Local expression of indoleamine 2,3 dioxygenase in syngeneic fibroblasts significantly prolongs survival of an engineered three-dimensional islets allograft

Running title: IDO-mediated prolonged islet graft survival

Reza B. Jalili1, 2, Farshad Forouzandeh1, Alireza Moeen Rezakhanlou1, Ryan Hartwell1, Abelardo Medina1, Garth L Warnock1, Bagher Larijani2, and Aziz Ghahary1*

1Department of Surgery, University of British Columbia, Vancouver, BC, Canada
2Endocrinology and Metabolism Research Center, Medical Sciences /University of Tehran, Tehran, Iran

*Corresponding author and reprint requests:
Aziz Ghahary, PhD
Email: aghahary@interchange.ubc.ca

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

Submitted 22 October 2009 and accepted 19 May 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: Requirement of systemic immunosuppression after islet transplantation is of significant concern and a major drawback to clinical islet transplantation. Here we introduce a novel composite three-dimensional (3D) islet graft equipped with a local immunosuppressive system that prevents islet allograft rejection without systemic anti-rejection agents. In this composite graft, expression of indoleamine 2, 3 dioxygenase (IDO), a tryptophan degrading enzyme, in syngeneic fibroblasts provides a low tryptophan microenvironment within which T-cells cannot proliferate and infiltrate islets.

Research Design and Methods: Composite 3D islet grafts were engineered by embedding allogeneic mouse islets and adenoviral transduced IDO-expressing syngeneic fibroblasts within collagen gel matrix. These grafts were then transplanted into renal subcapsular space of streptozotocin-induced diabetic immunocompetent mice. The viability, function and criteria for graft take were then determined in the graft recipient mice.

Results: IDO-expressing grafts survived significantly longer than controls (41.2±1.64 vs. 12.9±0.73 days, p<0.001) without administrating systemic immunesuppressive agents. Local expression of IDO suppressed effector T-cells at the graft site, induced a Th2 immune response shift, generated an anti-inflammatory cytokine profile, delayed alloantibody production, and increased number of regulatory T-cells in draining lymph nodes which resulted in antigen specific impairment of T-cell priming.

Conclusions: Local IDO expression prevents cellular and humoral alloimmune responses against islets and significantly prolongs islet allograft survival without systemic anti-rejection treatments. This promising finding prove the potent local immunosuppressive activity of IDO in islet allografts and set the stage for development of a long-lasting non-rejectable islet allograft using stable IDO induction in bystander fibroblasts.
Endocrine replacement therapy by islet transplantation represents a feasible and attractive alternative therapeutic approach for treating type 1 diabetes (1, 2). Despite improvement of allogeneic islet engraftment using systemic immunosuppression, islet transplantation is still limited by high rates of rejection. Furthermore, some of immunosuppressive agents are pro-diabetogenic and associated with adverse side-effects (3-6). Finding more efficient and less harmful strategies to protect islet graft is therefore required for improving islet transplantation outcome.

Localized expression of immunoregulatory factors using gene transfer to graft is a feasible method to provide an immunoprivileged microenvironment and consequently improve graft survival. Such an on-site delivery system results in more potent local immunosuppression with less systemic side-effects (7-9).

IDO is a cytosolic enzyme that catalyzes essential amino acid L-tryptophan to kynurenine (10) and has profound effects on T-cell proliferation, differentiation, effector functions and viability (11). Both the reduction in local tryptophan concentration and the production of immunomodulatory tryptophan metabolites contribute to immunosuppressive effects of IDO (12, 13). Broad evidence implicates IDO and tryptophan catabolic pathway in generation of immune tolerance to antigens in tissue microenvironments. In particular, the role of IDO in fetal tolerance in mammalian pregnancy (14, 15), immunologic tolerance to tumors (16, 17), and self tolerance has been documented (18, 19). The unique immunoregulatory function of IDO substantiates the application of this enzyme as a strategy to suppress alloimmune responses in transplantation.

Our research group has shown that over-expression of IDO in fibroblasts suppresses immune response and improves outcome of skin grafts (20-25) and that bystander IDO-expressing fibroblasts suppresses immune response to allogeneic mouse islets in vitro (26). Furthermore, in a recent study we showed that mouse islets and fibroblasts are selectively resistant to IDO-mediated activation of nutrient deficiency stress (27). Here, we engineered a three-dimensional (3D) composite islet allograft equipped with IDO-expressing fibroblasts and examined whether local expression of IDO, conferred by adenoviral-mediated gene transfer to bystander syngeneic fibroblasts, prevents the rejection of islet allograft. Our approach here is novel compared to other studies that examined the suppressive effect of IDO in islet transplantation (28, 29) because a) bystander syngeneic fibroblasts were used as the target of gene transfer instead of islets to avoid deleterious effects of adenovirus infection on islets (30-32), b) islets were embedded within an extracellular matrix which by itself improves islet function and viability (33, 34) and c) co-transplanted fibroblasts are more than just a source of IDO and can enhance islet physiological competence (35, 36).

RESEARCH DESIGN AND METHODS

Mouse Islet isolation and Preparation of 3D islet-fibroblast composite grafts. Islets were isolated from 6 to 8-week-old male BALB/c mice (Jackson Laboratories, Bar Harbor, ME) and mouse dermal fibroblasts were explanted from B6 mice skin and transduced with a recombinant adenoviral vector carrying human IDO cDNA as described previously (26). Control fibroblasts were infected with a mock vector or left untreated. Fibroblast populated collagen gel (FPCG) matrices were prepared as described by Sarkhosh et al. (23) using IDO-expressing
or control fibroblasts. Mouse islets were added to FPCG before solidification in 24 well plates. Care and maintenance of all animals were in accordance with the principals of laboratory animal care and the guidelines of institutional Animal Policy and Welfare Committee.

Transplantation of islet-fibroblast composite grafts and evaluation of graft function. Recipient C57BL/6 (B6) mice were rendered diabetic by a single intraperitoneal injection of 200 mg/kg streptozotocin (Sigma) and diabetes was defined as a minimum of two consecutive blood glucose measurements ≥ 20 mmol/l. Islet plus IDO-expressing or control fibroblast composite grafts (approximately 500 islets) were transplanted under the left kidney capsule of isoflurane-anesthetized diabetic mice. After transplantation, blood glucose levels were measured using an Accu-Chek Compact Plus blood glucose monitoring system and grafts were deemed functioning when blood glucose levels decreased to < 10 mmol/l. Intraperitoneal glucose tolerance tests (IPGTT) were performed as previously described (27) two and four weeks after transplantation. All animals were cared for according to the guidelines of the institutional Animal Policy and Welfare Committee.

Histological analyses and immunostainings. Graft bearing kidneys or draining lymph nodes were harvested at indicated time points, fixed in 10% buffered formalin solution and embedded in paraffin. Sections 5 µm thick from graft area were stained with hematoxylin and eosin. Immunofluorescence staining was performed for insulin, CD3, FOXP3, and IDO. Sections were rehydrated, nonspecific binding was blocked. Sections were incubated overnight at 4°C with appropriate primary antibodies then washed and incubated with relevant secondary antibodies for 45 minutes. Primary antibodies include guinea pig anti-insulin antibody (1:500 dilution, Dako Laboratories, Mississauga, ON, Canada), rabbit anti-CD3 antibody (1:100 dilution, abcam, Cambridge, MA), rat anti-mouse FOXP3 (1:200 dilution, eBioscience, San Diego, CA), and rabbit anti-IDO Ab (1:1000 dilution, raised in rabbit by Washington Biotechnology Inc. Baltimore, MD). Secondary antibodies (1:2000 dilution) used were FITC-goat anti-guinea pig IgG (abcam), rhodamine- goat anti-rabbit IgG (Chemicon International, Temecula, CA), and rhodamine-goat anti-rat IgG (Jackson ImmunoResearch, West Grove, PA).

Characterization of graft infiltrating cells. Composite grafts were harvested at indicated time points and collagen matrices were digested using type I collagenase (Sigma 1 mg/ml) at 37°C for 10 min. cell suspensions were washed with PBS and passed through a 40 µm cell strainer. Cells were then incubated for 30 min at 4°C with fluorescent conjugated antibodies (1:100 dilutions; eBioscience) specific for particular lymphocyte and APC markers. Fluorescence dot plots were created using a BD FACS Calibur flow cytometry machine (BD Biosciences Pharmingen, Mississauga, ON, Canada) and were used to determine the percentage of positive cells labeled with the corresponding antibodies.

Quantitative PCR. Total RNA was isolated from harvested grafts at indicated time points using RNeasy kit (Qiagen, Maryland). cDNA was synthesized using SuperScript first-strand synthesis system for RT-PCR (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed in a reaction mixture of 25 µl using the Platinum SYBR Green qPCR SuperMix-UDG with ROX (Invitrogen) PCR kit according to the manufacturer’s instructions. The reactions were run on a 7900 HT Fast Real time PCR system (Applied biosystems, Foster City, CA). Human IDO-specific and mouse cytokines and chemokines mRNAs were quantified relative to mouse glyceraldehyde-3-phosphate dehydrogenase
IDO-mediated prolonged islet graft survival (GAPDH) using primers listed in the supplementary table 1 in the online appendix available at http://diabetes.diabetesjournals.org. The analyses were performed with the Sequence Detection system 7900HT software version 2.3 (Applied biosystems). All measurements were performed in duplicate. Results were expressed as the percentage or fold increase in expression of mRNA of interest at the indicated time point to that of day one post-transplantation.

Serum alloantibody detection. Blood serum samples were collected from composite graft recipients B6 mice (H-2b) at indicated time points post-transplantation. Donor BALB/c mice (H-2d) thymocytes (1×10^6) were incubated with recipient B6 mouse serum at 1:128 dilution for 1 h at 37 °C. Thymocytes were then washed with PBS and incubated with FITC-conjugated goat anti-mouse IgG1 or IgG2c (1:200 dilution, AbD Serotec, Raleigh, NC) for 1 h at 4 °C. Binding of cells to antibody was detected from single-parameter fluorescence histograms using a BD FACSCanto flow cytometer (BD Biosciences) after gating on viable cells. Percentage of cells shifting into appositive region on fluorescence histogram was calculated.

Mixed lymphocyte reaction. Stimulator cells were splenocytes from islet donor (BALB/c; H-2d) or third party (C3H; H-2K) mouse strains and responder cells were lymphocytes from graft draining (renal) lymph nodes of graft recipient mice (B6; H-2b). Responder cells (2×10^5) were cultured with irradiated (2000 rad) stimulator cells in 96-well round-bottom microwell plates (Costar, Corning, NY) for 96 hr. Individual wells were pulsed with 1 µCi/well of [3 H]-thymidine for the last 18 hr. Culture plates were then harvested and [3 H]-thymidine incorporation was measured using Wallac Jet 1450 Microbeta scintillation counter (Perkin Elmer, Waltham, MA). Mean counts per minute were determined from cultures set up in triplicate.

Statistical analysis. Data are reported as mean ± standard error of mean (SEM) of three or more independent set of experiments. Survival of islet grafts in IDO-expressing versus control groups were compared using Kaplan-Meier log-rank test. The statistical differences of mean values among treated and control groups were tested with one-way ANOVA. Post hoc comparisons were done using Student’s t-test with Bonferroni correction for multiple comparisons. P-values less than 0.05 were considered statistically significant.

RESULTS
Local expression of IDO prolongs islet allograft survival and function. To investigate the local immunosuppressive effect of IDO, 3D grafts were engineered by embedding 500 BALB/c mouse islets within collagen matrix populated with adenoviral transduced IDO-expressing or control (mock vector infected or untreated) B6 mouse fibroblasts. IDO over-expression was validated in composite grafts (supplementary Fig. 1). These composite grafts where then transplanted to renal subcapsular space of streptozotocin-induced diabetic immune-competent B6 mice. Another control group of mice received only islets. Islet graft function was checked by measuring blood glucose in graft recipient mice. Composite IDO-expressing grafts showed a significant prolongation of graft survival (41.2 ± 1.64 days, p < 0.001, n=10; table 1 and Fig. 1A). In contrast, as shown in table 1 and figure 1A, control grafts were rejected within 2 weeks after transplantation. Mean duration of graft survival in islet-alone group and grafts with untreated and mock virus treated fibroblast were 12.9 ± 0.73, 13.5 ± 0.79, and 13.2 ± 0.61 days, respectively (table 1). Mean survival duration for mock vector infected composite grafts was not significantly different from
IDO-mediated prolonged islet graft survival

those of grafts with untreated fibroblasts and islet-alone grafts which confirmed that adenoviral infection by itself had no effect on graft survival.

Intraperitoneal glucose tolerance test (IPGTT) was performed on mice that received IDO-expressing composite grafts after two and four weeks post-transplantation. As shown in figures 1B and 1C, glucose clearance rates in mice received IDO-expressing grafts were comparable to age-matched naïve animals after two weeks (AUC= 1671.0 ± 289.1 vs. 1700.1 ± 300.3 (mmol/l)min, p>0.05) and four weeks (AUC= 1870.7 ± 327.8 vs. 1824.2 ± 325.4 (mmol/l)min, p>0.05) post-transplantation. Normal response of islet grafts to IPGTT demonstrated that islets in IDO-expressing composite grafts are able to function normally in response to glucose load, suggesting preservation of islet mass. These data collectively confirm that local IDO expression significantly prolongs islet allograft survival.

IDO prevents infiltration of lymphocytes into composite grafts. To examine histopathological changes in islet allografts, a set of graft recipient mice were euthanized at the end of each week post-transplantation. Composite grafts were then recovered and stained with H&E or subjected to immunofluorescence staining for insulin, CD3, or FOXP3. Histological studies demonstrated that islets architecture was well preserved in the IDO-expressing composite grafts for up to 6 weeks (Fig. 2G-L) whereas islets in the untreated (Fig. 2A-C) or mock vector infected grafts (Fig. 2D-F) were almost completely destroyed before the third week post-transplantation. Control grafts were diffusely infiltrated with mononuclear cells as early as second week post-transplantation (Fig. 2B and 2E) while IDO-expressing grafts remained intact for up to 6 weeks (Fig. 2G-K). To investigate whether a component of immune response generated against adenovirus infected syngeneic fibroblasts and/or human transgenic IDO, islet-free IDO-expressing or mock vector fibroblast populated collagen matrices were transplanted to B6 mice. No T-cell infiltration was detected in IDO-expressing grafts after 40 days post-transplant while IDO transgene was still expressing (supplementary Fig. 2).

Double staining of grafts for CD3 and insulin showed very few insulin producing cells and dense T-cell infiltration in both untreated and mock vector infected controls at the end of the second week post-transplantation (Fig 3A). In contrast, islets in IDO-expressing grafts were strongly stained for insulin and maintained their normal architecture with minimal infiltration of T-cells at the same time point (two weeks post-transplant; Fig. 3A). A remarkable finding was that T-cells densely accumulated at the interface between IDO-expressing graft and kidney tissue but didn’t penetrate into the composite graft (Figs. 2I and 3A, IDO two weeks post-transplant). However, T-cells started to infiltrate IDO vector infected grafts by the end of the fifth week post-transplant (Fig. 3A). While FOXP3 immunostaining revealed very few intra-graft FOXP3+ cells in all experimental groups (Fig. 3B), more FOXP3+ cells were present in graft-draining lymph nodes of IDO-expressing recipients at week two but not week five post-transplant (Fig 3C).

Flow cytometry was used to determine the specific T-cell and antigen presenting cell (APC) composition of the leukocyte infiltrates to the grafts. As shown in Fig. 4A, CD4+ and CD8+ T-cells were much more abundant in untreated (25.4 % and 12.3%, respectively) and mock vector grafts (24.7% and 10.4%, respectively) compared to IDO-expressing grafts (3.3% and 3.4% respectively) at two weeks post-transplant. Nonetheless, IDO grafts were accumulated with CD4+ and CD8+ T-cells by week five post-transplant (24.1% and 11.2%, respectively). Figure 4B summarizes flow cytometry data on graft
IDO-mediated prolonged islet graft survival

infiltrating cells composition. As IDO has been shown to regulate APC function, the frequency of dendritic cells present in grafts was investigated. Results showed that although the frequency of CD11C+ cells was less in IDO over-expressing grafts after two weeks (Fig. 4A and 4B), the ratio of CD11c+ to CD3+ cells was significantly higher in this group (Fig 4C) suggesting that dendritic cells are more resistant than T-cells to IDO effects.

Taken together, these data show that local expression of IDO significantly prevents infiltration of T-cells into islet allografts and suggest local depletion of effector CD4+ and CD8+ T-cells as a mechanism for anti-rejection function of IDO.

Local IDO expression enhances anti-inflammatory Th2 type immune response and delays alloantibody production. To further investigate the mechanism of immunosuppression induced by IDO, we examined the local cytokine/chemokine expression profile and production of donor specific alloantibodies in composite graft recipients. Quantitative PCR showed significantly higher pro-inflammatory cytokines IFN-γ, IL-2, and IL-17 as well as T-cell attracting chemokines CXCL9 and CXCL10 in untreated and mock vector grafts versus IDO-expressing grafts two weeks post-transplantation (Fig. 5A). Reversely, anti-inflammatory cytokines IL-4 and IL-10 were significantly over-expressed in IDO grafts at the same time point. However, cytokine/chemokine profile switched to a pro-inflammatory pattern after five weeks in IDO group (Fig 5A). Thus, low expression of T-cell attracting chemokines and high levels of anti-inflammatory cytokines can be considered as one of the reasons for strict containment of leukocyte infiltration into IDO-expressing grafts.

To investigate alloantibody production, sera from graft recipient animals were tested for presence of antibodies against donor antigens using flow cytometry. In control groups, (i.e. mice received untreated or mock vector composite grafts), high levels of alloantibodies were detectable three weeks after transplantation (Fig. 5B and 5C). Higher level of IgG2c versus IgG1 isotype was indicative of Th1 dominant humoral immune response in these groups. In contrast, sera from IDO-expressing graft recipients showed low levels of donor-specific antibodies until fifth week post-transplant and it took two more weeks to reach to a level equal to that of control groups at week 3 post-transplant (Fig. 5D). Moreover, early alloantibodies in IDO group were mainly from IgG1 subclass suggesting a Th2 immune response shift in the presence of local IDO expression. These findings show that local IDO expression promotes an anti-inflammatory environment, and shifts the Th1/Th2 balance toward Th2 response.

Allospecific T-cell priming is impaired in draining lymph nodes of IDO graft recipient mice. As shown in figure 3C, FOXP3+ cells in graft draining lymph nodes of IDO-expressing animals were more abundant than control groups at two weeks post-transplant. Counting the number of FOXP3+ cells in immunostained sections showed significantly higher frequency of FOXP3+ cells in IDO group (9.8% ± 0.9; p<0.001) compared to untreated (5.6% ±1.1) and mock vector (6.2% ± 1.2) groups (Fig. 6A). FOXP3+ cell frequency however decreased in IDO group after five weeks (7.0% ± 1.1, Fig 7.A). To investigate the Impact of increased number of FOXP3+ cells and other possible effects of local IDO over-expression on T-cell priming capacity, mixed lymphocyte reactions were performed. The results showed a significant hyporesponsiveness of lymph node cells of IDO-expressing group to stimulation with BALB/c (islet donor) mouse splenocytes but not to a third party mouse strain (Fig. 6B & 6C). This anergy was reverted after five weeks post-transplant. These findings suggest
that, possibly because of an increased number of regulatory T-cells, antigen specific incompetence of T-cell priming occurs in draining lymph nodes of IDO-expressing graft recipient mice.

Duration of IDO transgene expression in composite grafts corresponds to effectiveness of immunosuppression and graft survival length. In view of limited length of anti rejection effect of IDO in this study, we hypothesized that a decline in the level of IDO transgene expression can be considered as the possible cause of cessation of immunosuppression and eventually late graft rejection in IDO group. We therefore tested the length of intra-graft IDO transgene expression using IDO immunofluorescence staining and quantitative PCR. Composite grafts were harvested at indicated time points and subjected to IDO immunofluorescence staining or qPCR. As shown in figure 7A, IDO protein is expressed uniformly and widely in fibroblasts throughout the graft when tested two weeks after transplantation. However, after five weeks only a limited number of cells in the graft were still positive for IDO protein (Fig.7B). The anti-IDO antibody used in this experiment was able to detect IDO protein from both human and mouse origins.

qPCR results showed that IDO transgene was expressed at high levels in composite grafts containing IDO vector infected fibroblasts for up to four weeks post-transplantation and then the expression level started to decrease. As presented in figure 7C, significant decline in the intra-graft IDO transgene expression were observed from 100% on day one to 47.6% ± 13.4, 37.2% ± 12.3, and 30.6% ± 10.7 on days 35, 42, and 49 post-transplantation, respectively (p < 0.001, n=3). This finding was consistent with *in vitro* lasting effect of IDO expression in fibroblasts following adenoviral IDO transduction (data not shown). As the IDO transgene was of human origin, by using human specific primers we expected that intrinsic IDO expression (i.e. mouse IDO that expressed in grafts as a result of inflammation) did not interfere with IDO transgene qPCR.

These data collectively show a transient pattern for IDO transgene expression in composite grafts following adenoviral gene transfer. The time course of intra-graft IDO expression closely corresponds to the duration of graft survival and suppression of cellular and humoral alloimmune responses. We therefore suggest that late graft rejection in this study was probably due to time-dependent loss of transient IDO expression.

DISCUSSION

In the present study, we showed that local IDO expression suppresses cellular and humoral alloimmune responses against islets and significantly prolongs islet allograft survival without systemic anti-rejection treatments in diabetic immune-competent mice. IDO plays a crucial role in suppression of immune responses. Several previous studies implicated immunomodulatory effect of IDO in different settings including islet transplantation (28, 29, 37). However, this is for the first time that IDO-expressing bystander syngeneic fibroblast populated collagen scaffold is used to protect islet allograft. The engineered composite graft developed and transplanted in this study has several unique features. First, we avoided direct transfer of IDO transgene to islets to reduce the risk of cytotoxicity and loss of islet function. There are reports showing that adenoviral gene transfer to islets interferes with β-cell function and increases apoptosis rate (30-32; 38-39). Moreover gene expression after direct transduction is observed only in the periphery of islets but not in the islet core (40, 41). Therefore, by using bystander fibroblasts and not islets as the target for IDO gene transfer, we were able
to induce high levels of IDO expression as a local immunosuppressive factor while avoiding any deleterious consequence of gene transfer on islet survival and function.

Embedding islets within a 3D extracellular matrix (ECM) is another advantage of this composite graft. ECM is one of the most important constituents of the islet microenvironment. Several studies demonstrated that entrapment of islets within a collagen matrix resulted in satisfactory morphology, enhanced viability, and improved insulin secretory capability in islets (42-44). As such, embedding islets within ECM, by itself, can improve islet graft function. Moreover, as shown in the supplementary figure 1, collagen matrix provides a supportive scaffold and helps IDO-expressing fibroblasts surround and protect islets very efficiently in a 3D structure.

Co-transplantation of fibroblasts is also a beneficial aspect of this composite graft. Fibroblasts are cells of choice to be used as bystander IDO-expressing cells because a) they can easily be induced to express IDO, b) show low levels of DNA synthesis and become quiescent when embedded in a collagen matrix (45) and c) are resistant to apoptosis in IDO-induced low tryptophan environment (25, 27). Fibroblasts can also improve islet cell viability. The essential role of fibroblasts in islet physiological competence was previously reported and it was shown that some fibroblast-produced factors can promote islet survival in culture (35, 36). In addition, availability of syngeneic or autologous fibroblasts eliminates the risk of immune response against these cells. Collectively, application of this novel composite islet graft can address a number of common obstacles in islet allotransplantation by preventing immunological rejection, reestablishing islet cell-ECM interaction, and improving islet survival and function.

Findings of the present study suggest that there are several mechanisms through which local IDO over-expression mounts its anti-rejection effects. These include suppression of effector T-cells at the graft site, induction of a Th2 immune response shift, generation of an anti-inflammatory cytokine profile, and increased number of regulatory T-cell in draining lymph nodes which results in antigen specific impairment of T-cell priming. As shown in figures 2 and 3, T-cells accumulated at the margins of the IDO-expressing grafts but did not invade and infiltrate islets. This accords with the well known function of IDO that is generation of a low tryptophan and high kynurenine microenvironment within which activated T-cells are not able to proliferate and survive. Data presented in the figure 1 determine that such a microenvironment protects islet grafts rejection but does not negatively affect islet function.

Transient increase in the number of FOXP3+ cell in our model is very similar to the pattern seen in pregnancy-induced tolerance. It has been shown that due to local expression of IDO in maternal-fetal interface, the number of regulatory T-cells increases during early pregnancy, peaking during the second trimester followed by a decline postpartum (46). In our model, the number of FOXP3+ cells increases as long as local IDO level is high and upon cessation of IDO over-expression in the grafts, the number of FOXP3+ cell decreases. This is similar to Treg downregulation after IDO level decreases in maternal-fetal interface postpartum.

This study for the first time showed that local IDO expression can inhibit production of donor specific alloantibodies. The mechanism(s) underlying this phenomenon needs further elucidation. It is well documented that humoral response against donor-specific antigens is clearly dependent on help provided by CD4+ T-cells.
IDO-mediated prolonged islet graft survival

(47). Only CD4+ T-cells recognizing alloantigen through the indirect pathway are able to provide cognate help to allospecific B-cells for the development of alloantibody (48). As such, inhibition of alloantibody production in our study might be due to T-cell suppressive effect of IDO which significantly reduces the number of donor-specific T-cells and consequently results in insufficient cognate help to B-cells. Moreover, the Th1/Th2 shift seen in humoral immune response in this study may be contributed to the IDO-induced deviation of cytokine expression profile as IL-4 promotes IgG1 isotype switching (49), while IFN-γ favors the IgG2a and IgG2c switch (50).

Finite survival of islet grafts in this study may appear discouraging in the first place. However, data presented here clearly show that as long as high levels of intra-graft IDO expression was maintained, islet grafts survived and functioned normally and cellular and humoral immune responses against islets were suppressed very efficiently. This finding suggests that long-term protection of islet grafts is feasible if stable IDO expression in bystander fibroblasts achieved.

In conclusion, the present study proves the feasibility of development of a viable and functional IDO-expressing composite islet graft and confirms that IDO efficiently and significantly improves islet allograft survival. This promising finding proves local islet-directed immunosuppressive effect of IDO and sets the stage for development of a non-rejectable islet allograft using stable IDO induction in bystander fibroblasts. This approach is currently under our investigation.

Author contributions: R.J.B. researched data, contributed to discussion, wrote manuscript, and reviewed/edited manuscript. F.F. researched data, contributed to discussion, and reviewed/edited manuscript. A.M.R. researched data, and contributed to discussion. R.H. researched data, and contributed to discussion. A.M. researched data. B.L. contributed to discussion, and reviewed/edited manuscript. G.L.W. contributed to discussion, and reviewed/edited manuscript. A.G. contributed to discussion, wrote manuscript, and reviewed/edited manuscript.

ACKNOWLEDGMENTS
This study was supported by the Canadian Institutes of Health Research. The authors are grateful to Dr. Y. Li (University of British Columbia, Vancouver, BC, Canada) for constructing the IDO adenoviral vector. We are thankful to Dr. C.B. Verchere (University of British Columbia) for useful discussion and advice and also to Dr. M. K. Levings and A. N. McMurchy (University of British Columbia) for helping with flow cytometry experiments. R.B.J. was supported by UGF and Transplantation Scholarship Training awards.

REFERENCES

Table 1
Composite islet graft survival in different experimental groups

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Graft survival (days post-transplantation)</th>
<th>Mean ± SEM</th>
<th>p value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Islet + Untreated fib.</td>
<td>10</td>
<td>10, 11, 12(×2), 13, 14, 15 (×2), 16, 17</td>
<td>13.5 ± 0.79</td>
<td>0.706</td>
</tr>
<tr>
<td>Islet + Mock vector fib.</td>
<td>10</td>
<td>10, 11, 12(×2), 13, 14(×2), 15(×2), 16</td>
<td>13.2 ± 0.61</td>
<td>0.908</td>
</tr>
<tr>
<td>Islet + IDO fib.</td>
<td>10</td>
<td>33, 36, 38(×2), 41, 42, 43, 45(×2), 51</td>
<td>41.2 ± 1.64</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Islet alone</td>
<td>10</td>
<td>10, 11(×2), 12(×3), 13, 15, 16, 17</td>
<td>12.9 ± 0.73</td>
<td>-</td>
</tr>
</tbody>
</table>

* p value for difference in mean survival durations compared with islet alone group calculated using Log Rank (Mantel-Cox) test. Fib: fibroblasts.

Figure legends

Figure 1. Islet graft survival and function after transplantation. (A) Kaplan-Meier survival curve shows prolongation of IDO-expressing grafts survival (solid line) compared to islet alone (dash-dot line), untreated (dashed line), and mock virus infected (dotted line) grafts (n=10). Intraperitoneal glucose tolerance tests (IPGTT) after two weeks (B) and four weeks (C) post-transplantation confirmed normal glucose responsiveness in graft bearing mice (solid line) versus naïve mice(dashed line) (n=3). Bar charts on the right panels show area under the IPGTT curves. Error bars indicate standard error of the mean (SEM).

Figure 2. Histology of composite islet grafts. Graft recipient mice were euthanized at indicated time points post-transplantation. Composite islet grafts were then retrieved and stained with H&E. (A-C) Untreated and (D-F) mock vector infected fibroblast grafts after 1, 2, and 3 weeks post-transplantation, respectively. (G-L) IDO-expressing fibroblast grafts after 1-3 and 5-7 weeks post-transplantation. Note inflammation and cellular infiltration into the graft started in control groups in the second week but in IDO group delayed until 6th week post-transplantation. Scale bar: 100 μm.

Figure 3. CD3+ and FOXP3 + cells infiltration into composite islet grafts and in draining lymph nodes. Graft recipient mice were euthanized at indicated time points post-transplantation. Composite islet grafts were then retrieved and subjected to double immunofluorescence staining for CD3 and insulin or FOXP3. (A) Composite grafts in untreated, mock vector infected and IDO-expressing fibroblast graft at two weeks post-transplantation and IDO graft after five weeks post-transplantation from left to right, respectively. Lower smaller panels show high magnification of the indicated area of the upper panels. Note in the IDO-expressing graft, CD3+ cells accumulated in the border of the graft and kidney tissue but didn’t infiltrate the graft. Scale bars in the low and high magnification panels equal to 100 and 20 μm, respectively. (B & C) FOXP3 immunofluorescence staining of composite grafts (B) and graft draining lymph nodes (C). Untreated, mock vector and IDO grafts at two weeks post-transplantation and IDO grafts after five weeks post-transplantation from left to right, respectively. Scale bar: 50 μm.

Figure 4. Characterization of graft infiltration cells. Graft recipient mice were euthanized at indicated time points post-transplantation. Composite islet grafts were then retrieved and processed as described in methods to prepare single cell suspensions. Phenotype of cells was then assessed using flow cytometry. (A) Representative flow cytometry plots comparing CD4+ (upper row), CD8+ (middle row), and CD11c+ (lower row) cells in the grafts. The percent of events in each quadrant of dot plots is indicated. Plots in each row include untreated, mock
vector and IDO grafts at two weeks post-transplantation and IDO graft after five weeks post-transplantation from left to right, respectively. (B) Frequency of CD3+, CD4+, and CD11c+ cells in grafts. (C) Ratio of CD11c+ to CD3+ cells in grafts. Data shown are mean ± Standard error of mean. * denotes significant difference between IDO (week 2) and other groups (p<0.001, n=5).

Figure 5. Cytokine / chemokine expression profile in composite grafts and donor specific alloantibodies production. (A) Graft recipient mice were euthanized at indicated time points post-transplantation. Composite islet grafts were then retrieved, total RNAs were extracted and were subjected to quantitative PCR for cytokines IFN-γ, IL-2, IL-17, IL-4, IL-10 and chemokines CXCL9 and CXCL10. mRNA levels at indicated time points were standardized by mRNA levels on day 1 post-transplant for each experimental group. Data shown are mean ± Standard error of mean. * denotes significant difference between IDO (week 2) and other groups (p<0.001, n=5). (B-D) Donor specific alloantibody production in graft recipient mice. Naïve donor strain BALB/c thymocytes (H-2d) were incubated with serum collected from B6 (H-2b) mice received graft with untreated (B), mock vector infected (C), and IDO expressing (D) fibroblasts on indicated time points after transplantation (week 1 to 3 for controls and week 1to7 for DO group). Binding of alloantibody was assessed by flow cytometry analysis after incubation of FITC-conjugated goat anti-mouse IgG1 (black circles) or anti-mouse IgG2c (black squares) antibody. The average percentage of donor cells binding to serum antibodies from three individual recipients per group is expressed.

Figure 6. FOXP3+ cells in draining lymph nodes and mixed lymphocyte reactions. (A) Frequency of FOXP3+ cells in graft draining lymph nodes (DLN) were calculated by counting FOXP3 immunostained cells (red cells in Fig. 3C) in 10 high power fields. Data shown are mean ± Standard error of mean. * denotes significant difference between IDO (week 2) and other groups (p<0.001, n=10). (B & C) Graft draining (renal) lymph node cells form graft recipient (B6; H-2b) mice were harvested and cultured with irradiated islet donor (BALB/c; H-2d) mice (B) and third party (C3H; H-2k) mice (C) splenocytes at indicated ratios for 96 hours. Wells were pulsed with [3H]-thymidine for the last 18 hours and then [3H]-thymidine incorporation to DNA was measured in triplicates. * denotes significant difference between IDO (week 2) and other groups (p<0.001, n=10). Untreated: black circles -dotted line, Mock vector: open circles -dashed line, IDO (week 2): black squares -solid line, IDO (week 5): open squares-solid line.

Figure 7. Stability analysis of IDO transgene expression in composite islet grafts. IDO graft recipient mice were euthanized at indicated time points post-transplantation. Composite islet grafts were then retrieved and subjected to immunofluorescence staining or quantitative PCR for IDO. (A and B) immunofluorescence staining of IDO protein (red) in IDO vector infected grafts after two weeks (A) and five weeks (B) post-transplantation. Upper smaller panels show high magnification of the indicated area of the lower panels. Scale bars in the low and high magnification panels equal to 100 and 20 μm, respectively. (C) IDO transgene mRNA levels measured by quantitative PCR in IDO vector infected grafts on days one to 49 post-transplantation. The level of IDO mRNA at each time point was normalized as the percentage of IDO mRNA level on day one post-transplantation. * denote statistically significant difference compared to IDO mRNA level on day one post-transplantation (n= 3, p<0.001). Error bars indicate standard error of the mean (SEM).
Figure 1

A

B

C
Figure 2
Figure 3

A

Graft

Untreated (week 2) Mock vector (week 2) IDO (week 2) IDO (week 5)

Insulin / CD3 / DAPI

B

Graft

C

Lymph node

FOXp3 / DAPI
IDI-mediated prolonged islet graft survival

Figure 6

A

IDO (week 5)
IDO (week 2)
Mock vector (week 2)
Untreated (week 2)

FOXP3+ cells in DLN (%)

B

[RADIOACTIVITY (CPM x 10^3)]

C

[RADIOACTIVITY (CPM x 10^3)]

Figure 7

A

B

IDO / DAPI

C

IDO transgene expression (% of day 1)

Days post-transplantation