Angiotensin-I Converting Enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice.

Sharell M. Bindom, Chetan P. Hans, Huijing Xia, A. Hamid Boulaires and Eric Lazartigues

Department of Pharmacology & Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA.

Running title: ACE2 and diabetes

Correspondence:
Eric Lazartigues, PhD
E-mail address: elazar@lsuhsc.edu

Submitted 25 May 2009 and accepted 8 July 2010

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Country of publication: United States

Objective—Several clinical studies have shown the benefits of renin-angiotensin system (RAS) blockade in the development of diabetes and a local RAS has been identified in pancreatic islets. Angiotensin-I Converting Enzyme (ACE) 2, a new component of the RAS has been identified in the pancreas but its role in β-cells function remains unknown. Using 8 and 16-week old obese diabetic (db/db) mice, we examined the ability of ACE2 to alter pancreatic β-cell function and thereby modulate hyperglycemia.

Research design and methods—Both db/db and non-diabetic lean control (db/m) mice were infected with an adenovirus expressing human ACE2 (Ad-hACE2-eGFP) or the control virus (Ad-eGFP), via injection into the pancreas. Glycemia and β-cell function were assessed 1 week later, at the peak of viral expression.

Results—In 8-week old db/db mice, Ad-hACE2-eGFP significantly improved fasting glycemia, enhanced intra-peritoneal (IP) glucose tolerance, increased islet insulin content and β-cell proliferation and reduced β-cell apoptosis when compared to Ad-eGFP. ACE2 over-expression had no effect on insulin sensitivity in comparison to Ad-eGFP treatment in diabetic mice. Angiotensin-(1-7) receptor blockade by D-Ala7-Ang-(1-7) prevented the ACE2-mediated improvements in IP glucose tolerance, glycemia and islet function and also impaired insulin sensitivity in both Ad-hACE2-eGFP and Ad-eGFP treated db/db mice. D-Ala7-Ang-(1-7) had no effect on db/m mice. In 16-week old diabetic mice, Ad-hACE2-eGFP treatment improved fasting blood glucose but had no effect on any of the other parameters.

Conclusions—These findings identify ACE2 as a novel target for the prevention of β-cell dysfunction and apoptosis occurring in type 2 diabetes.

In addition to the systemic renin-angiotensin system (RAS) that regulates blood pressure, the concept of a tissue RAS, modulating local organ function, is now well recognized. Accordingly, most organs express a tissue RAS, capable of locally producing Angiotensin (Ang)-II (1). A complete tissue RAS has been identified in the endocrine and exocrine pancreas and the expression of its various components has been demonstrated in the islets of Langerhans (2-4). While the role of the islet RAS is not completely understood, recent data suggest that it may be important in β-cell homeostasis and function. Indeed, it has been shown to be involved in the regulation of glucose stimulated-insulin secretion, insulin synthesis (3), as well as islet blood flow (5). Hyperactivity of the ACE/Ang-II/AT1 receptor (AT1R) axis of the RAS leads to a cascade of events implicated in the development of β-cell dysfunction, including: increased islet fibrosis (6), oxidative stress (7,8) and inhibition of pro-insulin biosynthesis, first phase and glucose-responsive insulin secretion (3,5,9). Moreover, several studies have demonstrated the effectiveness of RAS blockade at improving islet morphology and function and reducing islet oxidative stress (3,5,8,10) (for review see (11)). Recently, Angiotensin Converting Enzyme (ACE) 2, a captopril-insensitive ACE homologue, was identified (12,13) and shown to cleave Ang-II into the biologically active peptide Ang-(1-7) (13). Ang-(1-7) properties are mediated by the G-protein-coupled receptor Mas (14), causing vasodilation, inhibition of fibrosis (15),
stimulation of PGE2 (16) and NO releases (17). The ACE2/Ang-(1-7)/Mas axis is hypothesized to act as a negative regulator for the RAS. Recent data indicate that this alternate pathway may play a compensatory role in the development of type 2 diabetes mellitus (T2DM). ACE2 protein is elevated in the islets of Zucker fatty diabetic rats (10) and ACE2 knockout (ACE2−/−) mice exhibit progressive impairments in glucose tolerance and reduced first-phase insulin secretion (18). Loss of first phase insulin secretion, an indicator of pancreatic β-cell dysfunction, is considered to be one of the earliest insults in T2DM and is evident before the onset of impaired glucose tolerance (19). Defects in insulin sensitivity, glucose tolerance and glucose uptake exhibited by Mas receptor knockout mice (20) further implicate the loss of Ang-(1-7) signaling in the development of T2DM and metabolic syndrome. We hypothesized that ACE2 overexpression may ameliorate glucose homeostasis in diabetic mice and prevent the development of pancreatic β-cell dysfunction. Using leptin receptor-deficient obese diabetic (db/db) mice, we report that ACE2 overexpression reduced glycemia and increased islet insulin content through Ang-(1-7)-mediated pathways. Our data confirm the pivotal role of this peptide in the pancreas and establish ACE2 as a new target for the treatment of T2DM.

RESEARCH DESIGN AND METHODS

Animals and treatments. Three, 7 and 15-week old male db/db and non-diabetic (db/m) mice (BKS.Cg-m+/-Leprdb/J, Jackson Laboratories, Bar Harbor, ME) were infected with an adenovirus coding for human ACE2 (hACE2), upstream of an enhanced green fluorescent protein (eGFP) reporter gene (Ad-hACE2-eGFP) or with the eGFP virus alone (Ad-eGFP) (21) by direct injection (5x10⁷ particle forming units (pfu) in a total volume of 100 µl of 0.9% w/v saline) into the pancreas (n=8/group). The adenovirus was delivered in five 20 µl injections along the body of the pancreas (Fig. 2A). For a subset of animals, D-Ala⁷-Ang-(1-7), an Ang-(1-7) receptor antagonist, was infused (600 ng/kg/min/7 days) using mini-osmotic pumps (Durect, Cuppertino, CA) implanted subcutaneously (SC) at the time of virus injection. All procedures were approved by the Animal Use and Care Committee at Louisiana State University Health Sciences Center, New Orleans.

Determination of ACE2 expression and activity. To prevent protein degradation, pancreata were first incubated in RNAlater® stabilization solution and stored at -80 °C. Western blotting for ACE2 expression and ACE2 activity assays were performed as described previously (21).

Measurements of physiological parameters. To assess glucose metabolism in db/db mice, we performed an intra-peritoneal (IP) glucose tolerance test, where fasted (12 hr) animals were weighed and a bolus IP injection of glucose (2 g/kg) was administered to conscious mice. Blood was drawn from the catheterized tail vein and analyzed at 0, 15, 30, 60 and 120 min after glucose administration, using a glucometer (Accu-check® Aviva, Roche, Mannheim, Germany). To determine first phase insulin secretion, fasted mice were anesthetized with isoflurane and given a bolus of glucose (1g/kg IP). Blood samples (50 µl) were collected from a catheterized carotid artery at 0, 2, 5 and 10 min following glucose administration. Plasma insulin was then measured using ELISA (Crystal Chem, Downers Grove, IL). Blood samples (50 µl) were collected from a catheterized carotid artery at 0, 2, 5 and 10 min following glucose administration. Plasma insulin was then measured using ELISA (Crystal Chem, Downers Grove, IL). Insulin sensitivity was analyzed following 1 hr fast and mice injected SC with human recombinant insulin (0.3 U/kg; Sigma, St Louis, MO). Blood glucose was measured at 0, 15, 30, 60 and 120 min following injection. Fasting blood glucose, glucose tolerance and insulin tolerance were measured prior and 7 days after adenovirus administration. The
animals were then sacrificed, the pancreas was removed and rapidly divided, with one half being fixed in 10% formalin in phosphate buffered saline (PBS) and the other half frozen in liquid nitrogen.

Immunohistochemistry. Pancreas sections (5 µm) were prepared from 10% formalin-fixed, paraffin-embedded tissue. For antigen unmasking, sections were incubated in a citrate buffer solution (100 mM citric acid, 100 mM sodium citrate, Sigma) for 13 min at 100 °C. Following washes, sections were incubated for 1 hr at room temperature in a blocking solution containing 5% bovine serum albumin in PBST. Sections were incubated with an anti-insulin primary antibody (1:100; Abcam, Cambridge, MA) for 4 hr at 4 °C, followed by incubation with biotinylated anti-guinea pig secondary antibody (1:200; Vector Laboratories, Burlingame, CA) for 1 hr at room temperature. Sections were then treated with Avidin-Biotin Complex (ABC) reagent and developed using alkaline phosphatase red according to the manufacturer’s protocol (Vector Laboratories). Pancreatic islet insulin content was calculated as the total insulin staining per islet area. A total of 20 islets per group (n=6 mice/group) were analyzed. Additionally, to determine changes in islet proliferation and apoptosis, we assessed proliferating cellular nuclear antigen (PCNA) expression and performed terminal deoxynucleotidyl transferase dUTP nick ended labeling (TUNEL) staining. These antibodies were incubated simultaneously with anti-insulin primary antibodies for 36 hr at 4 °C. Biotinylated anti-goat and anti-rabbit secondary antibodies (1:200, Vector Laboratories) were incubated at room temperature for 1 hr. The sections were then treated with ABC reagent and developed using 3,3'-diaminobenzidine (DAB, Vector labs). TUNEL staining was performed according to the manufacturer’s instructions (Roche, Indianapolis, IN) and the staining was developed using DAB. Images capture was performed using a Nikon eclipse E600 light microscope. All images were quantified using image pro plus software (Media Cybernetics, Bethesda, MD). For a semi-quantitative assessment of islet insulin, mouse ACE2 (mACE2) and hACE2, staining per islet (n=16-20/group) area was used to quantify protein content from immunohistochemistry (10). For PCNA and TUNEL staining, positive cells per islet were counted. To assess pancreatic β-cell mass, the mean density of islet insulin staining was multiplied by the mean islet area per pancreatic section, adjusted for wet organ weight per animal (six sections per organ) (10).

Statistical analysis. Data are expressed as mean ±SEM. Data were analyzed by Student’s *t* test or two-way ANOVA (Bonferroni post hoc tests to compare replicate means) when appropriate. Statistical comparisons were performed using Prism5 (GraphPad Software, San Diego, CA). Differences were considered statistically significant at *P*<0.05.

RESULTS

Animal model. To address the involvement of ACE2 in β-cell function and the development of T2DM, we used leptin receptor-deficient (db/db) and control (db/m) mice. As shown in Table 1, db/db mice weight and fasted glycemia were significantly increased, at both 8 and 16 weeks of age, compared to lean db/m mice, while their ability to metabolize glucose was dramatically reduced, confirming both obese and diabetic phenotypes in these animals. In addition, there was no significant difference in pancreatic mACE2 expression among 8 or 16-week old db/db and db/m mice. Sixteen week old db/m and db/db mice however had lower pancreatic mACE2 expression in comparison to respective 8-week old mice. (Fig. 1C) Immunohistochemistry (Fig. 1A and B)
revealed increased mACE2 expression in the islets of Langerhans in 8-week old db/db compared to db/m mice. In 16-week old mice, however, mACE2 expression was decreased in the islets of db/db compared to 8-week old db/db mice (Fig. 1A and B). Although not significant, there was a trend towards decreased islet mACE2 expression in 16-week old db/db mice in comparison to db/m.

ACE2 viral expression. Following injection of the adenovirus (Fig. 2A), hACE2 expression and activity were assessed at various time points. Immunofluorescence reveals that hACE2 expression in the pancreas peaks between 7 and 14 days after infection (Fig. 2B), as previously observed in the brain (21). A stronger signal was also observed in the liver, suggesting that a significant amount of virus is carried out of the pancreas. However, hACE2 expression in the liver disappeared more rapidly, probably resulting from increased protein turn-over in this tissue. ACE2 activity was significantly elevated (Fig. 2C) in the pancreas of both db/db (slope: 69.7 ± 5.9 vs. 8.6 ± 1.8 P<0.05) and db/m (slope: 45.9 ± 4.3 vs. 5.7 ± 1.4 P<0.05) mice infected with Ad-hACE2-eGFP compared to Ad-eGFP-infected mice. Morphological analysis of hACE2 immunoreactivity showed that the enzyme was expressed in both exocrine and endocrine pancreas of the db/db and control mice (Fig. 2D and E) without significant difference between genotypes. Ad-hACE2-eGFP and Ad-eGFP treatments, as well as D-Ala7-Ang(1-7) infusion, did not significantly change body weight in either db/db or db/m mice at either 8 or 16 weeks of age. Adenoviral delivery did not cause significant pancreatic inflammation or CD3+ lymphocyte infiltration (Supplemental Fig. 1 available at http://diabetes.diabetesjournals.org).

Glycemic control. Ad-eGFP treatment had no effect on db/db or db/m fasting blood glucose levels (Fig. 3 A and B) or glucose tolerance (Fig. 3 C and D) at 4 (Suppl. Table 1), 8 (Fig. 3 A and C) or 16 weeks (Fig. 3 B and D). On the other hand, ACE2 overexpression significantly decreased fasting blood glucose in diabetic mice at both 8 (Fig. 3A; P<0.05) and 16 weeks of age (Fig. 3B; P<0.05). Ad-hACE2-eGFP improved IP glucose tolerance in 8-week (Fig. 3C and E; P<0.05) but not 16-week (Fig. 3D and F) old mice. These beneficial effects of ACE2 were significantly prevented following blockade of the Ang-(1-7) receptor in 8-week old mice (Fig. 3A and C). At both 8 and 16 weeks, Ad-hACE2-eGFP had no effect on insulin sensitivity in comparison with Ad-eGFP-treated mice (Fig. 4A and B). Ad-hACE2-eGFP significantly increased first-phase insulin secretion in both 8 and 16-week old mice (Fig. 4C and D), and this effect was blocked by the Ang-(1-7) receptor antagonist in 8-week old mice. While glucose tolerance was impaired in both Ad-eGFP and Ad-hACE2 treated mice 4 week old mice, Ad-hACE2-eGFP expression had no effect on glucose tolerance in 4 week old db/m or db/db mice. There was no significant difference in insulin sensitivity of 4 week old db/m and db/db mice treated with Ad-eGFP or Ad-hACE2-eGFP. Fasting blood glucose was significantly elevated in Ad-hACE2-eGFP treated db/db mice in comparison to Ad-GFP treated control (Suppl Table 1).

Islet insulin content and β-cell mass. At 8 or 16 weeks of age, there was no difference in insulin immunoreactivity between db/m mice treated with the Ad-hACE2-eGFP or Ad-eGFP. However, Ad-eGFP-treated db/db mice exhibited reduced insulin staining (Fig. 5A and C). In both 8 (Fig. 5A and C) and 16-week old (Supplemental Fig. 2A and C), Ad-hACE2-eGFP treatment significantly increased the islet insulin content in db/db mice in comparison to Ad-eGFP-treated db/db mice. In 8-week old db/db mice D-Ala7-Ang-(1-7) infusion
(1-7) treatment prevented ACE2-mediated increases in islet insulin content (Fig. 5A and C). Ad-hACE2-eGFP expression resulted in increased pancreatic β cell mass in db/m mice. D-Ala-Ang-(1-7) treatment resulted in significantly less pancreatic β-cell mass in Ad-ACE2-eGFP treated mice. While there was a trend towards increased pancreatic β-cell mass, in 8 and 16 week old db/db mice, this finding was not statistically significant. Similarly, while there was a trend towards decreased pancreatic β-cell mass in D-Ala-Ang-(1-7) treated mice, this difference was not statistically significant in Ad-eGFP expressing mice (Fig 5E).

Islet cell proliferation and apoptosis. In both db/m and db/db mice, Ad-hACE2-eGFP expression increased proliferation of pancreatic β-cells (Fig. 5D), as evidenced by the increase in double-stained cells for insulin and PCNA (Fig. 5A). D-Ala7-Ang-(1-7) treatment prevented ACE2-mediated increase in β-cell proliferation (Fig 5A and D). At 8 weeks of age, there was no significant change in apoptosis in Ad-eGFP-treated db/db mice compared to db/m mice. ACE2 over-expression and D-Ala7-Ang-(1-7) treatment had no effect on apoptosis in db/m mice in comparison to their Ad-eGFP-treated counterparts (Fig. 5B and E). ACE2 over-expression did however significantly reduce apoptosis in db/db mice in comparison to the Ad-eGFP-treated group (1.18 ± 0.07 vs. 0.55 ± 0.06, normalized ratio positive nuclei to total nuclei per islet, P<0.05, n=12) and this improvement was prevented by Ang-(1-7) receptor blockade (1.16 ± 0.08 P<0.05, n=12) in Ad-hACE2-eGFP treated db/db mice. In 16 week-old mice, Ad-hACE2-eGFP expression in db/db mice did not significantly improve pancreatic β cells proliferation or apoptosis rates in comparison to Ad-GFP-treated db/db mice (Supplemental Fig. 2).

DISCUSSION

All the classic components of the RAS (renin, angiotensinogen, ACE and Ang-II type 1 and 2 receptors) have been identified in the pancreas, where they are thought to modulate β-cell function (3,4). Several studies implicate RAS overactivity in the development of islet dysfunction (8,10). Notably, in vitro (22.2 mM of glucose) and genetic (Zucker diabetic fatty rat) models of T2DM show increased expression of ACE and AT1R in islets, supporting the idea of a feed-forward mechanism ultimately resulting in β-cell dysfunction (7,10). While ACE2 has been shown to be elevated in renal tubules and cortex of db/db mice, prior to the onset of diabetic nephropathy (22), its relationship with β-cell function has not been studied. Our study shows that: 1) islet ACE2 expression is up-regulated at 8 weeks and dramatically reduced at 16 weeks of age in db/db mouse islets compared to db/m controls; 2) Ad-hACE2-eGFP significantly increased ACE2 expression and activity in the mouse pancreas; 3) ACE2 over-expression was associated with reduced hyperglycemia, improved glucose tolerance, increased insulin secretion and β-cell proliferation, as well as reduced apoptosis in 8 week-old db/db mice; and 4) the beneficial effects of ACE2 over-expression were prevented by Ang-(1-7) receptor blockade, suggesting that the favorable effects of ACE2 on β-cell function are mediated by the Ang-(1-7) peptide.

Db/db mice, a classic model of T2DM were previously reported to have early increase (22) and late decrease (23) in renal ACE2 expression during diabetic nephropathy. These observations are consistent with our data showing that ACE2 levels in the islets are increased in 8 week-old but decreased in 16 week-old db/db mouse, in comparison to age-matched db/m mice, and support our hypothesis that ACE2 may be part of a compensatory mechanism during β-cell dysfunction (11). In addition, our
observations supply a rationale for ACE2 gene therapy in the pancreas. Our experiments were performed in C57BLKS/J background db/db mice. These mice are obese at 4 weeks of age, and develop persistant hyperglycemia and diabetes between 4-8 weeks of age. It is well known that islet compensation peaks in these animals between 8-12 weeks of age and that β-cell failure occurs between 5-8 months of age (24). We therefore studied 4-, 8- and 16-week old db/db mice to determine the effects of ACE2 on islets prior to and during compensation and in decompensated islets. Adenoviral vectors are a useful tool for gene delivery in endocrine cells due to their ability to transfer genes with high efficiency to both dividing and non-dividing cells (25). While these tools may be desirable in treatment of diabetes due to their ability to preferentially infect pancreatic β-cells over α-cells (26), the method has been limited by evidence of significant inflammation, tissue damage and short duration of viral expression (27,28). Adenoviral delivery directly into the pancreas and infusion through the common bile duct at the entrance of the duodenum have been shown to be effective methods, although both induce acute pancreatitis, the severity of which correlates to viral load (27). Alternatively, systemic adenoviral delivery in mice, with clamped hepatic circulation, does not induce inflammation while providing high levels of viral infection. However, because isolation of the bile duct and hepatic vasculature resulted in significantly increased mortality in db/db mice, we opted for direct injection underneath the pancreas capsule. In our hands, adenovirus administration did not result in the development of inflammation and only minor CD3+ cell infiltration (supplemental fig 1), consistent with previous observations that this adenoviral backbone induced mild infiltration of CD-3 F4/80 into the brain, without causing tissue or cellular damage (29). Therefore this particular viral vector may be less immunogenic than those used by other groups (27,28). We hypothesized that ACE2 over-expression would ameliorate the impaired glucose homeostasis in diabetic mice. The current study demonstrates that ACE2 reduces fasting blood glucose and improves glucose tolerance in this model. Glucose tolerance is determined by both insulin secretion and peripheral insulin sensitivity. Insulin secretion has been hypothesized to be a more important factor than insulin sensitivity in determining glucose tolerance (30). First-phase insulin secretion is considered to be a reliable measure of pancreatic β-cell function. Moreover, impairment in first-phase insulin secretion is a sensitive marker for reduced pancreatic β-cell function and evident before the onset of T2DM (19). Interestingly, there is significant evidence to implicate the ACE2/Ang-(1-7)/Mas axis in the prevention of insulin resistance. Mas deficient mice develop a metabolic syndrome-like state which includes hyperinsulinemia and impaired glucose tolerance (20). Moreover, a recent study demonstrated that Ang-(1-7) prevents fructose-induced insulin resistance by stimulating phosphorylation of the insulin receptor, IRS-1 and activation of Akt and PI3K (31). In our study, ACE2 over-expression had no effect on insulin tolerance but increased first phase insulin secretion, suggesting an improvement of β-cell function rather than insulin sensitivity. These findings are supported by another study showing that loss of ACE2 had no effect on insulin sensitivity but improved first phase insulin secretion (18). These data demonstrate that the primary effect of ACE2 over-expression in the pancreas and liver was mediated by changes in islet function and not hepatic insulin sensitivity. Of particular interest, Ang-(1-7) receptor inhibition worsened insulin sensitivity in all db/db mice. An explanation for this effect is that while our adenovirus was not expressed in the skeletal muscle or
adipose tissue, D-Ala^{7}-Ang-(1-7) was administered systemically and therefore would be expected to reduce insulin signaling in all tissues, thus worsening insulin sensitivity. Pancreatic β-cell decompensation and death occur during the progression of T2DM. While traditionally glucotoxicity and lipotoxicity mediated oxidative stress have been hypothesized to be the cause of β-cell death in T2DM (32), ACE inhibitors and AT1R blockers enhance islet insulin content in both ZDF rats and db/db mice and prevent pancreatic β-cell loss, independently of changes in plasma glucose levels, by reducing intra-islet apoptosis and enhancing pancreatic β-cell proliferation (10,33) Here, ACE2 over-expression increased islet insulin content in db/db mice above the level observed in db/m mice. In addition, we found that the enhanced insulin content, in db/db mice over-expressing ACE2, was due to enhanced pancreatic β-cell proliferation and reduced apoptosis. We found an increase in pancreatic β-cell mass in db/m and a trend towards increased pancreatic β-cell mass in db/db mice, supporting the hypothesis that ACE2 enhances pancreatic β-cell proliferation. While increases in β-cell mass were not found in db/db mice, we hypothesize that a long term ACE2 expression model would demonstrate maintained or enhanced pancreatic β-cell mass. The main function of ACE2 is to transform Ang-II into Ang-(1-7), whose anti-proliferative effects have been demonstrated in tumor growth (34), cardiac remodeling and vascular injury (35). Consequently, ACE2 might be expected to have anti-proliferative effects on pancreatic β-cells. Although our data showing that, in both lean and diabetic mice, ACE2 stimulates β-cell proliferation may seem paradoxical at first, a very recent study described the ability of Ang-(1-7) to activate growth stimulatory pathways in human mesangial cells (36). Moreover, Ang-(1-7) has been implicated in the beneficial effects of both AT1R blockers (37) and ACE inhibitors (38). RAS blockade was also reported to stimulate pancreatic β-cell proliferation (10). Accordingly, these data suggest that enhanced Ang-(1-7) and reduction of Ang-II signaling may be a putative mechanism for the increase in pancreatic β-cell proliferation associated with ACE2 over-expression. Alternatively, while the direct effects of ACE2 on downstream cell signaling are unknown, the enzyme shares 47.8% sequence homology with collectrin (39) which enhances insulin exocytosis (40), stimulates pancreatic β-cell proliferation and increases islet insulin content (41). ACE2 may therefore act similarly to collectrin in stimulating pancreatic β-cell proliferation, although the mechanism remains unknown. Very little is known about the role of ACE2 and Ang-(1-7) in the regulation of apoptosis. Mas knockout mice have increased cardiac apoptosis in comparison to controls (42). Moreover, left ventricular device-mediated enhancement of ACE2 activity, in end-stage heart failure, was associated with reduced myocyte apoptosis in vivo and Ang-(1-7)/Mas activation was shown to reduce cardiomyocyte apoptosis in vitro (43). Moreover oxidative stress directly induces pancreatic β-cell death. A recent study by Chu and coworkers demonstrated that ACE inhibition causes a reduction in intra-islet apoptosis and enhanced pancreatic β-cell proliferation due to reduced uncoupling protein-2 (UCP-2) driven oxidative stress (44). ACE2 therefore, may preserve pancreatic β-cell mass by reducing oxidative stress. Consistent with these observations, we show that ACE2 over-expression reduced apoptosis in 8 week-old diabetic mice. Moreover, we demonstrated that Ang-(1-7) receptor inhibition prevented the ACE2-mediated reduction in apoptosis indicating that the anti-apoptotic effects of ACE2 on pancreatic β-cells are mediated by Ang-(1-7). Although not the focus of this study, ACE2 could potentially regulate several pathways involved in apoptosis,
including UCP-2(44), bradykinin (45), Erk1/2 and p38 signaling (46) and Akt phosphorylation (47). While a decrease in fasting blood glucose was observed in 16-week old db/db mice, there was no significant change regarding glucose tolerance, insulin secretion or insulin sensitivity. Moreover, despite an increased islet insulin content after ACE2 over-expression there was no significant increase in pancreatic β-cell mass, proliferation or apoptosis. Taken together these data indicate that ACE2 over-expression is not able to rescue β-cell function in late T2DM. During the pre-diabetic state, pancreatic β-cells undergo a compensatory phase during which β-cell mass and insulin output increase (48) then, at the onset of hyperglycemia, up to 50-75% of β-cell secretory function is lost (49). Finally, in late T2DM, pancreatic β-cells undergo decompensation which results in loss of up to 60% of β-cell mass and failure (48). Since significant loss of β-cell function and mass, added to deleterious changes in islet morphology, are evident in 15 week-old db/db mice, it is conceivable that ACE2 over-expression might be too late to reverse these changes. Indeed, a hypothetical window during which β-cell function and islet morphology can be modified has been proposed to exist before the onset of hyperglycemia (50). ACE2 over-expression for 7 days did however increase islet insulin content and reduce fasting blood glucose. While we did not see a significant effect of ACE2 over-expression in 4 week old mice, these animals have only mild hyperglycemia and impaired glucose tolerance. We hypothesize that longer ACE2 over-expression may have resulted in enhanced β-cell function. In light of the increased β-cell proliferation and reduced apoptosis following administration of the adenovirus during the peak of maximal beta cell compensation, long term ACE2 gene therapy either before the onset of hyperglycemia or in the early stages of T2DM may potentially result in improved islet function and glucose homeostasis at 16 weeks of age through maintenance of islet compensation. In summary, islet ACE2 expression was increased early and decreased late in T2DM. This is consistent with observations in the diabetic kidney where ACE2 is thought to act as a compensatory mechanism for hyperglycemia-induced RAS activation. In the db/db mouse model, ACE2 over-expression significantly improved glucose tolerance, enhanced islet function, increased β-cell proliferation and insulin content and prevented β-cell apoptosis in 8 week-old db/db mice. These findings suggest that ACE2 gene therapy could be a novel therapeutic approach for prevention of β-cell dysfunction and loss in T2DM.

Author contributions. Sharell M. Bindom researched data, wrote, reviewed and edited the manuscript. Chetan P. Hans researched and contributed to discussion. Huijing Xia researched data. A. Hamid Boulaires provided scientific advising. Eric Lazartigues reviewed and edited the manuscript, contributed to discussion and provided scientific advising.

ACKNOWLEDGEMENTS
The authors would like to thank Drs. Rhoda Reddix (Our Lady of the Lake College, Baton Rouge, LA), and Pam Lucchesi (Nationwide Children’s Hospital, Columbus, OH) for technical assistance. The hACE2 adenovirus is maintained by the Gene Transfer Vector Core at The University of Iowa and we wish to thank Maria Scheel and Dr. Beverly Davidson, (The University of Iowa Gene Transfer Vector Core) for their assistance. This work was supported, in part, by NIH grants NS052479, RR018766 and a Research Enhancement Fund provided by LSUHSC School of Medicine. These data were presented at the Experimental Biology 2009 meeting and published in abstract form in the FASEB Journal. This work was supported, in
part, by a Research Enhancement Fund from LSU Health Sciences Center and a Basic Science Award from the American Diabetes Association (1-10-BS-93) to Dr. Eric Lazartigues.

REFERENCES
19. Gerich JE. Is Reduced First-Phase Insulin Release the Earliest Detectable Abnormality in Individuals Destined to Develop Type 2 Diabetes? *Diabetes* 51:S117-121, 2002

44. Chu KY, Leung PS. Angiotensin II Type 1 Receptor Antagonism Mediates Uncoupling Protein 2-Driven Oxidative Stress and Ameliorates Pancreatic Islet Ï¬-Cell Function in Young Type 2 Diabetic Mice. *Antioxidants & Redox Signaling* 9:869-878, 2007

FIGURES LEGENDS

FIG. 1. Mouse ACE2 expression is elevated in the islets of 8-week old and reduced in 16-week old db/db mice. Immunostaining for mACE2 (A) and quantification (B) revealed increased mACE2 expression (brown) in the islets of 8-week old db/db mice in comparison to db/m. Expression of mACE2 was significantly reduced in the islets of 16-week (panel A, right) vs. 8-week (panel A, left) old db/db mice. Representative western blot and densitometry (C) demonstrating no significant change in pancreatic mACE2 expression in 8-week old db/m vs. db/db mice and 16-week old db/m vs. db/db mice. However, reduced mACE2 expression in the pancreas is observed in 16-week mice in comparison to 8-week old mice. Values expressed as mean ± standard error of the mean (SEM), Two-way ANOVA statistical significance: *P*<0.05 vs. respective 8-week old mice, †*P*<0.05 vs. respective db/m mice.

FIG. 2. Adenovirus-mediated expression of hACE2. A: Schematic of infection showing Ad-hACE2-eGFP delivery (100 μl) by 5 microinjections along the pancreas. B: Representative immunofluorescence (n=3) showing Ad-hACE2-eGFP transgene expression in the pancreas and liver of db/m mice at 0, 3, 7 and 14 days following adenovirus delivery. Expression of hACE2 peaked at 7 days, as also evidenced by activity (C) and ACE2 immunostaining (D,E) in the pancreas of both db/m and db/db mice infected with Ad-hACE2-eGFP. Immunostaining for hACE2 revealed high expression in both endocrine (C) and exocrine (D) tissue. Values expressed as mean ± SEM. Two-way ANOVA statistical significance: *P*<0.05 vs. Ad-eGFP-treated mice.

FIG. 3. ACE2 over-expression ameliorates glycemic homeostasis. A: Ad-hACE2-eGFP had no effect on the fasting blood glucose of 8-week old db/m mice (open bars, n=12). Similarly, the Mas antagonist D-Ala^2^-Ang-(1-7) (600 ng/kg/min, SC) had no effect on the fasting blood glucose of db/m mice (n=6). Diabetic mice (solid bars) treated with Ad-eGFP had elevated fasting blood glucose levels in comparison to db/m mice. Mas blockade did not produce significant changes in the fasting blood glucose of Ad-eGFP-treated db/db mice. Ad-hACE2 treatment however significantly reduced fasting blood glucose levels in db/db mice (n=12) to levels not significantly different from db/m mice. Mas blockade with D-Ala^2^-Ang-(1-7) prevented ACE2-mediated improvements in fasting blood glucose of db/db mice. B: Ad-hACE2-eGFP had no effect on the fasting blood glucose of 16-week old db/m mice in comparison with Ad-eGFP (n=6). Ad-hACE2-eGFP infection reduced fasting blood glucose in db/db mice vs. to Ad-eGFP treated mice (n=6). C, E: Glucose tolerance was determined as the area under the curve (mg/dl/min) of blood glucose levels following a bolus of glucose (2g/kg) over a 2-hour period. Ad-hACE2-eGFP delivery had no effect on the glucose tolerance of db/m mice (open
ACE2 and diabetes

squares) in comparison to Ad-eGFP-treated db/m mice (open triangles). D-Ala⁷-Ang-(1-7) administration had no effect on Ad-eGFP (open diamonds) or Ad-hACE2-eGFP treated (open circles) db/m mice. Ad-eGFP-treated db/db (solid triangles) mice had significantly impaired glucose tolerance that was not affected by Mas blockade (solid diamonds). Ad-hACE2-eGFP delivery improved glucose tolerance in diabetic mice (solid squares) in comparison to Ad-eGFP-treated db/db mice. D-Ala⁷-Ang-(1-7) administration attenuated ACE2-mediated improvements in glucose tolerance in db/db mice (solid circles). D, F: Ad-ACE2-eGFP delivery had no effect on the glucose tolerance of 16-week old db/m mice (open squares) vs. Ad-eGFP-treated db/m mice (open triangles). Ad-hACE2-eGFP delivery failed to improve glucose tolerance in 16-week old db/db mice (solid squares) vs. Ad-eGFP-treated db/db mice (solid triangles). Values expressed as mean ± SEM. Two-way ANOVA statistical significance: *P<0.05 vs. respective db/m; †P<0.05 vs. db/db GFP; ‡P<0.05 vs. db/db ACE2 d-Ala.

FIG. 4. ACE2 over-expression improves insulin secretion but not insulin sensitivity in diabetic mice. Insulin tolerance was expressed by the area under the curve (mg/dl/min), measuring blood glucose over a 2-hour period after administration of an insulin bolus (0.3 IU/kg SC). A: 8-week old diabetic mice (solid bars) had significantly impaired insulin sensitivity in comparison to db/m mice (open bars). Ad-hACE2-eGFP delivery did not improve insulin sensitivity. D-Ala⁷-Ang-(1-7) (600 ng/kg/min, SC) significantly worsened insulin tolerance in both Ad-eGFP and Ad-hACE2-eGFP-treated db/db mice. B: 16-week old diabetic mice (solid bars) had significantly impaired glucose tolerance in comparison to db/m (open bars). Ad-hACE2-eGFP delivery had no effect on insulin sensitivity in db/m or db/db mice vs. respective Ad-eGFP-treated mice. First-phase insulin secretion was measured as area under the curve (ng/ml/min) of insulin concentration in response to a glucose bolus (1g/kg) over a 10-min period. C: Ad-hACE2-eGFP delivery had no effect on first-phase insulin secretion of 8-week old db/m mice in comparison to Ad-GFP-treated db/db mice. First-phase insulin secretion was not significantly different in Ad-eGFP-treated db/db mice (solid bars) in comparison to db/m mice (open bars) (n=6). ACE2 over-expression significantly enhanced insulin secretion in diabetic mice in comparison to Ad-eGFP-treated db/db mice. Administration of D-Ala⁷-Ang-(1-7) attenuated the ACE2-mediated improvements on first-phase insulin secretion. D: ACE2 over-expression did not significantly enhance insulin secretion in 16-week old db/m mice (open bars) vs. Ad-eGFP treatment. While Ad-ACE2-eGFP treatment did not significantly increase first-phase insulin secretion in db/db mice (solid bars) vs. Ad-eGFP-treated mice, there was a trend towards enhanced first-phase insulin secretion. Values expressed as mean ± SEM. Two-way ANOVA statistical significance: *P<0.05 vs. respective db/m; †P<0.05 vs. db/db GFP; ‡P<0.05 vs. respective db/db mice treated with D-Ala⁷-Ang-(1-7).

FIG. 5. ACE2 over-expression enhances islet insulin content, pancreatic β-cell proliferation and reduces apoptosis. A: Representative immunostaining for PCNA (DAB) and insulin (Alkaline phosphatase red) (n=15). B: Representative TUNEL staining (n=18). C: Ad-hACE2-eGFP had no effect on islet insulin content (insulin staining/islet area) in 8-week old db/m mice (open bars) vs. Ad-eGFP treatment. D-Ala⁷-Ang-(1-7) (600 ng/kg/min, SC) administration had no effect on islet insulin content in db/m mice. Ad-eGFP-treated db/db mice (solid bars) had significantly reduced islets insulin content vs. db/m mice, which was unaffected by Mas blockade. Ad-hACE2-eGFP increased islet insulin content in db/db mice vs. Ad-eGFP-treated mice. Islets insulin content in Ad-hACE2-eGFP-treated db/db mice was not significantly different from db/m mice. D-Ala⁷-Ang-(1-7) administration significantly reduced ACE2-mediated increases in islets insulin content. However, islets insulin content of D-Ala⁷-Ang-(1-7)-
and Ad-hACE2-treated mice was not significantly different from db/m mice. D: Proliferating pancreatic β-cells were determined as cells staining positive for both insulin and PCNA. Ad-hACE2-eGFP significantly increased pancreatic β-cell proliferation in both db/m and db/db mice in comparison with their respective Ad-eGFP-treated controls. Administration of D-Ala7-Ang-(1-7) significantly attenuated ACE2-mediated stimulation of pancreatic β-cell proliferation. E: Neither Ad-hACE2-eGFP nor Mas blockade treatment modified apoptosis in db/m mice. Ad-eGFP-treated db/db mice had no significant increase in apoptosis in comparison to db/m controls. ACE2 over-expression, however, reduced apoptosis in db/db mice vs. Ad-eGFP-treated mice. While D-Ala7-Ang-(1-7) had no effect on apoptosis in Ad-eGFP-treated db/db mice, it prevented ACE2-mediated reduction of apoptosis. F: Ad-hACE2-eGFP expression resulted in significant increases in pancreatic β-cell mass in db/m mice and trended towards an increase in pancreatic β-cell mass in db/db mice. While D-Ala7-Ang-(1-7) treatment did not significantly reduce pancreatic β-cell mass in Ad-eGFP expressing mice, it prevented ACE2 mediated enhancement of pancreatic β-cell mass. Values expressed as mean ± SEM. Two-way ANOVA statistical significance: *P<0.05 vs. respective db/m; †P<0.05 vs. db/db GFP; ‡P<0.05 vs. respective mice treated with D-Ala7-Ang-(1-7).

Table 1. Baseline metabolic parameters in db/db and db/m mice.

<table>
<thead>
<tr>
<th></th>
<th>8-week db/m</th>
<th>8-week db/db</th>
<th>16-week db/m</th>
<th>16-week db/db</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight (g)</td>
<td>22.53 ± 0.26</td>
<td>33.65 ± 0.45*</td>
<td>26.08 ± 0.54†</td>
<td>44.06 ± 2.66*‡</td>
</tr>
<tr>
<td>Fasting Blood Glucose (mg/dl)</td>
<td>102.2 ± 5.3</td>
<td>201.0 ± 11.9*</td>
<td>119.8 ± 12.8</td>
<td>398.2 ± 42.8*‡</td>
</tr>
<tr>
<td>IPGT AUC (mg/dl/min)</td>
<td>19.32 ± 2.2</td>
<td>48.41 ± 1.1*</td>
<td>20.42 ± 0.8</td>
<td>76.40 ± 4.6*‡</td>
</tr>
</tbody>
</table>

Data represent baseline parameters of db/m and db/db mice (n=6 per group) prior to infection with Ad-hACE2-eGFP or Ad-eGFP viruses. Statistical significance: *P<0.001 vs. age-matched db/m, †P<0.05 vs. 8-week db/m, ‡P<0.001 vs. 8-week db/db. Abbreviation: IPGT AUC, intra-peritoneal glucose tolerance area under the curve.
Figure 3
Figure 4

A

B

C

D

Incremental Area Under the Curve (ng/ml/min)

Incremental Area Under the Curve (ng/ml/min)

Incremental Area Under the Curve (ng/ml/10min)

Incremental Area Under the Curve (ng/ml/10min)
Figure 5

ACE2 and diabetes

![Image of Figure 5 showing experimental results related to ACE2 and diabetes]