G PROTEIN-COUPLED RECEPTOR KINASE 2 (GRK2) PLAYS A RELEVANT ROLE IN INSULIN RESISTANCE AND OBESITY

Lucia Garcia-Guerra 1,2, Iria Nieto-Vazquez 1,2, Rocío Vila-Bedmar 1,2, María Jurado-Pueyo 3, Guillermo Zalba 4, Javier Díez 4, Cristina Murga 3, *, Sonia Fernández-Veledo 1,2, *, Federico Mayor Jr. 3 and Margarita Lorenzo 1,2, +.

1 Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University; 28040 Madrid (Spain); 2 CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), 3 Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Instituto de Investigación Sanitaria Princesa, 28049 Madrid (Spain), 4 Division of Cardiovascular Sciences, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain.

L. G-G. and I. N-V. contributed equally to this work

Corresponding authors.
Cristina Murga
cmurga@cbm.uam.es

Sonia Fernández-Veledo
soferve@farm.ucm.es

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

Submitted 4 June 2010 and accepted 3 July 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Control of insulin resistance and obesity by GRK2

Objective - Insulin resistance is associated with the pathogenesis of metabolic disorders as type-2-diabetes and obesity. Given the emerging role of signal transduction in these syndromes, we set out to explore the possible role that G protein-coupled receptor kinase 2 (GRK2), first identified as a G protein-coupled receptor regulator, could have as a modulator of insulin responses.

Research Design and Methods - We analyzed the influence of GRK2 levels in insulin signaling in myoblasts and adipocytes with experimentally increased or silenced levels of GRK2, and in GRK2 hemizygous animals expressing 50% lower levels of this kinase in three different models of insulin resistance: TNFα infusion, aging and high fat diet (HFD). Glucose transport, whole body glucose and insulin tolerance, the activation status of insulin pathway components, and the circulating levels of important mediators were measured. The development of obesity and adipocyte size with age and HFD was analyzed.

Results - Altering GRK2 levels markedly modifies insulin-mediated signaling in cultured adipocytes and myocytes. GRK2 levels are increased by approximately 2-fold in muscle and adipose tissue in the animal models tested, and in lymphocytes from metabolic syndrome patients. In contrast, hemizygous GRK2 mice show enhanced insulin sensitivity and do not develop insulin resistance by TNFα, aging or HFD. Furthermore, reduced GRK2 levels induce a lean phenotype and decrease age-related adiposity.

Conclusions - Overall, our data identify GRK2 as an important negative regulator of insulin effects, key to the etiopathogenesis of insulin resistance and obesity, what uncovers this protein as a potential therapeutic target in the treatment of these disorders.

Insulin resistance, a diminished ability of cells to respond to the action of insulin, is a key feature associated with the pathogenesis of metabolic disorders such as type-2-diabetes and obesity (1). Alterations in any of the key components of the insulin signaling cascade, including negative regulators, have been proposed to contribute to insulin resistance (1:2). However, the origin and precise mechanism(s) mediating insulin resistance in physiopathological conditions are not fully understood (3). Both aging and obesity are associated with increased risk of developing type-2-diabetes and cardiovascular disease. An increase in pro-inflammatory and a decrease in anti-inflammatory factors is found in the obese state and may influence glucose homeostasis and insulin sensitivity (4;5). Peripheral tissues exposed to these pro-inflammatory cytokines develop an insulin-resistant state (6). In fact, obesity is now being considered a chronic state of low-intensity inflammation. In this regard, the cytokine Tumor Necrosis Factor (TNF)α is highly expressed in adipose tissue of obese animals and humans, and obese mice lacking either TNFα or its receptors show protection against developing insulin resistance. The molecular mechanisms underlying TNFα-mediated insulin resistance have been studied in models of murine and human myocytes and adipocytes and in vivo (7-11).

Insulin suppresses hepatic glucose production through translocation of glucose transporter (GLUT)4 to the cell surface (12;13). Insulin-induced GLUT4 translocation requires at least two signals, one mediated through
phosphatidylinositol 3-kinase (PI3K) and another via Goq/11 (14) in 3T3L1 adipocytes. The activated Insulin Receptor (IR) can phosphorylate the G protein subunit Goq/11, leading to activation of cdc42 and PI3K, what triggers glucose transport stimulation (14-16). Signaling of receptors via G proteins is regulated by G protein-coupled receptor kinases (GRKs), a family of seven serine/threonine protein kinases that specifically recognize and phosphorylate agonist-activated G protein-coupled receptors (GPCRs). This recruits arrestin proteins that uncouple receptors from G proteins and promote internalization. The ubiquitous GRK2 isoform has been reported to regulate other pathways independently of its GPCR phosphorylation ability (17;18). GRK2 can act as an inhibitor of insulin-mediated glucose transport stimulation in 3T3L1 adipocytes by interacting with Goq/11 function independently of its kinase activity (19). GRK2 also inhibits basal and insulin-stimulated glycogen synthesis in mouse liver FL83B cells (20). In this context, we have investigated whether GRK2 may play a relevant physiological role in the modulation of insulin responses in vivo. GRK2 expression is increased in key tissues in different experimental models of insulin resistance and a 50% down-regulation of GRK2 levels in hemizygous GRK2+/- mice is sufficient to protect against TNFα, aging or high fat diet (HFD)-induced alterations in glucose homeostasis and insulin signaling, strongly arguing for a key role for GRK2 in the modulation of insulin sensitivity in physiological and pathological conditions.

RESEARCH DESIGN AND METHODS
Cell Culture and Transfections. The human liposarcoma cell line LiSa-2 (21) was used as a cellular model of visceral human adipocytes and was maintained in DMEM supplemented with 10% fetal serum and antibiotics, at 37°C and 5% CO2. To induce insulin resistance human adipocytes were cultured for 21 days in serum-free DMEM/F12 (1:1) as previously described (22). Peripheral blood mononuclear cells (PBMCs), were isolated from blood samples with Lymphoprep (≥99% were lymphocytes and monocytes) as previously described (23). The studies involving samples from patients were carried out in accordance with the Helsinki Declaration, and the protocol was approved by the Ethical Committee of the University Clinic of Navarra (see Supplemental Information in the online appendix available at http://diabetes.diabetesjournals.org). Mouse C2C12 myocytes (American Type Culture Collection) and immortalized murine white adipocytes were maintained in DMEM supplemented with 10% fetal serum and antibiotics, at 37°C and 5% CO2. Cells were transiently transfected according to the LipofectAMINE™ protocol (Invitrogen, Paisley, UK), with 4µg of pcDNA3-GRK2-neo, pcDNA3-GRK2-K220R-hygro or ad-shGRK2-RNAi, to generate cell lines with increased or decreased GRK2 expression, respectively or with empty vector (pcDNA3-hygro) as a control.

Metabolic Assays. Glucose tolerance Test (GTT) and Insulin Tolerance Test (ITT) were performed as we previously described (24). Glucose concentration (mg/dL) was determined in tail blood samples using an automatic analyzer (Accucheck from Roche). Other measurements were performed from blood collected from the tail and centrifuged at 2,500g for 15 min to obtain the serum. Insulin and leptin concentrations were assayed using a sensitive ELISA-kit (Linco Research, St. Louis, MO). Triglycerides (TG) released were assayed by an enzymatic method using Free Glycerol Determination kit (Sigma-Aldrich, St. Louis, MO).

Glucose Uptake Assay. Cells were stimulated for 30 min with insulin, and glucose uptake was measured during the last 10 min of culture by incorporation of 2-
deoxy-D[1-3H]-glucose as previously described (22;24). Individual values were expressed as pmol of glucose per 10 min per mg of protein, and results were expressed as percentage of stimulation over basal (control=100).

In vivo signaling assay. Male mice (12-14 week-old) were subjected to anaesthesia (intraperitoneal injection of 60 mg/kg ketamine per 5 mg/kg xylazine), and 25 mg epididymal adipose tissue was removed from each mouse. Insulin (1 IU/kg body weight) was then injected via the cava vein and a similar amount of epididymal adipose tissue was removed, after 1, 3 and 7 min. Tissue samples were immediately frozen in liquid nitrogen and stored at -80°C. Epididymal adipose tissues were homogenized with a Polytron homogenizer in lysis buffer and centrifuged at 100,000g for 15 min. The supernatants were collected, assayed for protein concentration, and stored at -80°C until used.

Other Methods were performed as specified in Supplemental Information.

RESULTS

Insulin signaling is regulated by GRK2 levels in adipocytes and myocytes. To study the modulation of insulin signaling by GRK2 in relevant insulin-targeted cell types, we used murine white adipocytic and myocytic cell lines expressing enhanced or decreased GRK2 protein levels, or over-expressing a catalytically inactive mutant of GRK2 (Fig. 1A). The increase in glucose uptake elicited by insulin in both cell types was blocked in the presence of enhanced GRK2 levels, whereas GRK2 knockdown led to a slightly higher response (Fig. 1B). Following acute insulin challenge, IRS1 tyrosine phosphorylation and AKT activation were impaired upon GRK2 or GRK2-K220R overexpression both in adipocytes and in myoblasts (Fig. 1C and 1D), while reduced levels of GRK2 promoted the opposite effect. Basal IRS1 protein levels were higher in cells with silenced GRK2, and decreased in cells with elevated GRK2, suggesting a functional relationship between GRK2 and IRS1 (Fig. 1C and 1D). Co-immunoprecipitation experiments in adipocytes showed that both endogenous GRK2 and IRS1 proteins form a complex under basal conditions that is completely disrupted after 10 minutes of insulin treatment (Fig. 2A). GRK2 over-expression enhances the amount of IRS1 associated to the kinase by approximately 87% and prevents the complete disruption of the complex by insulin. In contrast, GRK2 downregulation decreases its basal association with IRS1 and facilitates a complete disruption of this complex by insulin.

Interestingly, a similar picture emerges when investigating such parameters in adipose tissue from wild-type (Wt) or GRK2 hemizygous mice, expressing some 50% of GRK2 protein (25;26). The amount of basal IRS1/GRK2 complexes also depends on GRK2 levels in vivo and insulin infusion disrupts such complexes (Fig. 2B). Also, a faster kinetics in insulin-mediated IRS1 and AKT phosphorylation (Fig. 2C) is observed in GRK2+/− mice.

Overall, our data indicate that GRK2 levels regulate insulin signaling in skeletal muscle and adipose tissue both in cultured cells and in vivo, most probably by mechanisms independent of kinase activity and involving the formation of dynamic GRK2/IRS1 complexes.

GRK2 protein expression is enhanced under insulin-resistant conditions. If GRK2 is to play a role in the modulation of insulin sensitivity in vivo, the expression of this kinase should be altered in conditions characterized by insulin resistance. Obesity-associated metabolic disorders such as type-2 diabetes and insulin resistance can be induced by TNFα infusion, aging or HFD (1). Therefore, we compared GRK2 expression in epididymal white adipose tissue (eWAT),
liver and skeletal muscle obtained from 3 and 9-month-old mice, and from mice fed on a HFD, or treated with TNFα using only male mice (Fig. 3A and Suppl. Table 1). GRK2 expression levels were enhanced in adipose tissue (from 1.3 to 1.9-fold) and muscle (1.4 to 1.7-fold) in every experimental condition studied, and changes in liver expression were observed upon HFD treatment. GRK2 expression was also enhanced by more than 2-fold in eWAT tissue of the ob/ob model of obese mice (Fig. 3B), and by 2.5-fold in human adipocytes forced to develop an insulin-resistant state upon a chronic challenge with insulin (Fig. 3C). Finally, since lymphocyte GRK2 levels have been reported to mirror changes in the kinase expression in other organs under several physiopathological circumstances (27), we analyzed the levels of GRK2 in peripheral blood mononuclear cells obtained from patients with diverse degrees of insulin resistance (Suppl. Table 2). In these cells GRK2 levels were higher in insulin resistant patients compared to control individuals (Fig. 3D). Although preliminary, our results indicate that GRK2 levels are altered in murine experimental models and in human samples under insulin resistant conditions, suggesting that this kinase might mediate the ability to induce insulin resistance of different neurohumoral factors that are altered in these situations (28;29).

GRK2^{+/−} mice do not develop TNFα-induced insulin resistance. To test the hypothesis that such moderate changes in GRK2 expression levels may indeed alter insulin signaling in vivo, we studied whole-body insulin action and glucose homeostasis in age-matched wild-type (Wt) and GRK2^{+/−} male mice. These haploinsufficient mice constitute a good model to recapitulate differences in GRK2 expression in the same range to those observed in pathological conditions, and also to evaluate the potential of therapeutic strategies aimed at decreasing GRK2 functionality in vivo. Whereas GRK2 knock-out mice die in utero with a marked cardiac hypoplasia (30), and the cardiac phenotype of GRK2^{+/−} mice has been well characterized (31;32), insulin signaling has not been investigated so far in these animals. Since TNFα infusion induces insulin resistance in murine models in vivo (24;33), we examined insulin sensitivity by GTTs and ITTs in Wt and GRK2^{+/−} 3-month-old male mice after a 48h treatment with TNFα (Fig. 4A and 4C). In Wt, but not in GRK2^{+/−} mice, TNFα produced a significant 29% increase in fasting blood glucose levels (Table 1). Moreover, the additional pronounced hyperglycemic effect of TNFα after glucose injection observed in Wt mice was attenuated in GRK2^{+/−} mice (Fig. 4A). The improved glucose tolerance observed was not due to an increase in circulating insulin because GRK2^{+/−} mice had lower circulating insulin levels than Wt mice in both the fasted state (Table 1) and during the GTT (Fig. 4B). These results suggest that the more efficient glucose clearance observed in GRK2^{+/−} mice is caused by enhanced peripheral insulin sensitivity. In line with this notion, the hypoglycemic effect of insulin injection was impaired upon TNFα treatment in Wt animals but not in GRK2^{+/−} mice (Fig. 4C).

Wt mice treated with TNFα showed a complete impairment in insulin-induced AKT phosphorylation in skeletal muscle, adipose tissue and liver (Fig. 4D and Suppl. Fig. S2 and Suppl. Table 1), that was not detected in GRK2^{+/−} mice. Interestingly, TNFα substantially increased GRK2 protein content in eWAT and muscle of Wt mice (by 82% and 42% respectively, Fig. 4D and Suppl. Fig. S2 and Suppl. Table 1), whereas the amount of GRK2 remained unaltered (in liver and muscle) or below basal Wt levels (adipose) upon TNFα treatment in GRK2^{+/−} mice (Fig. 4D, Suppl. Fig S2 and Suppl. Table 1). Altogether, these results suggest that GRK2 is a negative modulator of insulin sensitivity and that lower GRK2 levels protect against the systemic insulin resistance induced by TNFα.

GRK2 downregulation prevents the development of aging-associated insulin resistance. In the model of aging-associated
insulin resistance, GRK2 downregulation caused no differences in the GTTs or ITTs of young (3-month-old) male mice (Fig. 5A-C), while in adult 9-month-old GRK2*+/− male mice glucose tolerance was improved compared to Wt (Fig. 5D). A similar tendency had already been observed at 5 months of age in GRK2*+/− mice (Suppl. Fig. S1). Aging also induced a 57% increase in fasting glucose concentration in Wt mice, limited to 29% in GRK2*+/− mice (Table 1). Circulating levels of insulin were higher in 9-month-old Wt than in GRK2*+/− mice in response to an identical glucose load (Fig. 5E). Consistently, GRK2*+/− mice exhibited an enhanced decline in blood glucose levels upon administration of insulin (Fig. 5F), and lower fasting serum insulin levels (Table 1). Altogether these results suggest increased whole-body insulin sensitivity in GRK2*+/− mice, in agreement with the values obtained for the HOMA index (Table 1).

Insulin-stimulated AKT phosphorylation was markedly impaired with age in eWAT, liver and muscle in Wt mice, while GRK2*+/− animals maintained a robust activation of this pathway (Fig. 5G and Suppl. Fig. S2 and Suppl. Table 1). Interestingly, in adult animals, GRK2 protein expression was enhanced by 33% and 68% in eWAT and muscle, respectively, compared to young mice (Figs 3A, 5G and Suppl. Fig. S2 and Suppl. Table 1). Overall, these data suggest increased whole-body insulin sensitivity in GRK2*+/− mice, in agreement with the values obtained for the HOMA index (Table 1).

GRK2*+/− mice display protection against high fat diet-induced insulin resistance and obesity. After a HFD regime for 12 weeks, Wt mice gained significantly more weight than GRK2*+/− mice (Fig. 6A). The overall increase in body weight was of 67% in Wt and only 53% in GRK2*+/− mice (Fig. 6B), without changes in food intake (Fig. 6C). Consistently, even when adipocyte diameter was increased in both groups, adiposity in GRK2 hemizygous mice did not go beyond a certain threshold that was exceeded only in WT mice, with the size of HFD-fed GRK2*+/− epididymal adipocytes being 45% inferior than that of Wt mice (Fig. 6D).

GTT analysis indicated a clear deterioration in glucose metabolism in Wt but not in HFD-fed GRK2*+/− mice. In the HFD-fed state, GRK2*+/− mice did not develop glucose intolerance (Fig. 6E), since we detect no statistically significant changes in glucose area between chow diet (CD)-fed and HFD-fed GRK2*+/− mice, which showed lower blood glucose levels (Table 1) and an enhanced reduction in blood glucose induced by insulin (Fig. 6F). HFD caused a marked increase in circulating levels of glucose, insulin and TG after 12 weeks of feeding (Table 1) in Wt mice whereas these changes were much more modest in GRK2*+/− animals. These parameters were not altered with CD in either type of animals (data not shown). In sum, HFD promoted a marked insulin resistance state in Wt mice, in accordance with the observed increase in HOMA values (Table 1), whereas insulin sensitivity was preserved in GRK2*+/− mice.

Insulin-induced AKT phosphorylation was dramatically decreased in adipose tissue, liver and muscle of Wt but not HFD-fed GRK2*+/− mice (Fig. 6G and Suppl. Fig. S2 and Suppl. Table 1). On the other hand, in agreement with data in Fig. 3A, GRK2 protein levels were significantly increased in eWAT (84%), liver (26%) and muscle (63%) of Wt but not GRK2*+/− mice fed on a HFD (Fig. 6G and Suppl. Fig. S2 and Suppl. Table 1). These results indicate that even in different cellular settings, whenever glucose intolerance develops, GRK2*+/− mice always maintain the levels of GRK2 protein below those detected
in Wt and thus below a given threshold that helps to prevent the development of insulin insensitivity

GRK2 mice exhibit reduced adiposity. In addition to the data shown in Fig. 6A-C, a detailed weekly analysis of the weight of Wt and GRK2**+/−** animals from weaning to 15 months of age (Fig. 7A) revealed less weight gain for both male and female GRK2**+/−** mice (Fig. 7B), without differences in daily food intake (Fig. 7C). Body weight differences were detected as early as at 5 months of age (Fig. 7A), and at 9 months of age, when some Wt mice are visibly obese (Fig. 7D), the average body weight gain was 65% and 56% in male and female Wt mice, respectively, but only 56% and 43% in GRK2**+/−** mice (Fig. 7B). Body fat distribution was studied by Magnetic Nuclear Resonance Imaging (MNRI) (Fig. 7E), showing that 9-month-old GRK2**+/−** mice had 33% less overall fat and smaller fat depots than age-matched Wt littermates (Fig. 7F). Epididymal fat mass was reduced by 30% in GRK2**+/−** compared to Wt mice at 9 months of age (Fig. 7G), and GRK2**+/−** mice exhibited reduced adipocytic size in epididymal (3-fold), retroperitoneal (4.6-fold) and inguinal (3-fold) fat (Fig. 7H).

Interestingly, a decrease in circulating leptin levels was also detected in GRK2**+/−** animals at 9 months of age (Table 1). These results indicate that downregulation of GRK2 is sufficient to induce a lean phenotype, what uncovers a previously unidentified role for GRK2 in the regulation of adiposity.

DISCUSSION

In this report we uncover GRK2 as a key modulator of insulin sensitivity *in vivo*. In cultured adipocytes and myoblasts, increased GRK2 or GRK2-K220R levels inhibit insulin-stimulated glucose uptake and signaling in a kinase-activity independent manner, by mechanisms involving the formation of dynamic GRK2/IRS1 complexes. GRK2 expression is enhanced by approximately 2-fold in insulin-resistant human adipocytes, in blood mononuclear cells from insulin-resistant patients and in adipose and muscle tissues in either TNFα, aging or HFD-induced insulin resistance models. Importantly, GRK2**+/−** mice maintain glucose tolerance and insulin signaling in the major insulin-responsive tissues under such experimental conditions, suggesting that enhanced GRK2 expression above a certain threshold markedly impairs insulin sensitivity *in vivo*. Finally, we find that GRK2 levels also regulate adiposity during aging. Since GRK2 haploinsufficient animals show a phenotype quite similar to mice deficient in other well established negative regulators of insulin signaling such as PTP1B (24;33;34), GRK2 can be regarded as a *bona fide* novel physiological regulator of insulin action and leanness.

Previous reports have indicated that GRK2 could act as an inhibitor of insulin action in cellular models. Binding of GRK2 to Gαq/11 impairs insulin-stimulated glucose uptake in 3T3L1 pre-adipocytes (19), and enhanced GRK2 levels favour insulin resistance induced by endothelin-1 in 3T3L1 cells (29) or by chronic β-adrenergic receptor stimulation in HEK-293 cells (28). GPCR agonists promote GRK2 interaction with Gαq and also with IRS1, resulting in decreased insulin-stimulated glucose transport, IRS-serine phosphorylation and IRS1 degradation (29). Our data in cultured cells as well as in adipose tissue *in vivo* show that IRS1 levels as well as the amount of basal GRK2-IRS1 complexes depend on GRK2 expression and that insulin stimulation rapidly disrupts basal IRS1/GRK2 complexes, what is hampered in the presence of elevated levels of GRK2. Overall, these data suggest that altered GRK2 levels could lead to modulation of insulin signals through GRK2-Gαq/11 binding, GRK2-IRS1 association, and altered endothelin-1 or β-adrenergic-mediated transmodulation of the insulin pathway. The precise contribution of such mechanisms in
Control of insulin resistance and obesity by GRK2

different physiological conditions remains to be investigated. Interestingly, β-arrestin2, another member of the GPCR signal transduction pathway, positively regulates insulin sensitivity by serving as a scaffold of AKT and Src to the IR (35). β-arrestin2 levels are downregulated in liver and muscle in animal models and patients with insulin resistance. Therefore, simultaneous up-regulation of GRK2 and down-regulation of β-arrestin2 in insulin-resistant conditions could lead to major alterations in the insulin signaling pathways and in GPCR-IR cross-talk. It is worth noting that elevated levels of insulin and IGF-1 have been shown to exert differential effects on GRK2 and β-arrestin2 expression (36,37). Enhanced GRK2 levels could alter the proposed novel IR-arrestin signaling pathway by re-directing arrestin to other interactors, such as GPCR or, given the reported direct interactions of the kinase with AKT or Src, by inhibiting the formation of the arrestin/AKT/Src complexes.

GRK2 is degraded by the proteasome pathway by associating with the Mdm2 E3-ubiquitin ligase, and activation of the PI3K/AKT pathway by IGF-1 blocks Mdm2-mediated GRK2 degradation, leading to enhanced GRK2 levels (38). Consistently, chronic insulin has been recently shown to increase GRK2 levels in HEK-293 and liver FL83B cells (20,28) what is in agreement with the upregulation of GRK2 we observe after insulin treatment in human adipocytic cells. Thus, it is tempting to suggest that the hyperinsulinemia associated to aging, HFD- or TNFα-induced insulin resistant conditions, and clinically to obesity and type-2-diabetes, would trigger the observed up-regulation of GRK2 in such conditions. Consistent with our findings, enhanced GRK2 expression has been reported in tissues from obese Zucker rats, a model of insulin resistance and hyperinsulinemia (39).

An altered cytokine expression pattern typical of insulin-resistant states could also contribute to enhance GRK2 expression levels. TNFα or IL-6 increase the expression of other negative modulators of the insulin signalling cascade like PTP1B (24,40), and we find that TNFα also enhances GRK2 protein content in adipose tissue and muscle of Wt mice in the presence of mild hyperinsulinemia. As in GRK2−/− mice, PTP1B-deficient animals also exhibit protection against insulin resistance induced by TNFα (24), or IL-6 (40). Pro-inflammatory mediators can modulate endogenous GRK2 expression in a cell-type specific fashion (41), and an increase in GRK2 protein is found upon chronic IL-1β treatment (26,42). Interestingly, GRK2 appears to have a relevant role in the aetiology and/or in the development of several inflammatory diseases such as multiple sclerosis, and autoimmune arthritis (43). A role for GRK2 in states of insulin resistance associated to inflammatory diseases deserves further investigation.

The fact that the 50% down-regulation of GRK2 levels is sufficient per se to protect against TNFα, aging or HFD-induced alterations in glucose homeostasis and insulin signaling strongly supports that this kinase is a key modulator of insulin sensitivity in vivo and suggests new therapeutic strategies against type-2-diabetes and obesity. In fact, in animal models of type-2-diabetes, GRK2 inhibition through systemic delivery of small peptides derived from its catalytic domain results in improved glucose homeostasis (28,44). It remains to be established whether inhibition of catalytic activity, downregulation of protein expression or targeted disruption of the specific interaction of GRK2 with insulin signaling pathway components are the more appropriate strategies for specifically improving insulin sensitivity.

The GRK2+/− mice constitute a good model that recapitulates a sustained systemic
inhibition of kinase functionality. We report here that GRK2 levels are important modulators of age- and diet-induced adiposity. GRK2+/− mice gained less weight, showed diminished adipocyte size with a HFD, and adult hemizygous animals displayed reduced adiposity and lower circulating levels of insulin and leptin. Aging is associated with fat mass accretion and with decreased peripheral insulin sensitivity in humans and rodents (45), and impaired insulin actions in adipose tissue could represent a key step leading to the overall insulin resistance characteristic of adult and/or obese animals (46). Adipocyte-conditioned medium impairs insulin signaling in muscle cells (22) and hepatocytes (47), and mice that exhibit reduced adiposity typically display improved glucose tolerance and increased insulin sensitivity (46). Therefore, it is possible that part of the insulin hypersensitivity detected in GRK2+/− mice and the protection afforded to the development of insulin resistant conditions in these animals could be related to the observed changes in adiposity. Future experiments involving tissue-specific downregulation will provide new insight into the understanding of the role of GRK2 in obesity and insulin resistance.

Author contributions: L.G-G & R. V-V., researched data, contributed to discussion; I.N-V., wrote manuscript, researched data, contributed to discussion; M.J-P., researched data; G.Z. & J.D., collected samples, reviewed/edited manuscript. C.M., F.M. Jr., M.L. & S. F-V., contributed to discussion, wrote/edited manuscript.

ACKNOWLEDGMENTS
This work is dedicated to the memory of Prof. Margarita Lorenzo, who passed away April 7, 2010, at the age of 51.
This work was supported by Grants BFU2008-04043 (to M.L), SAF2008-0552 (to F.M) and SAF2007-62553 (to G.Z.) from Ministerio de Ciencia e Innovación, Spain, S-SAL-0159-2006 from Comunidad de Madrid, Spain (to M.L. and F.M), Fundación Ramón Areces (to F.M), the European Union (InGenious HyperCare, grant LSHM-CT-2006-037093 (to J.D., through the agreement between the Foundation for Applied Medical Research (FIMA) and “UTE project CIMA”), The Cardiovascular Network (RECAVA, RD06-0014/0037 and 0014/008 to F.M and J.D., respectively), CIBER de Diabetes y Enfermedades Metabólicas Asociadas, and PS09/01208 (to C.M.) from Ministerio Sanidad y Consumo-Instituto Carlos III, Spain. We also acknowledge the support of COST Action BM0602 from the European Commission (to M.L.). The authors thank to Dr. Oscar Beloqui from the University Clinic of Navarra, for recollection of clinical data of studied patients.

REFERENCES
18. Usui I, Imamura T, Huang J, Satoh H, Olefsky JM. Cdc42 is a Rho GTPase family member that can mediate insulin signaling to glucose transport in 3T3-L1 adipocytes. J Biol Chem 2003;278:13765-13774
Control of insulin resistance and obesity by GRK2

Table 1. Metabolic parameters of Wt and GRK2^{+/—} male mice.
Serum from Wt and GRK2^{+/—} 3 and 9-month-old male mice, fed on a HFD for 12 weeks or adult male mice treated with TNFα as in Fig. 4 was collected, and the indicated metabolic parameters were measured as detailed in Methods. The HOMA index was calculated as the product of the fasting plasma insulin level (mU/mL) and the fasting plasma glucose level (mmol/L), divided by 22.5. Values are expressed as the mean±SEM of measurements obtained for 8-18 animals for each group. Differences between Wt vs GRK2^{+/—} mice are expressed by *, and differences between 3-month-old mice vs 9-month-old mice, fed a HFD or treated with TNFα are expressed by §. *, § p<0.05.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>3 months Wt</th>
<th>3 months GRK2^{+/—}</th>
<th>9 months Wt</th>
<th>9 months GRK2^{+/—}</th>
<th>HFD Wt</th>
<th>HFD GRK2^{+/—}</th>
<th>TNFα Wt</th>
<th>TNFα GRK2^{+/—}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed</td>
<td>155,4 ± 5,9</td>
<td>152 ± 6,3</td>
<td>170,2 ± 6,7 §</td>
<td>152,7 ± 6,4 *</td>
<td>184,4 ± 9,7 §</td>
<td>168 ± 5,7 *§</td>
<td>148 ± 6,5</td>
<td>135 ± 7,1</td>
</tr>
<tr>
<td>Fasted</td>
<td>81,6 ± 3,6</td>
<td>81,6 ± 2,6</td>
<td>128,3 ± 6,0 §</td>
<td>105,6 ± 8,3 *§</td>
<td>110 ± 3,7 §</td>
<td>89,6 ± 4,0 *§</td>
<td>105,8±6,2</td>
<td>83 ± 2,3 *</td>
</tr>
<tr>
<td>Serum Insulin (ng/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed</td>
<td>0,65 ± 0,08</td>
<td>0,49 ± 0,09</td>
<td>0,98 ± 0,05 §</td>
<td>0,60 ± 0,02 *</td>
<td>2,50 ± 0,30 §</td>
<td>1,03 ± 0,01 *§</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fasted</td>
<td>0,13 ± 0,02</td>
<td>0,13 ± 0,01</td>
<td>0,61 ± 0,05 §</td>
<td>0,44 ± 0,04 *§</td>
<td>0,54 ± 0,02 §</td>
<td>0,16 ± 0,01 *§</td>
<td>0,26 ± 0,02</td>
<td>0,15 ± 0,02 *</td>
</tr>
<tr>
<td>Triglycerides (µg/µl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed</td>
<td>0,046 ± 0,002</td>
<td>0,054 ± 0,001*</td>
<td>0,038 ± 0,005 §</td>
<td>0,047 ± 0,006 §</td>
<td>0,140 ± 0,020 §</td>
<td>0,064 ± 0,001 *§</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fasted</td>
<td>0,018 ± 0,002</td>
<td>0,011 ± 0,001*</td>
<td>0,035 ± 0,001 §</td>
<td>0,033 ± 0,002 §</td>
<td>0,060 ± 0,002 §</td>
<td>0,045 ± 0,007 *§</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leptin (ng/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed</td>
<td>6,7 ± 1,5</td>
<td>6,6 ± 1,3</td>
<td>8,4 ± 1,7</td>
<td>6,1 ± 1,7</td>
<td>14 ± 3,6 §</td>
<td>13,1 ± 3,0 §</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOMA</td>
<td>0,63 ± 0,07</td>
<td>0,62 ± 0,08</td>
<td>5,02 ± 0,63 §</td>
<td>2,53 ± 0,16 *§</td>
<td>3,52 ± 0,42 §</td>
<td>0,85 ± 0,07 *</td>
<td>1,63 ± 0,09</td>
<td>0,74 ± 0,06 *</td>
</tr>
</tbody>
</table>

* Wt vs GRK2^{+/—}; P<0.05
§ 3 months vs 9 months, HFD, TNFα; P<0.05
FIGURE LEGENDS

Fig. 1. Modulation on insulin sensitivity by GRK2
Immortalized murine white adipocytes and C2C12 myocytes were transiently transfected with empty vector (control, C), pcDNA3-GRK2-neo (+), the catalytically inactive pcDNA3-GRK2-K220R (K) or shGRK2-RNAi (-), to upregulate or knock-down GRK2 expression, respectively. (A) Lysates were analyzed by Western-blot with the corresponding antibodies against GRK2 and β-actin. For examples of full-length blots see Suppl. Fig. S3. (B) Adipocytes and myocytes were cultured for 24h in serum-free and low glucose medium and stimulated in absence or presence of 10 nM insulin (Ins) for 30 min. Glucose uptake was measured during the last 10 min by incorporation of 2-deoxy-glucose into the cells. Results were expressed as percentage of stimulation over basal of control cells (adipocytes: 5.3±0.3 pmol glucose/mg protein/10 min; myocytes: 45.8±3.2 pmol glucose/mg protein/10 min) and are means ± SEM of 5 independent experiments. (C) Adipocytic and (D) myocytic cell lines were serum-starved overnight and then incubated in absence or presence of 10 nM insulin for 10 min. Lysates were analyzed by Western-blot with the corresponding antibodies against total and/or phosphorylated forms of IRS1(Tyr 608), AKT(Ser473), ERK1/2(Thr202/Tyr204), GRK2 and β-actin. Representative immunoblots of 4-6 independent experiments and densitometric analysis are shown in A, C and D. *, p < 0.01. For examples of full-length blots see Suppl. Fig. S3. Data in A, C and D were normalized with the indicated controls and results are expressed as % over basal (control cells transfected with empty vector).

Fig. 2. Modulation of insulin signalling by GRK2 levels involves the formation of dynamic GRK2/IRS1 complexes.
Immortalized murine white adipocytes were transiently transfected with empty vector (control, C), pcDNA3-GRK2-neo (+), or shGRK2-RNAi (-), to upregulate or knock-down GRK2 expression, respectively. (A) Adipocytic cell lines were serum-starved overnight and then incubated in absence or presence of 10 nM insulin for 10 min. Total protein from adipocytic cells (1mg) was immunoprecipitated with the anti-IRS1 or anti-IgG antibodies, and the resulting immune complexes analyzed by Western-blot with the corresponding antibodies against GRK2 and IRS1. (B) Samples of eWAT were obtained at the indicated times from Wt and GRK2+/− adult male mice undergoing Ins infusion (1 IU/kg body weight) as detailed in Methods. Lysates were immunoprecipitated with an anti-IRS1 antibody, and the resulting immune complexes analyzed by Western-blot with the corresponding antibodies against GRK2 and IRS1. (C) The same lysates were analyzed by Western-blot with the corresponding antibodies against total and/or phosphorylated forms of IRS1(Tyr 608), AKT(Ser473) and β-actin. Representative immunoblots of 4-6 independent experiments and densitometric analysis are shown. Data were normalized with the indicated controls, and results obtained in non-stimulated control cells (A) or Wt animals (B, C) taken as 100%. *, p < 0.01.

Fig. 3. GRK2 protein expression is enhanced under insulin resistance conditions
(A) eWAT, liver and muscle from 3 or 9-month-old male mice, fed on a HFD for 12 weeks or treated with TNF-α (0.1 µg/kg body weight) for 48h; (B) eWAT from wild-type (Wt) and ob/ob mice; (C) insulin sensitive and insulin resistant human adipocytes, and (D) PBMCs collected from blood samples of insulin-sensitive individuals and insulin-resistant patients (see Suppl. Table 2) were lysed and subjected to immunoblot analysis with antibodies against GRK2 and β-actin as a loading control. Data in A, B and C are mean±SEM of 4 independent experiments.
Data in A were normalized with the indicated control and results expressed as % over basal (3 month-Wt mice). Results in D represent the mean±SEM of 10 controls and 25 metabolic syndrome patients. Representative blots are shown. * p < 0.01.

Fig. 4. GRK2^{+/−} mice do not develop TNFα-induced insulin resistance
Wt (white symbols, solid lines) and GRK2^{+/−} (black symbols, dotted lines) adult male mice were treated with TNFα (0.1 µg/kg body weight, circles) or vehicle (100 µl PBS plus 0.1% BSA, squares) for 48 h. (A) GTTs were performed on animals that had been fasted for 24h and were given an injection of glucose (2 g/kg body weight). (B) Circulating insulin levels during the GTTs. (C) ITTs were performed on fed male mice that had received insulin (0.8 IU/kg body weight). Glucose concentration was determined in blood samples obtained from the tail vein. Results are means±SEM of 8 animals for each group. Histograms on the right show the incremental area under the curve. *, p < 0.01. (D) Wild-type (Wt) and GRK2^{+/−} male mice were treated or not with insulin (1 IU/kg body weight) for 15 min. and eWAT, liver and muscle were removed. Lysates were subjected to Western-blot with the indicated antibodies against total and phosphorylated AKT(Ser473), GRK2 and β-actin. Representative immunoblots out of 4 independent experiments are shown. See Suppl. Fig. S2 and Suppl. Table 1 for detailed quantification of these data. For examples of full-length blots see Suppl. Fig. S4.

Fig. 5. GRK2 downregulation prevents the development of aging-associated insulin resistance.
(A) GTTs were performed on Wt (white circles, solid lines) and GRK2^{+/−} (black circles, dotted lines) 3-month-old male mice as in Fig. 4A. (B) Circulating insulin levels during the GTTs. (C) ITTs were performed on Wt (white circles) and GRK2^{+/−} (black circles) 3-month-old male mice as in Fig. 4C. (D, E, F) GTTs and ITTs were performed as in previous panels in Wt (white circles) and GRK2^{+/−} (black circles) 9-month-old male mice. *, p < 0.01. (G) Lysates from Wild-type (Wt) and GRK2^{+/−} 3 and 9-month-old male mice treated or not with insulin, were processed as in Fig. 4D. Representative immunoblots out of 4 independent experiments are shown. See Suppl. Fig. S2 and Suppl. Table 1 for detailed quantification of these data.

Fig. 6. GRK2^{+/−} mice display protection against diet-induced obesity.
Wt (white symbols, solid lines) and GRK2^{+/−} (black symbols, dotted lines) male mice were fed a CD or HFD for 12 weeks. (A) Body weight evolution and (A) Body weight evolution and (B) percentage of change in body weight during the 12 weeks of treatment. (C) Daily food intake on CD or HFD. (D) Paraffin-embedded sections of epididymal fat pads from Wt and GRK2^{+/−} male mice fed on CD or HFD stained with haematoxylin and eosin (Magnification 10x; scale bar 50µm for all pictures). Relative adipocyte size was calculated as detailed in Methods. Data are mean±SEM of 10-20 animals per group. (E) GTTs (circles, HFD; squares, CD) and (F) ITTs were performed as in Fig. 4A and 4C, respectively. *, p < 0.01. (G) Lysates from Wt and GRK2^{+/−} male mice fed CD or HFD for 12 weeks treated or not with insulin were processed as in Fig. 4D. Representative immunoblots out of 4 independent experiments are shown. See Suppl. Fig. S2 and Suppl. Table 1 for detailed quantification of these data.

Fig. 7. GRK2^{+/−} mice exhibit reduced adiposity.
(A) Body weight evolution in male or female Wt (white circles, solid lines) and GRK2^{+/−} (black circles, dotted lines) mice between 2 and 15 months of age. (B) Percentage of change in body weight.
Control of insulin resistance and obesity by GRK2

weight during 13 months. (C) Daily food intake in 3 and 9-month-old male Wt and GRK2+/− mice. (D) Representative photograph showing 9-month-old Wt or GRK2+/− male mice (E) Adiposity in 9 month-old male mice measured by MNRI; white represents areas with more than 50% fat. (F) Quantification of several MNRI measurements. Results were expressed as proportion between fat volumes vs total mouse volume (fat vol/total vol). (G) eWAT weight in 3 and 9-month-old male Wt and GRK2+/− mice. (H) Paraffin-embedded sections of WAT: retroperitoneal (Ret), epididymal (Epi) and inguinal (Ing) fat pads from 9-month-old male Wt and GRK2+/− mice stained with haematoxylin and eosin. (Magnification 10x; scale bar 50µm for all pictures). Relative adipocyte size was calculated as in Fig. 6D. Data are mean ± SEM of 5-30 animals per group. *, p < 0.01.
Figure 2.

A

B

C

Control of insulin resistance and obesity by GRK2
Control of insulin resistance and obesity by GRK2
Figure 4.
Control of insulin resistance and obesity by GRK2

Figure 5.

(A) Blood glucose (mg/dL) over time (min) for WT and GRK2+/- mice. (B) Glucose area (mg/min x 100) for WT and GRK2+/- mice. (C) Blood insulin (ng/mL) over time (min) for WT and GRK2+/- mice. (D) Blood glucose (mg/dL) over time (min) for WT and GRK2+/- mice. (E) Glucose area (mg/min x 100) for WT and GRK2+/- mice. (F) Blood glucose (mg/dL) over time (min) for WT and GRK2+/- mice. (G) Western blot analysis of P-AKT, AKT, GRK2, and β-actin in adipose, liver, and muscle tissue from WT and GRK2+/- mice at 3 and 9 months of age.
Control of insulin resistance and obesity by GRK2

Figure 6.

A. Body weight (g) over weeks on diet.

B. Change in body weight (%).

C. Food intake (Kcal/day).

D. Adipocyte size (a.u.).

E. Blood glucose (mg/dL).

F. Glucose area under the curve (mg dm min^-1 g^-1).

G. Western blot analysis of P-AKT, AKT, GRK2, and β-actin in adipose, liver, and muscle tissues under conditions of normal diet (CD) and high-fat diet (HFD) for WT and GRK2 +/- mice.
Control of insulin resistance and obesity by GRK2

Figure 7.

A

Body weight (g) vs. Age (months) for Male and Female mice.

B

Change in body weight (%) for Wt, GRK2+/-, GRK2-/- male and female mice.

C

Food intake (Kcal/day) for Wt, GRK2+/-, GRK2-/- male and female mice.

D

Images of Wt and GRK2+/- mice.

E

MRI images showing differences in fat distribution.

F

Inguinal fat (g) for Wt, GRK2+/-, GRK2-/- mice.

G

Epididymal fat (g) for Wt, GRK2+/-, GRK2-/- mice.

H

Images of adipocyte size for Wt and GRK2+/- mice in retroperitoneal, epididymal, and inguinal fat pads.