Fibrosis in human adipose tissue: composition, distribution and link with lipid metabolism and fat mass loss.

Adeline Divoux*(1), Joan Tordjman*(1), Danièle Lacasa(2), Nicolas Veyrie(1,3), Danielle Hugol(1,4), Abdelhalim Aissat(1,3), Arnaud Basdevant(1,2), Michèle Guerre-Millo(1), Christine Poitou(1,2), Jean-Daniel Zucker(1), Pierre Bedossa(1,5), Karine Clément(1,2)

*A.D. and J.T. equally contributed

(1) INSERM, U872, Paris, F-75006 France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMR S 872, Paris, F-75006 France; Université Paris Descartes, UMR S 872, Paris, F-75006 France.

(2) Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, F-75013 France; CRNH-Ile de France, Paris, F-75013 France.

(3) Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu Hospital, Surgery Department, Paris, F-75004 France.

(4) Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu Hospital, Anatomopathology Department, Paris, F-75004 France.

(5) Assistance Publique-Hôpitaux de Paris, Beaujon Hospital, Pathology Department, Clichy, F-92110 France; Centre de Recherche Bichat-Beaujon, INSERM U773, Clichy, F-92110 France.

Corresponding authors:
Prof. Karine Clément,
Email: karine.clement@psl.aphp.fr
Dr. Joan Tordjman,
Email: joan.tordjman@crc.jussieu.fr

Submitted 26 April 2010 and accepted 30 July 2010.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: Fibrosis is a new hallmark of the pathological alteration of human adipose tissue (WAT). We investigated the composition of subcutaneous (scWAT) and omental WAT (oWAT) fibrosis in obesity and its relationship with metabolic alterations and surgery-induced weight loss.

Research design and methods: ScWAT and oWAT surgical biopsies were obtained in 65 obese (BMI 48.2 ± 0.8 kg/m²) and 9 lean subjects (BMI 22.8 ± 0.7 kg/m²). Obese subjects candidate for bariatric surgery were clinically characterized before, 3, 6 and 12 months after surgery including fat mass evaluation by DXA. WAT fibrosis was quantified and characterized using qPCR, microscopic observation, and immunohistochemistry.

Results: Fibrosis amount, distribution and collagen types (I, III and VI) present distinct characteristics in lean and obese subjects and with WAT depots localization (subcutaneous or omental). Obese subjects had more total fibrosis in oWAT and had more pericellular fibrosis around adipocytes than lean subjects in both depots. Macrophages and mastocytes were highly represented in fibrotic bundles in oWAT. scWAT was characterized more frequently by hypocellular fibrosis. oWAT fibrosis negatively correlated with omental adipocyte diameters (R=-0.30 p=0.02) and with triglyceride levels (R=-0.42, p<0.01) and positively with apoA1 (R=0.25, p=0.05). Importantly, scWAT fibrosis correlated negatively with fat mass loss measured at the 3 time points post surgery.

Conclusions: Our data suggest differential clinical consequences of fibrosis in human WAT. In oWAT, fibrosis could contribute to limit adipocyte hypertrophy and is associated with a better lipid profile, while scWAT fibrosis might hamper fat mass loss induced by surgery.

White adipose tissue (WAT) is the main energy repository in the body. It stores and mobilizes according to body demand fatty acids that have been implicated in the development of insulin resistance. In turns, the phenotype and the biology of WAT cellular components are altered by two major processes: adipose cell hypertrophy and immune cells accumulation. Inflammation, reticulum endoplasmic stress and hypoxia are part of the biological alterations which attract and retain inflammatory cells in WAT (1). Both adipocytes and non adipose cells of the stromal vascular fraction of WAT have been implicated in the secretion of inflammatory molecules and in the development of insulin resistance (2; 3). WAT extracellular matrix (ECM) remodeling which plays a pivotal role in adipogenesis (4) and tissue architecture (5), is crucial to accommodate obesity-induced cellular alterations (6). However, the persistence of an inflammation stimulus in WAT may be responsible of an excessive synthesis of ECM components and subsequent interstitial deposition of fibrotic material. Fibrosis, attributed to excessive deposition of ECM proteins, is an ubiquitous tissue response to an unresolved chronic inflammation (7). We recently highlighted this phenomenon in obese WAT (8) showing increased expression of genes encoding extracellular matrix components and demonstrating the presence of fibrosis (8; 9). In a small number of subjects, we scored histological WAT fibrous tissue using a picrosirius red staining and observed an increased abundance of ECM in obese vs. lean WAT (8). Moreover, we demonstrated that human adipocyte precursors secrete ECM components when challenged by macrophage secretions (10), emphasizing on the
prominence of macrophage-preadipocyte interactions in WAT fibrosis development or maintenance. Other inflammatory cells accumulate in obese WAT including T-lymphocytes and mast cells (11) and might also participate in the orchestration of fibrosis deposition.

The nature and consequences of ECM modification in WAT have been investigated in mice. In \( db/db \) obese mice, various types of collagens are overexpressed in epididymal WAT (12). The predominantly-expressed collagen mRNAs in epididymal WAT encode types I, IV and VI. In mice deleted for the \( col6a1 \) gene, the lack of collagen VI associates with increased adipocyte size both in response to a high-fat diet and on the obese \( ob/ob \) genetic background (11). A similar phenotype of adipose cell hypertrophy has been reported in mice deleted for SPARC, a matricellular glycoprotein implicated in the synthesis of ECM components (13). A mirror phenotype results from gene invalidation of the collagenase MT1-matrix metalloproteinase (MT1-MMP), which leads to the formation of a rigid network of collagen fibrils and reduced lipid accumulation in the adipocytes (14). These observations suggest that increased ECM deposition in WAT might contribute to restrain adipocyte expansion in obesity.

In humans, the nature of WAT fibrosis and its clinical relevance are poorly documented and were mostly addressed by gene expression evaluation. ScWAT collagen VI expression is increased in Asian Indian subjects compared to Caucasians, in relation with their higher level of susceptibility to insulin resistance (12). Pasarica et al., (15) showed that the expression of collagen VI in human WAT is upregulated after 8-week of overfeeding, concomitantly with increased inflammatory gene expression. These two studies suggest that increased collagen VI deposition could be a hallmark of WAT deregulation in obesity.

Here, we aimed to characterize more precisely fibrotic depots in lean and obese subjects and the pathological relevance of fibrosis in scWAT and oWAT. First, we analyzed qualitatively and quantitatively fibrosis in scWAT and oWAT of obese and lean subjects; second, we characterized cells structurally linked with fibrotic depots; third, we determined if there is a link between the altered metabolic parameters of obese and fibrosis quantified in WAT depots and fourth, we examined the consequence of fibrosis accumulation in the outcome of body fat loss in the model of gastric bypass.

**EXPERIMENTAL PROCEDURES**

**Subjects.** 65 obese subjects (BMI: 48.2 ± 0.8 kg/m², aged 39.9 ± 1.4 years) were recruited in the nutrition department at the Pitié-Salpêtrière hospital (Paris, France). Patients met the criteria for obesity surgery, i.e. body mass index BMI ≥ 40 or ≥ 35 kg/m² with at least one co-morbidity (hypertension, type II diabetes, dyslipidemia or obstructive sleep apnea syndrome). The subject’s weight was stable (i.e. variation of less than ± 2kg) for at least 3 months prior to the surgery. Subjects were exempt from acute or chronic inflammatory or infectious disease, viral infection, cancer and/or known alcohol consumption (> 20g per day). Clinical and biological parameters were assessed prior to gastric bypass surgery and at 3, 6 and 12 months post surgery (Supplemental Table 1 in the online appendix available at http://diabetes.diabetesjournals.org).

According to the criteria of fasting glycemia over 7 mM or the use of an anti-diabetic drug, 21 subjects had type 2-diabetes. 3 of these individuals necessitated insulin therapy, 13 subjects were treated with metformin and hypolipidemic drugs (either fibrates or statins) and 5 were non-treated. Seven female and 2 male volunteers (BMI: 22.8 ± 0.7 kg/m², aged 46.0 ± 4.2 years) were recruited as a control group in the same clinical protocol. These
subjects had abdominal programmed surgery (inguinal hernia, cholecystectomy, hysterectomy, gastro-oesophageal reflux). They had no inflammatory state and accepted the realization of omental and subcutaneous biopsies in the same location than that of obese subjects. The Ethics Committee of the Hôtel-Dieu Hospital approved the clinical investigations. Subjects gave a written informed consent after individual explanation.

**Clinical and biological parameters.** In obese subjects, body composition was estimated by whole-body fan-beam DXA scanning (Hologic Discovery W, software v12.6, 2; Hologic, Bedford, MA) (16). To determine body fat and lean mass repartition we used specific measures and analyses as described (17). Blood samples were collected after an overnight fast of 12 hours. Glycemia was measured enzymatically. Serum insulin concentrations were measured using a commercial IRMA kit (Bi-INSULINE IRMA CisBio International, France). Serum leptin and adiponectin were determined using a radioimmunoassay kit (Linco research, Saint Louis, MI, USA), according to the manufacturer’s recommendations, sensitivity: 0.5ng/mL and 0.8ng/mL for leptin and adiponectin respectively. Serum level of interleukin 6 (IL-6) was measured by an ultrasensitive ELISA system (QuantikineUS, R&D System Europe Ltd., UK, sensitivity <0.04 pg/ml). hsCRP were measured using an IMMAGE automatic immunoassay system (Beckman-Coulter, Fullerton, CA, USA). The sensitivity was 0.02 mg/dl.

**Immunohistochemical analysis of adipose tissue.** Omental (oWAT) and subcutaneous (scWAT) biopsies were obtained during gastric or abdominal surgery in the same individual. A portion of each WAT biopsy was immediately transferred into liquid nitrogen before RNA analysis. The other part was fixed overnight at 4°C in 4 % paraformaldehyde and processed for standard paraffin embedding. Sections of 5 μm were stained as described below and observed under a Zeiss 20 Axioskop microscope (Zeiss, Germany). Digital images were captured by a camera (triCCD, Sony, France). Adipocyte diameters and macrophage number were measured as described (18). We used cell specific stains targeted to macrophages (HAM56, Dakocytomation, Trappes, France)) and to M1 or M2 macrophage subtypes, respectively CD40 (R&D Systems Mineapolis, USA) and CD206 (R&D-Systems, Mineapolis, USA), CD3 (Neomarker Microm, Francheville, France) for T-lymphocytes, trypase (Dakocytomation, Trappes, France) for mast cells. An antibody binding to the alpha 3 chain of the human collagen VI was used (Abcam, Paris, France). Method specificity tests were performed by omission of primary antibodies and use of pre-immune serum.

**Quantification and characterization of fibrotic depots.** Slides of WAT biopsies were stained with picrosirius red. Fibrosis analysis was performed by histomorphometry using an Alphelys platform (Histolab Software, Plaisir, France) with content color thresholds. The quantification of total fibrosis was expressed as the ratio of fibrous tissue area stained with picrosirius red / total tissue surface, as described in (8). Same procedure was applied for quantification of pericellular fibrosis, expressed as the ratio of the sum of stained areas / the sum of field surfaces measured in 10 random fields at x 10 magnification for each biopsy.

**Polarized light microscopic observation of WAT fibrosis.** scWAT and oWAT of lean and obese subjects were observed using polarized light microscopy on sirius red staining sections allowing visualization of collagen fibbers with different colors (19). Type I collagen fibbers are orange to red, whereas the thinner type III collagen fibbers appear yellow to green.

**Adipocyte versus stroma vascular fraction gene expression by Real Time quantitative**
PCR (RTqPCR). In 12 patients, surgical subcutaneous AT samples from lean and obese subjects were separated into adipocytes and stroma vascular fraction (SVF), as in (20). We evaluated the collagen type 1α1, 3α1 and 6α1 gene expression changes by reverse transcription and real time PCR that were performed as in (21). We used 18S ribosomal RNA (Ribosomal RNA Control TaqMan Assay kit, Applied Biosystems, Foster City, CA, USA) as normalization control. Primer designs can be provided on request.

Isolation of cells from WAT fibrosis and immunofluorescence analysis. scWAT and oWAT was digested by one hour collagenase treatment. The digested material was filtered and the non digested fibrosis was collect from the gaze tissue. After a wash in PBS, fibrosis pieces were put in erythrocyte lysis buffer during 10 minutes and digested again in trypsin EDTA buffer during 10 minutes. The digested material was filtered, centrifuged and cultured on glass coverslips in appropriate media (DMEM 10% FBS for pre adipocytes). A fraction of the cells were differentiated in adipocytes as described in (22). Immunofluoresence staining was performed as described in (10).

Clustering analysis. To assess the relationship between fibrosis and bioclinical parameters, we used a recent implementation of the k-means algorithm dedicated to longitudinal data (23). We chose the number of clusters to be three as other values lead to clusters with less than three trajectories.

Statistical analysis. Values are expressed as mean ± SD. The Gaussian distribution of all parameters was tested. Differences between variables were determined with a non parametric Wilcoxon test (obese vs. lean subjects); Correlations were examined with parametric Pearson’s or non parametric Spearman correlation tests, as indicated. Chi2 tests were used for non continuous measures. Results were considered significant when p<0.05. For adjustment (BMI, age, gender, diabetic state), we applied a multiple linear regression modeling using least squares means. In that case continuous variables were log transformed. Mannova was used for time series analysis. Statistical analysis was performed with JMP statistics software (SAS Institute version 8.0, Cary, NC).

RESULTS
Collagen diversity in fibrous depots. We analyzed fibrosis in WAT depots by picrosirus red staining in paired scWAT and oWAT from lean and obese subjects. We observed a difference in collagen distribution pattern according to WAT depots. In scWAT, bundles of collagens fibers were abundant and organized mainly in thick bands (Figure 1A, left panel), while in oWAT, fibrous bands appeared more contained, thinner and surrounding lobule-like structures (Figure 1A, right panel).

Detailed microscopic examination of oWAT slides revealed that collagen fibers are organized in bundles of various thicknesses (Figures 1B and 1C, left panels), containing a few adipocytes isolated from the rest of the parenchyma (Figure 1C). Fibrosis was abundant around vessels (Figure 1D, left panel). Moreover, thinner collagen fibrils surrounded adipocytes localized in areas close to fibrotic bundles, demonstrating pericellular fibrosis (Figure 1E, left panel). Interestingly, these adipocytes were of smaller size (44.4 ± 1.4 µm), as compared to fibrosis-free cells located in parenchyma (64.2 ± 2.0 µm, n = 10, p = 0.002). In lean oWAT sections, this specific collagen deposition around adipocytes was rarely present and found only close to fibrous bundles (data not shown).

When examined with polarized light microscopy, the same slides demonstrated that type I (labeled in red) and type III (labeled in green) collagen fibers were present in bundles of fibrosis (Figure 1B, 1C, 1D, right panels) and around adipocytes (Figure 1E, right panel). Since this technique does not
allow visualization of collagen VI, we performed an immunohistochemical staining with an anti-collagen VI antibody. Collagen VI deposition was observed around adipocytes (Figure 1F) and in higher amounts in obese (right panel) than in lean oWAT (left panel). In contrast to other collagen isotypes, collagen VI staining was not found within fibrous bundles.

To substantiate the optic microscopy observations, we explored obese WAT sample with transmission electron microscopy. Collagen depots were detected between adipocytes (see Supplemental Figure 1, online appendix). Some collagen fibbers display the characteristic periodic striation suggestive of type I collagen whereas other collagen fibrils were not organized into fiber structures, a characteristic of type VI collagen.

**Abundance of cell types in adipose tissue fibrotic depots.** Paired scWAT and oWAT biopsies were stained by hematoxylin/eosine to detect the presence of cells in fibrosis. While few nuclei were observed in fibrosis bundles in scWAT (Figure 2A, left panel), they were abundantly detected in oWAT fibrosis (Figure 2A, right panel). Thus, fibrosis displays distinct characteristics depending on WAT localization, with more hypocellular fibrosis in scWAT than in oWAT. PCR analysis on paired samples of adipocytes and SVF fractions revealed that expression of three collagens was 4 to 12-fold higher in SVF cells than in adipocytes (Figure 2B), indicating that the main cellular source of collagens in human WAT is within cells of the stromal vascular fraction.

We designed an assay to identify the cells contained in WAT fibrosis (Figure 2C). Since, we previously demonstrated that preadipocyte, a fibroblastic-like cell, secretes ECM molecules (10), we characterized of the phenotype of the cells released from fibrosis, using pre-adipocytes markers (Figure 2D). Indeed, cells associated with fibrosis were able to differentiate into adipocytes (data not shown) and stained positive for Pref-1, FABP4 and vimentin, three proteins expressed in human preadipocytes (24). Moreover, these cells were also αSMA positive, in agreement with a fibroblast-like phenotype, and express collagen I.

Inflammatory cells were identified by immunostaining in fibrous bands in obese oWAT (Figure 3). While the presence of CD3+ T-lymphocytes was minimal, we observed abundant amounts of macrophages stained with M1 (CD40) or M2 (CD206) surface markers in the same fibrotic area. Using HAM56 antibody on the same serial slides, we obtained a similar pattern of labeling, indicating that most CD40+ or CD206+ cells were HAM56+ macrophages (data not shown). Additionally, the presence of mast cells and αSMA positive cells were observed in fibrosis bundles at the proximity of the vessels (Figure 3). A similar pattern of immune cells was identified in scWAT fibrosis (data not shown), although fibrotic bands appeared less enriched in cells in this depot.

**Obesity associates with increased fibrosis in adipose tissue.** To evaluate the amount of fibrosis in human WAT, we developed a microscopic image analysis method to quantify pericellular fibrosis surrounding adipocytes and total fibrosis, comprising pericellular and fibrosis bundles. The amount of total fibrosis was more than 4-fold increased in oWAT of obese versus lean subjects (Figure 4A). No difference was found in scWAT. When pericellular fibrosis was specifically measured, a marked increase was found in obese WAT compared to that of lean subjects, whatever the depot (x 6.7 in scWAT and x 3 in oWAT in obese vs lean, Figure 4B). The amounts of both total and pericellular fibrosis in scWAT were positively correlated with the amounts of fibrosis in oWAT measured in the same obese subject (R = 0.49 for total fibrosis and R = 0.34 for
pericellular fibrosis, p < 0.05 for both). These data indicate that fibrosis deposition is likely to occur concomitantly in the two adipose tissue sites investigated.

**Omental fibrosis associates with adipocyte size and lipid parameters.** To examine the pathophysiological relevance of fibrosis in obese WAT, we investigated the relationships between total fibrosis and clinical and biological parameters in 65 obese subjects (Table 1). No correlation was found between total fibrosis in oWAT or scWAT and age, BMI or fat mass in this population. Interestingly, we found that obese men had less fibrosis in oWAT than women. No difference was observed in the amount of fibrosis according to blood derived glycemic parameters or diabetic status. Circulating IL-6 or hsCRP, two representative markers of systemic inflammation in obesity, did not correlate with fibrosis, whatever the depot. Finally, oWAT, but not scWAT fibrosis, was related to blood lipid parameters, demonstrating a negative correlation with triglycerides and a positive correlation with HDL-cholesterol and Apo lipoprotein A1. Omental fibrosis also negatively correlated with adipocyte size in the same depot. We performed a multivariate analysis, taking into account gender, diabetic status, and log transformed values of age, BMI and total omental fibrosis. This analysis confirmed the strong negative association between circulating triglycerides and omental fibrosis. This association remained significant after adding adipocyte diameter in the model suggesting that these two factors are related to triglyceride levels (Supplemental Table 2 in online appendix).

**Diminished fat mass loss in gastric bypass associates with subcutaneous adipose tissue fibrosis.** The 65 patients were candidate for gastric bypass intervention and were followed for a year with clinical check points at 3, 6 and 12 months post surgery (Table 2). While gastric bypass is a drastic procedure associated with major body fat loss and reduced adipocyte size, there is a well known individual variation in the amount of weight and fat loss after a year (17). Initial BMI, age, and metabolic state (i.e. diabetes) were shown to be factors modulating the amount of weight loss (25; 26). We made the hypothesis that the amount of fibrosis in fat depots associate with fat mass loss. Figure 5A shows the decrease of fat mass expressed in percent of the initial value. Using a Spearman correlation test, we found significant positive correlations between the amount total fibrosis in scWAT before intervention and the percentage of fat mass loss at 3 months (R = - 0.39, p = 0.004), 6 months (R = - 0.31, p = 0.030) and 12 months (R = - 0.30, p = 0.040) after surgery. Similar negative correlations were found between pericellular fibrosis and fat mass loss at 3 months (R = - 0.23, p = 0.008), 6 months (R = - 0.32, p = 0.020) and 12 months (R = - 0.30, p = 0.030). Since individual responses were highly variable, we used a clustering approach enabling the grouping of the subjects in 3 partitions. Supplemental Table 3 in the online appendix summarizes the clinical differences between the 3 clustered groups. Subjects in group C lose less body fat mass after the surgery compared to B and A groups. Group C subjects have higher BMI, no difference in serum adiponectin, triglycerides and cholesterol, and markedly increased plasmatic IL-6. This prompted us to perform a multivariate models analysis to explain the percentage of fat mass loss at 3, 6 and 12 months after surgery, using IL-6 and scWAT fibrosis as explicative variables. Adjustment with IL-6 only marginally modified the significant associations between scWAT fibrosis and the percentage of fat mass loss at the follow up time points (Supplemental Table 4, online appendix).

We then compared fibrotic depots and clinical data before the intervention in the 3 clustered
groups A, B and C. Subjects in group C demonstrate a trend in increased total fibrosis and significantly higher pericellular fibrosis amount in scWAT (p = 0.008), as compared to A or B groups of subjects (Figure 5B).

**DISCUSSION**
We performed here a detailed analysis of the nature of fibrosis in two distinct WAT depots and explored its association with clinical parameters of obese patients. We show for the first time the presence of different patterns of fibrous depots and detailed collagen fibers organization in human WAT. Fibrosis appears distributed in bundles of variable thickness, which may contain some adipocytes isolated from the rest of the parenchyma. The detailed observation of fibrous structure also shows fibrosis spanning around each adipocyte (i.e. pericellular fibrosis), a fiber disposition which may directly affect adipose cell biology. Interestingly, we observed that some adipocytes engulfed in fibrosis stained negative for perilipin (online appendix, Supplemental Figure 2), reminiscent of perilipin-negative adipocytes previously described in crown like-structures of macrophages (27). This suggests that fibrosis could be a response to signals emerging from dysfunctional or dying adipocytes. Type I and III collagens were more frequently observed in fibrous bundles, whereas type VI collagen surrounded parenchymal adipocytes, particularly in obese subjects. Thus, collagen VI might represent a small proportion of total collagens in human WAT, at variance with mouse WAT in which collagen VI is abundantly expressed (11). In a large population of normal weight and overweight males, Pasarica et al (15), showed that type VI collagen gene expression in scWAT increases with BMI. In our population of subjects with extreme BMI, although we cannot exclude increased collagen VI expression in WAT, no relationship was established between BMI and total collagen quantification based on picrosirius staining.

One important finding of this study is the negative relationship between the amount of oWAT fibrosis and adipocyte size, on the one hand and circulating triglycerides, on the other hand. The multivariate analysis showed that these factors are closely related suggesting that omental fibrosis influences circulating triglycerides level by limiting adipocyte size. The fact that obese patients with smaller adipocyte cell size have a better lipid profile is in agreement with recent observation by Arner E. et al showing that women with adipocyte hypertrophy have a more adverse metabolic profile than women with cellular hyperplasia at a similar BMI level (2). Our observation suggests that the generation of omental fibrosis could contribute to limit adipocyte expansion thus acting as an adaptation mechanism which contributes to slowing down the negative effect of adipocyte hypertrophy. Of note, these relationships were not found in scWAT, suggesting differential consequences of the presence of fibrosis depending on fat depot localization. Additionally, our data suggest that the presence of high levels of fibrosis in WAT does not markedly influence glucose homeostasis, since no significant correlation was found between the amount of fibrosis and glycemic parameters in our population of massively obese subjects.

The mechanisms and kinetic of fibrotic depot accumulations are unknown and difficult to approach in human. In particular, the suggested link between fibrotic depots and immune cells accumulation in obese WAT parenchyma (12; 28) does not appear straightforward based on our data. Fibrosis was more abundant in subcutaneous than in omental depots where inflammatory cell accumulation is greater. No correlations between fibrosis quantification and systemic low grade inflammation based on IL-6 or CRP circulating measures were found.
Macrophages of both M1 and M2 phenotype and mast cells were the main immune cells found in fibrotic area, where T lymphocytes were less frequent. Fibrosis is typically considered a fibroproliferative disorder with the uncontrolled production of ECM components by fibroblasts activated by an inflammatory microenvironment. While we found αSMA positive cells in fibrotic bands, immunofluorescence also highlighted that these cells display features of preadipocytes. This is in agreement with our previous experiments in which we showed a capacity of human preadipocytes to secrete fibrotic factors under inflammatory conditions (8; 10).

Recent studies suggest that adiponectin exerts antifibrotic effects partly by reducing profibrotic TGF-β signaling in experimental models of liver or cardiac fibrosis (29; 30). Although measures were not available in the lean group in this study, it is well established that adiponectin levels are reduced in obesity. This feature could contribute to promote fibrosis deposition in WAT. However, our data failed to demonstrate a relationship between adiponectin and WAT fibrosis in the obese group, and lower adiponectinemia did not discriminate subjects included in cluster C characterized by higher amounts of pericellular fibrosis in scWAT (Table 3, online appendix). Further studies investigating the evolution of WAT fibrosis in relation with the increase in plasma adiponectin induced by weight loss would help to substantiate the implication of adiponectin in human WAT fibrosis.

Interestingly, we found a negative correlation between the percentage of total fibrosis in scWAT and the percentage of fat mass loss in patient after gastric bypass surgery a situation leading to drastic fat mass loss and adipocyte shrinkage. Subjects with more WAT fibrosis lose less fat mass at 3, 6 and 12 months post surgery. While this surgical model is extremely efficient for rapid fat mass loss in obese patients, there is important individual variability in the response to the intervention (31). This is also illustrated by the clustering of individual’s fat mass loss post surgery. Classically, subjects with higher BMI pre-surgery lose more weight and fat mass post bariatric surgery (32). Age and metabolic situation also explain the different weight loss profiles (25). Strikingly, in our study, while group C had higher BMI, they had the less favorable fat loss profile. This group also displays high levels of IL-6. Of note, the relationship between scWAT fibrosis and resistance to fat mass loss was only slightly influenced after adjustment for IL-6. We suggest that high levels of scWAT fibrosis and systemic inflammation both influenced the individual capacity to lose fat mass of group C subjects. Whether subcutaneous fibrosis could be used as good predictor of weight loss in surgical or dietary intervention studies need obviously more investigations in enlarged groups of individuals and with other nutritional challenges. More explorations are also needed to follow the evolution of fibrotic depots after weight loss.

This study provides new insight in the composition in WAT fibrosis showing a different pattern and distinct physiopathological significance in subcutaneous and omental WAT. Indeed, these two types of fibrosis show differences in their organization, quantity, nature and their influence in the clinical parameters of obese patients. A major finding is the diminished fat mass loss in patients with high level of fibrosis in their subcutaneous adipose tissue, which designs this alteration as a potential predictive factor for resistance to weight loss in obese subjects.

Author contributions. A.D. performed fibrosis quantification, polarized light microscopic observation, immunohistology and immunofluorescence staining, gene
expression experiments, participated in all data analyses and manuscript writing. J.T. performed pericellular fibrosis quantification and electron microscopy, participated in all data analyses and manuscript writing. D.L. helped with experiments design and in vitro experiments, assisted with the data interpretation and manuscript writing. N.V. collected obese tissue samples. DH prepared adipose tissue slides for immunohistochemistry. A.A. collected lean tissue samples. A.B. assisted with the data interpretation and manuscript writing. M.G.-M. assisted with data interpretation and manuscript writing. C.P. collected all clinical parameters and assisted with manuscript writing. J-D.Z. performed clustering analysis. P.B. assisted with the data interpretation and manuscript writing. K.C. designed the experiments, participated in all data analyses and prepared the manuscript.

ACKNOWLEDGEMENTS
This program was supported by the Commission of the European Communities (Collaborative Project ADAPT, contract number HEALTH-F2-2008-201100), Hepadip consortium (http://www.hepadip.org/, contract LSHM-CT-2005-018734), by INSERM. This clinical work was supported by the «Programme Hospitalier de Recherche Clinique», Assistance Publique-Hôpitaux de Paris (AOR 02076), the Contrat de Recherche Clinique (CRIC to CP), and support from Fondation pour la Recherche Medicale (FRM to AD). The authors wish to thank Mme Nathalie Colnot, Pathology Department of Beaujon Hospital, and M Jean-François Bedel, Centre de Recherche en Nutrition Humaine-Ile de France (Direction de la Recherche Clinique) for picrosirius red staining and fibrosis quantification, Mme Patricia Bonjour, Anatomopathology Department of Hotel-Dieu Hospital, for histological help and support. The authors thank Dr Florence Marchelli and Mme Christine Baudoin, Centre de Recherche en Nutrition Humaine Ile de France, Pitié-Salpêtrière Hospital, who contributed to clinical and biological data collections in patients and data base constitution. Mme Patricia Ancel, Nutrition Department Pitié-Salpêtrière Hospital, performed the evaluation of adipocyte size. We aim to thank Dr. Valérie Paradis, Pathology Department of Beaujon Hospital, for scientific discussion.

REFERENCES


24. Rathod MA, Rogers PM, Vangipuram SD, McAllister EJ, Dhurandhar NV: Adipogenic cascade can be induced without adipogenic media by a human adenovirus. *Obesity (Silver Spring)* 17:657-664, 2009
Table 1: Correlation analysis between total fibrosis amount in scWAT and oWAT and clinical characteristics in 65 obese patients

<table>
<thead>
<tr>
<th></th>
<th>Fibrosis in scWAT</th>
<th>Fibrosis in oWAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>p</td>
</tr>
<tr>
<td>Age</td>
<td>0.06</td>
<td>ns</td>
</tr>
<tr>
<td>Gender*</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td><strong>Adiposity markers</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>0.06</td>
<td>ns</td>
</tr>
<tr>
<td>Fat mass</td>
<td>0.11</td>
<td>ns</td>
</tr>
<tr>
<td>Adipocytes diameter</td>
<td>0.01</td>
<td>ns</td>
</tr>
<tr>
<td><strong>Plasma parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td>0.22</td>
<td>ns</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>0.03</td>
<td>ns</td>
</tr>
<tr>
<td>Apolipoprotein A1</td>
<td>0.05</td>
<td>ns</td>
</tr>
<tr>
<td>Diabetic status*</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Quicki</td>
<td>0.04</td>
<td>ns</td>
</tr>
<tr>
<td><strong>Inflammatory markers</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td>0.20</td>
<td>ns</td>
</tr>
<tr>
<td>hsCRP</td>
<td>0.11</td>
<td>ns</td>
</tr>
</tbody>
</table>

* Statistical analysis with Chi 2 test for non-continuous measures.
Table 2: Clinical and biological characteristics of obese subjects before surgery, 3 months, 6 months and 1 year after surgery

<table>
<thead>
<tr>
<th></th>
<th>Before by pass</th>
<th>3 months after by pass</th>
<th>6 months after by pass</th>
<th>1 year after by pass</th>
<th>Manova</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Adiposity markers</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Weight (kg)</td>
<td>135.03 ± 3.08</td>
<td>111.75 ± 2.84</td>
<td>102.04 ± 2.67</td>
<td>93.39 ± 2.72</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>48.21 ± 0.82</td>
<td>39.78 ± 0.78</td>
<td>36.28 ± 0.78</td>
<td>33.30 ± 0.83</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td>Fat mass (%weight)</td>
<td>46.21 ± 0.69</td>
<td>43.15 ± 0.71</td>
<td>39.24 ± 0.84</td>
<td>34.53 ± 0.89</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td>Leptin (ng/ml)</td>
<td>63.05 ± 3.16</td>
<td>32.85 ± 2.15</td>
<td>23.9 ± 1.74</td>
<td>18.53 ± 0.89</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td><strong>Plasma Glucose homeostasis</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycaemia (mmol/l)</td>
<td>6.55 ± 0.37</td>
<td>5.18 ± 0.13</td>
<td>4.87 ± 0.14</td>
<td>4.74 ± 0.11</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td>Insulinemia (μU/mL)</td>
<td>19.02 ± 1.81</td>
<td>8.7 ± 0.47</td>
<td>6.9 ± 4.36</td>
<td>7.23 ± 0.99</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td>Adiponectin (µg/ml)</td>
<td>6.08 ± 0.36</td>
<td>7.77 ± 0.43</td>
<td>9.95 ± 0.83</td>
<td>10.26 ± 0.67</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td>Diabetic (%)*</td>
<td>32.3</td>
<td>14.3</td>
<td>9.5</td>
<td>8.6</td>
<td>P&lt;0.005</td>
</tr>
<tr>
<td><strong>Plasma lipid homeostasis</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>5.00 ± 0.12</td>
<td>4.47 ± 0.11</td>
<td>4.36 ± 0.11</td>
<td>4.28 ± 0.10</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td>Total triglycerides (mmol/l)</td>
<td>1.53 ± 0.10</td>
<td>1.22 ± 0.06</td>
<td>1.08 ± 0.06</td>
<td>0.89 ± 0.04</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.28 ± 0.05</td>
<td>1.23 ± 0.04</td>
<td>1.35 ± 0.05</td>
<td>1.50 ± 0.04</td>
<td>p&lt;0.0001</td>
</tr>
<tr>
<td><strong>Liver test</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>24.51 ± 1.49</td>
<td>28.13 ± 1.59</td>
<td>26.33 ± 5.85</td>
<td>21.18 ± 1.03</td>
<td>p=0.0035</td>
</tr>
<tr>
<td>ALT</td>
<td>35.46 ± 3.49</td>
<td>38.31 ± 3.32</td>
<td>25.33 ± 2.59</td>
<td>24.27 ± 4.29</td>
<td>p=0.0287</td>
</tr>
<tr>
<td>GGT</td>
<td>48.90 ± 5.26</td>
<td>29.75 ± 2.90</td>
<td>40.38 ± 17.55</td>
<td>22.66 ± 2.13</td>
<td>p=0.0001</td>
</tr>
<tr>
<td><strong>Inflammatory markers</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma hsCRP (ng/l)</td>
<td>0.91 ± 0.08</td>
<td>0.61 ± 0.09</td>
<td>0.39 ± 0.05</td>
<td>0.33 ± 0.11</td>
<td>p=0.0001</td>
</tr>
<tr>
<td>Plasma IL-6 (pg/ml)</td>
<td>3.94 ± 0.32</td>
<td>3.46 ± 0.29</td>
<td>3.22 ± 0.39</td>
<td>2.27 ± 0.38</td>
<td>p=0.62</td>
</tr>
</tbody>
</table>

* Statistical analysis with Mac Nemar Chi 2 test for non-continuous measures.
LEGENDS TO FIGURES

Figure 1: Picrosirius and collagen VI staining on adipose tissue sections
(A) Comparison of obese scWAT (left panel) and oWAT (right panel) sections at low magnification. (B-E) oWAT section with picrosirius staining (left panels). Same section observed with polarized light (right panels) Arrows shows accumulation of fibrosis around adipocytes (i.e. pericellular fibrosis). (F) Staining with collagen VI antibody of lean (left) and obese oWAT (right). V: vessel; B: bundle

Figure 2: Cells associated with WAT fibrosis
(A) Hematoxylin eosine staining on subcutaneous (left panel) and omental (right panel) WAT sections. (B) Adipocytes and stroma vascular fraction were isolated from 12 subjects. Col1a1, col3a1 and col6a1 expression was quantified by real-time PCR. * p<0.005 (C) scWAT and oWAT biopsies were digested with collagenase. The non digested fibrosis was collected. Cells which released from the fibrosis were collected and (D) analyzed by immunofluorescence using Pref-1 (red, Cy3-conjugated anti rabbit IgG), αSMA (green, Cy2-conjugated anti mouse IgG), FABP4 (red, Cy3-conjugated anti rabbit IgG), vimentin (green, Cy2-conjugated anti mouse IgG) and collagen I (red, Cy3-conjugated anti rabbit IgG).

Figure 3: Identification of different cell types present in obese oWAT fibrosis.
Serial sections of human oWAT were stained for markers of T-lymphocytes (CD3), mast cells (tryptase), fibroblastic cells (αSMA) and for CD40+ and CD206+ macrophages. The arrows show positive cells in fibrosis area revealed with DAB system (brown staining). Nucleuses were stained with haematoxylin (blue staining). V: vessel.

Figure 4: Total and pericellular fibrosis in WAT of lean and obese subjects.
Comparison of total (A) and pericellular (B) fibrosis in scWAT (open bars) and oWAT (black bars) of 7 lean and 65 obese (OB) subjects. Data show the amount of fibrotic area in per cent of total area as described in Experimental Procedures. * p < 0.05.

Figure 5: Clustering of fat mass loss profiles in obese subjects and relation with scWAT fibrosis
(A) Individual fat mass changes at 3, 6 and 12 months post surgery were clustered using a recently implemented k-means algorithm dedicated to longitudinal data. The panel shows individual fat mass changes expressed as change at 3, 6 or 12 month / time 0 values. Three clusters were built. A, B, C are the mean of fat mass changes in each clustered group. (B) Mean of scWAT total fibrosis or pericellular fibrosis in each clustered group A, B, C. Pericellular fibrosis is significantly more abundant in cluster C compared to A and B. * p = 0.01 ** p = 0.001
Figure 1

A

B

C

D

E

F
Human adipose tissue fibrosis

Figure 2

A

![Image of histological sections with X40 and X10 magnifications]

B

<table>
<thead>
<tr>
<th>Gene</th>
<th>Adipocytes</th>
<th>SVF</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col1a1</td>
<td><img src="Col1a1" alt="Graph" /></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Col3a1</td>
<td><img src="Col3a1" alt="Graph" /></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Col6a1</td>
<td><img src="Col6a1" alt="Graph" /></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

C

Paired adipose tissue biopsies

Collagenase digestion

Filtration on fat tissue

Sc fibrosis

Om fibrosis

Erythrocyte lysis buffer (10min.)

Trypsin-EDTA buffer (10min.)

Centrifugation (5min. 1500rpm)

24h Cell culture 37°C

Paraformaldehyde fixation of cells (30min.)

Immunofluorescence staining

D

![Immunofluorescence images of FABP4, α-SMA, Merge, Pref-1, Vimentin, Merge, Collagen I, Vimentin, Merge]
Figure 3

Human adipose tissue fibrosis
Human adipose tissue fibrosis

Figure 4

A

B

Figure 5

A

B

Fat mass loss (%)