipocyte number in the body was obtained by dividing total weight of body fat with...
mean adipocyte weight (23). A curve fit of the relationship between adipocyte volume and body fat mass was performed as described (18). For each subject, the difference between observed and expected adipocyte volume (as obtained from the fitted curve) at the corresponding level of total body fat mass was calculated and subjects were classified as having either hyperplasia (negative deviation) or hypertrophy (positive deviation) relative to the estimated average for their value of body fat. The renewal of adipocytes \textit{in vivo} was estimated using our recently developed method to measure 14C in DNA (18,24) and set it in relation to the atmospheric radioactivity. Relative adipocyte turnover rate and adipocyte age were estimated using a mathematical model for cell birth and death (18). The total number of adipocytes replaced each year was calculated based on the relative turnover, total cell number and age of each subject (18).

\textbf{Statistical Methods:} Values are mean \pm SD or box plots. They were compared by analysis of co-variance (ANCOVA), unpaired t-test, single or multiple regression and chi-square. Values for adipocyte generation rate (in 10^{10} cells/year) and HOMA index were log-transformed to obtain a normal distribution. A likelihood ratio test and Akaike’s information test were used as described (18). Power calculations on mean and SD for the whole group of subjects with 14C data showed that for age, relative death rate and generation rate of adipocytes, we could detect between group difference of 20% with 80% power at $p < 0.05$.

\textbf{Additional Information:} Details about research design and methods are found in the online appendix which can be found at http://diabetes.diabetesjournals.org.

\textbf{RESULTS}

The relationship between adipocyte volume and fat mass is shown in Fig. 1a. All subjects with a total body fat mass < 13 kg were lean and those with a fat mass > 36 kg were obese. The relationship between fat mass and adipocyte volume fits a curve-linear model, which postulates that adipose tissue development is due to a combination of an increase in volume of pre-existing adipocytes and the generation of new adipocytes ($p<0.001$ by likelihood ratio test and Akaike’s information criterion as compared with a linear model). The positions of the curve-lines for women and men were slightly different ($p<0.05$ by unpaired t-test). Therefore, gender specific relationships were used to classify subjects according to morphology. When bioimpedance was used on a subgroup, the relationship between body fat and adipocytes size did not differ significantly from the formula based calculation of fat mass (Fig 1b), indicating that the formula derived fat mass is valid for determining adipose morphology. A morphology value was defined as the difference between measured and expected adipocyte volume given by the curve-line fit, for a given body fat mass. A positive value indicates an adipocyte volume larger than expected, while a negative morphology value indicates an adipocyte volume smaller than expected. In the remaining analyses, subjects with positive morphology values were classified as hypertrophic while those with negative morphology values were classified as hyperplastic. Large absolute morphology values indicate pronounced hypertrophy or hyperplasia. The morphology values were normally distributed around zero (Fig.1c). The curve fit does not deviate from the mean ($p=0.82$). This was also true when data were subdivided according to gender or obesity status. Each form of morphology was almost equally common (394 negative and 370 positive values). There was no influence of gender or obesity on the frequency of hypertrophy or hyperplasia (Fig. 1 d).

The morphology value ($r=0.61$, Fig. 2a), but not the unadjusted measured adipocyte volume ($r=0.11$, Fig. 2b), correlated
Adipocyte turnover and adipose morphology

(p<0.0001) with total adipocyte number in a quantitative fashion, i.e., the higher the degree of hyperplasia, the greater the number of adipocytes and the other way around for hypertrophy.

Adipocyte turnover in vivo is shown in Fig. 3. The number of adipocytes added per year was approximately 70% reduced in the 12 hypertrophy subjects compared to the 23 hyperplasia subjects (Fig. 3a; p=0.027 by unpaired t-test and p=0.02 by ANCOVA with BMI as co-variate using 10log-transformed data). The average number of adipocytes generated per year (10^{10} cells/year) was 1.2 in hyperplasia and 0.4 in hypertrophy. The individual morphology values were inversely related to the number of adipocytes generated per year (r=-0.70, p<0.001 by linear regression of 10log-transformed adipocyte production data in Fig. 3b and beta coefficient = -0.65 and p<0.001 after correction for influence of BMI by multiple regression). Age (about 10 years) and relative death rate (about 10% per year) of adipocytes were not different between hyperplasia and hypertrophy (Fig. 3c and d).

Finally, we investigated the clinical impact of adipose morphology (Table 1). In all subjects, in men and women separately, or in those who were healthy and free of medicine, fasting plasma insulin and insulin sensitivity (HOMA index) correlated (p<0.001) with the morphology value independently of unadjusted adipocyte volume. Women with hypertrophy had a more unfavourable metabolic profile and body shape than women with hyperplasia (Supplementary Table 1 on line).

DISCUSSION

By using a biologically relevant relationship between the fat mass and adipocyte volume we developed a novel and apparently valid method to assess quantitatively subcutaneous abdominal adipose tissue morphology. It would also be interesting to study visceral adipose tissue, which is more strongly related to type 2 diabetes and metabolic abnormalities, however, this cannot be investigated in a clinical setting. Whether the inclusion of several rather than only one subcutaneous site would result in an improvement in the accuracy to determine the morphology is not known at present. However, adipocyte sizes in other subcutaneous depots are the strongest determinants of adipocyte size in any given subcutaneous depot (19). Furthermore, it is not possible for ethical reasons to perform multiple biopsies (abdomen, buttocks, legs, arms, neck) from lean subjects who were included in this study. There is a large variation in adipocyte size within the same subject and fat depot (25). Detailed classification requires the separation of isolated adipocytes according to size (15, 17), which is not feasible using small amounts of adipose tissue.

The occurrence of adipose hypertrophy or hyperplasia was not influenced by gender or body weight (Fig. 1c). This suggests that hyperplasia and hypertrophy are equally common among men and women and evenly distributed among lean, overweight or obese subjects in a general population. Furthermore, subcutaneous adipose morphology is tightly correlated to the total adipocyte number in the body over a large BMI range (18-60 kg/m²). This may imply that common factors regulate adipose morphology and adipocyte number.

Adipose morphology seems related to the generation of new adipocytes. Subjects with hypertrophy generated 70% less adipocytes per year than those with hyperplasia and there was an inverse quantitative relationship between the residual value for adipocyte volume and adipocyte production rate (i.e., the higher the degree of hypertrophy the lower the rate of adipocyte formation) (Fig. 3a and b). These findings suggest that in hypertrophy, the body

...
produces few adipocytes over time, requiring
existing adipocytes to accumulate more lipids
in comparison to the hyperplastic state. Age
and relative death rate of adipocytes was not
influenced by morphology (Fig 3 c and d),
indicating that the overall percentage of
adipocytes replaced each year is similar in
hypertrophic and hyperplastic states. Obese
individuals have more adipocytes added per
year than lean individuals (18) but the
relationship between morphology and
adipocyte production is independent of BMI.
Thus, de novo adipogenesis is important both
for obesity and the morphology of human
adipose tissue.

Obviously, the volume of adipocytes
in adipose tissue is not the same as adipose
tissue morphology. Subjects with either
hypertrophy or hyperplasia can have either
small or large adipocytes dependent of their
body fat content (Fig 1a). Thus, absolute
adipocyte size is strongly dependent of the
degree of overweight/obesity whereas the
difference between observed and expected
adipocyte volume, measuring morphology, is
adjusted for the fat mass. Furthermore, the
non-adjusted adipocyte volume, unlike the
morphology value, was not related to
adipocyte number (Fig. 2b).

We also found that adipose
morphology was an independent regressor for
circulating insulin and insulin sensitivity
(Table 1) and that women with hypertrophy
had a more adverse metabolic profile and
body shape than women with hyperplasia,
although BMI was similar in both groups
(Supplementary Table 1). The true
pathophysiological role of adipose
morphology must, though, be established by
studies on populations selected for risk factor
investigation and on investigations of visceral
adipose tissue.

We investigated a Swedish population.
It is not known how the results model other
populations. In summary, subcutaneous
adipose hypertrophy and hyperplasia occur
independently of gender and body fat content
and are strongly related to the total adipocyte
number in adults. A low generation rate of
new adipocytes associates with adipose
hypertrophy, which is linked to low insulin
sensitivity and high circulating insulin levels.
A high rate associates with the more benign
adipose hyperplasia.

ACKNOWLEDGEMENT

Kerstin Wåhlén, Britt-Marie
Leijonhufvud, Eva Sjölin and Katarina Hertel
are acknowledged for their excellent technical
assistance. This study was supported by
grants from Swedish Research Council, AFA,
Foundations of Swedish Heart and Lung,
Novo Nordic, Swedish Diabetes, Torsten och
Ragnar Söderberg, King Gustaf V and Queen
Victoria and EU 7th framework (COST action
BM0602) and ADAPT. The funders had no
role in study design, data collection and
analysis, decision to publish, or preparation of
the manuscript.
Adipocyte turnover and adipose morphology

REFERENCES
23. Bjortorp P: Effects of age, sex, and clinical conditions on adipose tissue cellularity in man. Metabolism 1974; 23:1091-1102

LEGEND TO FIGURES

Fig.1 Adipose morphology. A: Curve-linear relationship between fat cell volume and fat mass in all 764 subjects. B: comparison of curves obtained from fat mass measured with a formula and by bioimpedance in a subset of 555 subjects. C: Distribution of adipose tissue morphology values. D: Frequency of different forms of morphology in males (n=207), females (n=557), non obese (n=300) and obese (n=404) subjects. The morphology value is defined in Results.

Fig. 2 Relationship between total fat cell number and adipose morphology values (A) or fat cell size (B) in all 764 subjects. The morphology value is defined in Results.

Fig. 3 Role of adipocyte turnover for adipose tissue morphology in hypertrophy (n=12) or hyperplasia (n=23) subjects. A, B: Production rate of new fat cells is shown by groups (A) and in individual subjects (B). 10log transformed values were used in the statistical calculation. C, D: Age (C) and death rates (D) of fat cells. The morphology value is defined in Results.
Table 1. Relationships between insulin sensitivity (HOMA index) or fasting plasma insulin level and adipose tissue morphology. Partial (i.e. beta) coefficients are reported.

<table>
<thead>
<tr>
<th>Measure</th>
<th>All subjects (n=716)</th>
<th>All women (n=526)</th>
<th>All men (n=190)</th>
<th>Subjects who were healthy and free of medicine (n=629)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMA index</td>
<td>0.26</td>
<td>0.26</td>
<td>0.36</td>
<td>0.27</td>
</tr>
<tr>
<td>Insulin level</td>
<td>0.29</td>
<td>0.30</td>
<td>0.37</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Insulin values and log transformed HOMA index values were compared with adipose morphology values in multiple regression where the unadjusted fat cell volume was used as additional independent regressor. Beta coefficient values for the latter regression were 0.73-0.86 (p<0.0001). All beta coefficient values for HOMA index and insulin gave p<0.0001.
Figure 2

Adipocyte turnover and adipose morphology

Figure 3

Adipocyte turnover and adipose morphology